Misplaced Pages

Lancashire Witch

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
#859140

97-487: Lancashire Witch was an early steam locomotive built by Robert Stephenson and Company in Newcastle-upon-Tyne in 1828. It was a development of Locomotion . Lancashire Witch was an 0-4-0 locomotive with rear mounted cylinders inclined at 45 degrees driving to the front wheels. The rear wheels were powered via coupling rods . The boiler had two flue tubes and the locomotive burnt coke , aided by bellows on

194-650: A Scottish inventor, built a small-scale prototype of a steam road locomotive in Birmingham . A full-scale rail steam locomotive was proposed by William Reynolds around 1787. An early working model of a steam rail locomotive was designed and constructed by steamboat pioneer John Fitch in the US during 1794. Some sources claim Fitch's model was operable already by the 1780s and that he demonstrated his locomotive to George Washington . His steam locomotive used interior bladed wheels guided by rails or tracks. The model still exists at

291-468: A rope worked incline . There were also numerous wagonways from early pits in the park, the remains of which can still be seen. The station consists of a platform for Middleton Park and a run round loop for trains allowing return running. A proposed extension of the railway into Middleton Park has been discussed for many years and it has long been the ambition of the railway to run further in to Middleton Park . Plans have existed for some time to extend

388-635: A (newly identified) Killingworth Billy in 1816. He also constructed The Duke in 1817 for the Kilmarnock and Troon Railway , which was the first steam locomotive to work in Scotland. In 1825, Stephenson built Locomotion No. 1 for the Stockton and Darlington Railway , north-east England, which was the first public steam railway in the world. In 1829, his son Robert built in Newcastle The Rocket , which

485-679: A 1931 diesel locomotive hired from the nearby Hunslet Engine Company . However, the volunteers of the Middleton Railway subsequently operated a freight service from September 1960 until 1983. Regular operation of passenger services began in 1969. The Middleton Steam Railway is home to a representative selection of locomotives built in the Jack Lane, Hunslet area by the famous Leeds manufacturers of John Fowler & Co. , Hudswell Clarke , Hunslet Engine Company , Kitson & Co. and Manning Wardle . The locomotives include "Sir Berkeley", which

582-448: A balance has to be struck between obtaining sufficient draught for combustion whilst giving the exhaust gases and particles sufficient time to be consumed. In the past, a strong draught could lift the fire off the grate, or cause the ejection of unburnt particles of fuel, dirt and pollution for which steam locomotives had an unenviable reputation. Moreover, the pumping action of the exhaust has the counter-effect of exerting back pressure on

679-483: A crankpin on the driving wheel ( Main driver in the US) or to a crank on a driving axle. The movement of the valves in the steam chest is controlled through a set of rods and linkages called the valve gear , actuated from the driving axle or from the crankpin; the valve gear includes devices that allow reversing the engine, adjusting valve travel and the timing of the admission and exhaust events. The cut-off point determines

776-406: A deployable "water scoop" fitted under the tender or the rear water tank in the case of a large tank engine; the fireman remotely lowered the scoop into the trough, the speed of the engine forced the water up into the tank, and the scoop was raised again once it was full. Water is essential for the operation of a steam locomotive. As Swengel argued: Middleton Railway The Middleton Railway

873-523: A full restoration is being completed to ensure it is a regular and reliable loco into the future. Its restoration is expected to be completed in 2023–2024. It was subject to an arson attack at Moor Road in 2016. It received major bodywork repairs and a body rebuild at the Vintage Carriages Trust workshop at Ingrow West (on the Keighley and Worth Valley Railway . It returned to Middleton once work

970-429: A gauge mounted in the cab. Steam pressure can be released manually by the driver or fireman. If the pressure reaches the boiler's design working limit, a safety valve opens automatically to reduce the pressure and avoid a catastrophic accident. The exhaust steam from the engine cylinders shoots out of a nozzle pointing up the chimney in the smokebox. The steam entrains or drags the smokebox gases with it which maintains

1067-427: A locomotive with a pinion which would mesh with it. Murray's design was based on Richard Trevithick 's Catch me who can , adapted to use Blenkinsop's rack and pinion system, and probably was called Salamanca . This 1812 locomotive was the first to use two cylinders. These drove the pinions through cranks which were at right angles, so that the engine would start wherever it came to rest. In 1812, Salamanca

SECTION 10

#1732855520860

1164-481: A lower pressure in the smokebox than that under the firebox grate. This pressure difference causes air to flow up through the coal bed and keeps the fire burning. The search for thermal efficiency greater than that of a typical fire-tube boiler led engineers, such as Nigel Gresley , to consider the water-tube boiler . Although he tested the concept on the LNER Class W1 , the difficulties during development exceeded

1261-433: A lower reciprocating mass than three, four, five or six coupled axles. They were thus able to turn at very high speeds due to the lower reciprocating mass. A trailing axle was able to support a huge firebox, hence most locomotives with the wheel arrangement of 4-4-2 (American Type Atlantic) were called free steamers and were able to maintain steam pressure regardless of throttle setting. The chassis, or locomotive frame ,

1358-586: A marvel at the time, a child who witnessed it was less impressed. The child, David Joy , became a successful engineer. Living in Hunslet Lane, on the London Road, the old coal railway from the Middleton Pits into Leeds, ran behind our house a few fields off, and we used to see the steam from the engines rise above the trees. Once I remember going with my nurse, who held my hand (I had to stretch it up to hers, I

1455-630: A number of Swiss steam shunting locomotives were modified to use electrically heated boilers, consuming around 480 kW of power collected from an overhead line with a pantograph . These locomotives were significantly less efficient than electric ones ; they were used because Switzerland was suffering a coal shortage because of the War, but had access to plentiful hydroelectricity . A number of tourist lines and heritage locomotives in Switzerland, Argentina and Australia have used light diesel-type oil. Water

1552-456: A number of important innovations that included using high-pressure steam which reduced the weight of the engine and increased its efficiency. Trevithick visited the Newcastle area in 1804 and had a ready audience of colliery (coal mine) owners and engineers. The visit was so successful that the colliery railways in north-east England became the leading centre for experimentation and development of

1649-459: A rigid frame with a 30% weight reduction. Generally, the largest locomotives are permanently coupled to a tender that carries the water and fuel. Often, locomotives working shorter distances do not have a tender and carry the fuel in a bunker, with the water carried in tanks placed next to the boiler. The tanks can be in various configurations, including two tanks alongside ( side tanks or pannier tanks ), one on top ( saddle tank ) or one between

1746-671: A stationary steam engine. Steam was reintroduced in 1866 with tank engines from local firm Manning Wardle . In 1881 the railway was converted to 4 ft  8 + 1 ⁄ 2  in ( 1,435 mm ) standard gauge allowing it to connect with the Midland Railway . Other extra links included one to the Great Northern Railway in 1899 and sidings serving other sources of freight including Robinson & Birdsell's scrapyard and Clayton, Sons & Co's engineering works. The Middleton Estate & Colliery Co became part of

1843-401: A tank in the locomotive tender or wrapped around the boiler in the case of a tank locomotive . Periodic stops are required to refill the tanks; an alternative was a scoop installed under the tender that collected water as the train passed over a track pan located between the rails. While the locomotive is producing steam, the amount of water in the boiler is constantly monitored by looking at

1940-463: A waggonway towards Leeds, and to ensure its permanence Brandling sought ratification in an act of Parliament , the Middleton Railway Act 1757 ( 31 Geo. 2 c. 22 ), the first authorising the building of a railway. An Act for Establishing Agreement made between Charles Brandling, Esquire, and other Persons, Proprietors of Lands, for laying down a Waggon-Way in order for the better supplying

2037-454: A waggonway using horse-drawn waggons. Around 1799 the wooden tracks began to be replaced with superior iron edge rails to a gauge of 4 ft 1 in ( 1,245 mm ). Cheap Middleton coal gradually enabled Leeds to become a centre of the many developing industries which used coal as a source of heat, e.g. for pottery, brick and glass making, metal working, and brewing, or as a source of power for mill and factory engines. In 1812

SECTION 20

#1732855520860

2134-475: Is crucial to the efficiency of any steam locomotive, and the internal profiles of the chimney (or, strictly speaking, the ejector ) require careful design and adjustment. This has been the object of intensive studies by a number of engineers (and often ignored by others, sometimes with catastrophic consequences). The fact that the draught depends on the exhaust pressure means that power delivery and power generation are automatically self-adjusting. Among other things,

2231-523: Is currently only used during special events as the line and crossings would need upgrading for regular use. Located few yards from Moor Road level crossing is the line's main terminus, Moor Road station . The site includes the Engine House museum and workshops along with a single platform for departing and arriving trains. The site was once a junction between the link to the Midland Railway mainline via

2328-419: Is directed upwards out of the locomotive through the chimney, by way of a nozzle called a blastpipe , creating the familiar "chuffing" sound of the steam locomotive. The blastpipe is placed at a strategic point inside the smokebox that is at the same time traversed by the combustion gases drawn through the boiler and grate by the action of the steam blast. The combining of the two streams, steam and exhaust gases,

2425-415: Is the principal structure onto which the boiler is mounted and which incorporates the various elements of the running gear. The boiler is rigidly mounted on a "saddle" beneath the smokebox and in front of the boiler barrel, but the firebox at the rear is allowed to slide forward and backwards, to allow for expansion when hot. European locomotives usually use "plate frames", where two vertical flat plates form

2522-518: Is the world's oldest continuously working railway, situated in the English city of Leeds . It was founded in 1758 and is now a heritage railway , run by volunteers from The Middleton Railway Trust Ltd. since 1960. The railway operates passenger services at weekends and on public holidays over approximately 1 mile (1.6 km) of track between its headquarters at Moor Road , in Hunslet , and Park Halt , on

2619-682: The Dartmouth Branch , a stub of the line that once connected various local metal industries with the main line. This is occasionally used on special events and has in recent years been used for training mainline track workers. This branch is close to the former connection to the Great Northern line. After the Dartmouth Branch, the line begins to enter Middleton Park . The line passes by the John Charles Centre for Sport on its right and

2716-874: The Drache , was delivered in 1848. The first steam locomotives operating in Italy were the Bayard and the Vesuvio , running on the Napoli-Portici line, in the Kingdom of the Two Sicilies. The first railway line over Swiss territory was the Strasbourg – Basel line opened in 1844. Three years later, in 1847, the first fully Swiss railway line, the Spanisch Brötli Bahn , from Zürich to Baden

2813-574: The Ohio Historical Society Museum in Columbus, US. The authenticity and date of this locomotive is disputed by some experts and a workable steam train would have to await the invention of the high-pressure steam engine by Richard Trevithick , who pioneered the use of steam locomotives. The first full-scale working railway steam locomotive was the 3 ft ( 914 mm ) gauge Coalbrookdale Locomotive built by Trevithick in 1802. It

2910-587: The Pennsylvania Railroad class S1 achieved speeds upwards of 150 mph, though this was never officially proven. In the United States, larger loading gauges allowed the development of very large, heavy locomotives such as the Union Pacific Big Boy , which weighs 540 long tons (550  t ; 600 short tons ) and has a tractive effort of 135,375 pounds-force (602,180 newtons). Beginning in

3007-499: The South Leeds Academy on its left. There are two over bridges on this section: one road bridge, carrying John Charles Approach and a second footbridge connecting the school and the sports centre. Located close to the site of Broom Pit colliery and on the edge of Middleton Park, Park Halt railway station is the current terminus of services at the far end of the line. Branches once continued to Day Hole End and to West Pit via

Lancashire Witch - Misplaced Pages Continue

3104-520: The United Kingdom during the early 19th century and used for railway transport until the middle of the 20th century. Richard Trevithick built the first steam locomotive known to have hauled a load over a distance at Pen-y-darren in 1804, although he produced an earlier locomotive for trial at Coalbrookdale in 1802. Salamanca , built in 1812 by Matthew Murray for the Middleton Railway ,

3201-466: The safety valves . Another boiler explosion occurred on 12 February 1834, again killing the driver. This time the most likely cause was a badly worn boiler, kept going by in-house repairs which were no longer expertly carried out after Blenkinsop's death. The driver killed on this occasion was James Hewitt, the world's first regular locomotive driver. The Blenkinsop engines remained at work for thirty years: when John Urpeth Rastrick and James Walker visited

3298-451: The "Balm Road Branch" and the line to Kidacre Street coal staith near the centre of the city. Departing Moor Road , are a selection of locomotives and rolling stock stored on sidings before the tunnel. The tunnel is the only one located on the route and allows the railway to pass under the M621 motorway . It is approximately 263 feet (80 m) long. Immediately after, there is the junction with

3395-597: The Middleton Railway became the first commercial railway to use steam locomotives successfully. John Blenkinsop , the colliery's viewer, or manager, had decided that an engine light enough not to break the cast iron track would not have sufficient adhesion , bearing in mind the heavy load of coal wagons and the steep track gradient. Accordingly, he relaid the track on one side with a toothed rail , which he patented in 1811 (the first rack railway ), and approached Matthew Murray of Fenton, Murray and Wood , in Holbeck , to design

3492-564: The Saar (today part of Völklingen ), but neither could be returned to working order after being dismantled, moved and reassembled. On 7 December 1835, the Adler ran for the first time between Nuremberg and Fürth on the Bavarian Ludwig Railway . It was the 118th engine from the locomotive works of Robert Stephenson and stood under patent protection. In Russia , the first steam locomotive

3589-696: The Town and Neighbourhood of Leeds in the County of York, with Coals. The Middleton Railway, the first railway to be granted powers by an act of Parliament, carried coal cheaply from the Middleton pits to the Staith at Casson Close, Leeds (near Meadow Lane, close to the River Aire). Not all the land belonged to Brandling, and the act gave him power to obtain wayleave . Otherwise the line was privately financed and operated, initially as

3686-423: The US), or screw-reverser (if so equipped), that controls the cut-off, therefore, performs a similar function to a gearshift in an automobile – maximum cut-off, providing maximum tractive effort at the expense of efficiency, is used to pull away from a standing start, whilst a cut-off as low as 10% is used when cruising, providing reduced tractive effort, and therefore lower fuel/water consumption. Exhaust steam

3783-599: The United States, including John Fitch's miniature prototype. A prominent full sized example was Col. John Steven's "steam wagon" which was demonstrated on a loop of track in Hoboken, New Jersey in 1825. Many of the earliest locomotives for commercial use on American railroads were imported from Great Britain, including first the Stourbridge Lion and later the John Bull . However, a domestic locomotive-manufacturing industry

3880-545: The adhesive weight. Equalising beams connecting the ends of leaf springs have often been deemed a complication in Britain, however, locomotives fitted with the beams have usually been less prone to loss of traction due to wheel-slip. Suspension using equalizing levers between driving axles, and between driving axles and trucks, was standard practice on North American locomotives to maintain even wheel loads when operating on uneven track. Locomotives with total adhesion, where all of

3977-402: The boiler materials to the point where it needs to be rebuilt or replaced. Start-up on a large engine may take hours of preliminary heating of the boiler water before sufficient steam is available. Although the boiler is typically placed horizontally, for locomotives designed to work in locations with steep slopes it may be more appropriate to consider a vertical boiler or one mounted such that

Lancashire Witch - Misplaced Pages Continue

4074-404: The boiler remains horizontal but the wheels are inclined to suit the slope of the rails. The steam generated in the boiler fills the space above the water in the partially filled boiler. Its maximum working pressure is limited by spring-loaded safety valves. It is then collected either in a perforated tube fitted above the water level or by a dome that often houses the regulator valve, or throttle,

4171-399: The boiler. Boiler water surrounds the firebox to stop the metal from becoming too hot. This is another area where the gas transfers heat to the water and is called the firebox heating surface. Ash and char collect in the smokebox as the gas gets drawn up the chimney ( stack or smokestack in the US) by the exhaust steam from the cylinders. The pressure in the boiler has to be monitored using

4268-675: The dominant fuel worldwide in steam locomotives. Railways serving sugar cane farming operations burned bagasse , a byproduct of sugar refining. In the US, the ready availability and low price of oil made it a popular steam locomotive fuel after 1900 for the southwestern railroads, particularly the Southern Pacific. In the Australian state of Victoria, many steam locomotives were converted to heavy oil firing after World War II. German, Russian, Australian and British railways experimented with using coal dust to fire locomotives. During World War 2,

4365-440: The early 1900s, steam locomotives were gradually superseded by electric and diesel locomotives , with railways fully converting to electric and diesel power beginning in the late 1930s. The majority of steam locomotives were retired from regular service by the 1980s, although several continue to run on tourist and heritage lines. The earliest railways employed horses to draw carts along rail tracks . In 1784, William Murdoch ,

4462-861: The end. Four months after the order the L&;MR board transferred the order to the Bolton and Leigh Railway . Lancashire Witch was used on the Bolton and Leigh Railway (B&LR), which opened in June 1828, and also on the L&MR. On the B&;LR it was initially used in the construction of the line, where it was found to be capable of hauling 58 long tons (59 t; 65 short tons) up a gradient of 1 in 432 (2.3 ‰ or 0.23 % ) at 8.8 miles per hour (14.2 km/h). Lancashire Witch appeared on two postage stamps issued by Funafuti - Tuvalu on 24 December 1984. London, Midland and Scottish Railway Royal Scot Class 4-6-0 locomotive 6125

4559-431: The exhaust gas volume was vented through a cooling tower, allowing the steam exhaust to draw more air past the radiator. Running gear includes the brake gear, wheel sets , axleboxes , springing and the motion that includes connecting rods and valve gear. The transmission of the power from the pistons to the rails and the behaviour of the locomotive as a vehicle, being able to negotiate curves, points and irregularities in

4656-448: The firebox becomes exposed. Without water on top of the sheet to transfer away the heat of combustion , it softens and fails, letting high-pressure steam into the firebox and the cab. The development of the fusible plug , a temperature-sensitive device, ensured a controlled venting of steam into the firebox to warn the fireman to add water. Scale builds up in the boiler and prevents adequate heat transfer, and corrosion eventually degrades

4753-504: The frames ( well tank ). The fuel used depended on what was economically available to the railway. In the UK and other parts of Europe, plentiful supplies of coal made this the obvious choice from the earliest days of the steam engine. Until 1870, the majority of locomotives in the United States burned wood, but as the Eastern forests were cleared, coal gradually became more widely used until it became

4850-418: The grate into an ashpan. If oil is used as the fuel, a door is needed for adjusting the air flow, maintaining the firebox, and cleaning the oil jets. The fire-tube boiler has internal tubes connecting the firebox to the smokebox through which the combustion gases flow transferring heat to the water. All the tubes together provide a large contact area, called the tube heating surface, between the gas and water in

4947-577: The highly mineralised water was available, and locomotive boilers were lasting less than a quarter of the time normally expected. In the days of steam locomotion, about half the total train load was water for the engine. The line's operator, Commonwealth Railways , was an early adopter of the diesel-electric locomotive . The fire-tube boiler was standard practice for steam locomotive. Although other types of boiler were evaluated they were not widely used, except for some 1,000 locomotives in Hungary which used

SECTION 50

#1732855520860

5044-566: The line on the behalf of the Directors of the Liverpool and Manchester Railway in January 1829 noted they were still at work, one of them being recorded as pulling a load of thirty load coal wagons, weighing 140 tons. At least two were working until 1835. Horse haulage returned and steam was abandoned apart from about a 1-mile (1.6 km) section near the main pit, which for some time was chain-worked by

5141-657: The locomotive ran on a circular track in the factory yard. It was the first locomotive to be built on the European mainland and the first steam-powered passenger service; curious onlookers could ride in the attached coaches for a fee. It is portrayed on a New Year's badge for the Royal Foundry dated 1816. Another locomotive was built using the same system in 1817. They were to be used on pit railways in Königshütte and in Luisenthal on

5238-403: The main chassis, with a variety of spacers and a buffer beam at each end to form a rigid structure. When inside cylinders are mounted between the frames, the plate frames are a single large casting that forms a major support element. The axleboxes slide up and down to give some sprung suspension, against thickened webs attached to the frame, called "hornblocks". American practice for many years

5335-509: The mainframes. Locomotives with multiple coupled-wheels on a rigid chassis would have unacceptable flange forces on tight curves giving excessive flange and rail wear, track spreading and wheel climb derailments. One solution was to remove or thin the flanges on an axle. More common was to give axles end-play and use lateral motion control with spring or inclined-plane gravity devices. Railroads generally preferred locomotives with fewer axles, to reduce maintenance costs. The number of axles required

5432-470: The moment when the valve blocks a steam port, "cutting off" admission steam and thus determining the proportion of the stroke during which steam is admitted into the cylinder; for example a 50% cut-off admits steam for half the stroke of the piston. The remainder of the stroke is driven by the expansive force of the steam. Careful use of cut-off provides economical use of steam and in turn, reduces fuel and water consumption. The reversing lever ( Johnson bar in

5529-510: The nationalised National Coal Board in 1947. Some rationalisation took place, the city centre staith at Kidacre street was closed and in the end coal movement was concentrated on the stretch of line from the GNR connection to Broom Pit. Preservationists mainly from Leeds University were allowed to move into an abandoned part of the line, between Moor Road and the GNR connection, by its then owners Messrs. Clayton, Son & Co. When Broom Pit closed in 1968

5626-826: The original John Bull was on static display in the National Museum of American History in Washington, D.C. The replica is preserved at the Railroad Museum of Pennsylvania . The first railway service outside the United Kingdom and North America was opened in 1829 in France between Saint-Etienne and Lyon ; it was initially limited to animal traction and converted to steam traction early 1831, using Seguin locomotives . The first steam locomotive in service in Europe outside of France

5723-650: The outskirts of Middleton Park . Coal has been worked in Middleton since the 13th century, from bell pits , gin pits and later "day level" or adits . Anne Leigh, heiress to the Middleton Estates, married Ralph Brandling from Felling near Gateshead on the River Tyne. They lived in Gosforth and left running of the Middleton pits to agents. Charles Brandling was their successor. In 1754, Richard Humble, from Tyneside,

5820-468: The piston in turn. In a two-cylinder locomotive, one cylinder is located on each side of the vehicle. The cranks are set 90° out of phase. During a full rotation of the driving wheel, steam provides four power strokes; each cylinder receives two injections of steam per revolution. The first stroke is to the front of the piston and the second stroke to the rear of the piston; hence two working strokes. Consequently, two deliveries of steam onto each piston face in

5917-604: The point where it becomes gaseous and its volume increases 1,700 times. Functionally, it is a steam engine on wheels. In most locomotives, the steam is admitted alternately to each end of its cylinders in which pistons are mechanically connected to the locomotive's main wheels. Fuel and water supplies are usually carried with the locomotive, either on the locomotive itself or in a tender coupled to it. Variations in this general design include electrically powered boilers, turbines in place of pistons, and using steam generated externally. Steam locomotives were first developed in

SECTION 60

#1732855520860

6014-568: The preservationists, by then called the Middleton Railway Trust, were able to reinstate the connection and operate to the site of Broom Pit, maintaining the continuous operation of the line. In June 1960, the Middleton Railway became the first standard-gauge railway to be taken over and operated by unpaid volunteers. Passenger services were initially operated for only one week, using an ex Swansea and Mumbles Railway double deck tram (the largest in Britain seating 106 passengers), hauled by

6111-411: The purpose of which is to control the amount of steam leaving the boiler. The steam then either travels directly along and down a steam pipe to the engine unit or may first pass into the wet header of a superheater , the role of the latter being to improve thermal efficiency and eliminate water droplets suspended in the "saturated steam", the state in which it leaves the boiler. On leaving the superheater,

6208-487: The railway to the centre of the park, however this would require significant earthworks and funding. Operational. Returned to service in September 2021. Boiler ticket expires 2031. Main operational loco alongside ‘Brookes No1’ and ‘Sir Berkeley’. . All required before it can begin passenger use. Acquired 2011 by a member of the railway and sold directly to the railway shortly after. It arrived in excellent condition however

6305-418: The side of the piston receiving steam, thus slightly reducing cylinder power. Designing the exhaust ejector became a specific science, with engineers such as Chapelon , Giesl and Porta making large improvements in thermal efficiency and a significant reduction in maintenance time and pollution. A similar system was used by some early gasoline/kerosene tractor manufacturers ( Advance-Rumely / Hart-Parr ) –

6402-504: The steam exits the dry header of the superheater and passes down a steam pipe, entering the steam chests adjacent to the cylinders of a reciprocating engine. Inside each steam chest is a sliding valve that distributes the steam via ports that connect the steam chest to the ends of the cylinder space. The role of the valves is twofold: admission of each fresh dose of steam, and exhaust of the used steam once it has done its work. The cylinders are double-acting, with steam admitted to each side of

6499-469: The steam locomotive. Trevithick continued his own steam propulsion experiments through another trio of locomotives, concluding with the Catch Me Who Can in 1808, first in the world to haul fare-paying passengers. In 1812, Matthew Murray 's successful twin-cylinder rack locomotive Salamanca first ran on the edge-railed rack-and-pinion Middleton Railway . Another well-known early locomotive

6596-544: The success of Rocket at the 1829 Rainhill Trials had proved that steam locomotives could perform such duties. Robert Stephenson and Company was the pre-eminent builder of steam locomotives in the first decades of steam for railways in the United Kingdom, the United States, and much of Europe. Towards the end of the steam era, a longstanding British emphasis on speed culminated in a record, still unbroken, of 126 miles per hour (203 kilometres per hour) by LNER Class A4 4468 Mallard , however there are long-standing claims that

6693-457: The tender. It was the first locomotive with steel springs. It was the first locomotive built by Robert Stephenson and Company. The locomotive that was to become Lancashire Witch was ordered by the board of the Liverpool and Manchester Railway (L&MR) in January 1828. The boiler was to incorporate a series a small flues, this evolved into a large central flue and two smaller side flues bent at

6790-434: The track, is of paramount importance. Because reciprocating power has to be directly applied to the rail from 0 rpm upwards, this creates the problem of adhesion of the driving wheels to the smooth rail surface. Adhesive weight is the portion of the locomotive's weight bearing on the driving wheels. This is made more effective if a pair of driving wheels is able to make the most of its axle load, i.e. its individual share of

6887-433: The two cylinders generates a full revolution of the driving wheel. Each piston is attached to the driving axle on each side by a connecting rod, and the driving wheels are connected together by coupling rods to transmit power from the main driver to the other wheels. Note that at the two " dead centres ", when the connecting rod is on the same axis as the crankpin on the driving wheel, the connecting rod applies no torque to

6984-419: The water level in a transparent tube, or sight glass. Efficient and safe operation of the boiler requires keeping the level in between lines marked on the sight glass. If the water level is too high, steam production falls, efficiency is lost and water is carried out with the steam into the cylinders, possibly causing mechanical damage. More seriously, if the water level gets too low, the crown sheet (top sheet) of

7081-401: The water-tube Brotan boiler . A boiler consists of a firebox where the fuel is burned, a barrel where water is turned into steam, and a smokebox which is kept at a slightly lower pressure than outside the firebox. Solid fuel, such as wood, coal or coke, is thrown into the firebox through a door by a fireman , onto a set of grates which hold the fuel in a bed as it burns. Ash falls through

7178-408: The wheel. Therefore, if both cranksets could be at "dead centre" at the same time, and the wheels should happen to stop in this position, the locomotive could not start moving. Therefore, the crankpins are attached to the wheels at a 90° angle to each other, so only one side can be at dead centre at a time. Each piston transmits power through a crosshead , connecting rod ( Main rod in the US) and

7275-411: The wheels are coupled together, generally lack stability at speed. To counter this, locomotives often fit unpowered carrying wheels mounted on two-wheeled trucks or four-wheeled bogies centred by springs/inverted rockers/geared rollers that help to guide the locomotive through curves. These usually take on weight – of the cylinders at the front or the firebox at the rear – when the width exceeds that of

7372-406: The will to increase efficiency by that route. The steam generated in the boiler not only moves the locomotive, but is also used to operate other devices such as the whistle, the air compressor for the brakes, the pump for replenishing the water in the boiler and the passenger car heating system. The constant demand for steam requires a periodic replacement of water in the boiler. The water is kept in

7469-844: The world also runs in Austria: the GKB 671 built in 1860, has never been taken out of service, and is still used for special excursions. In 1838, the third steam locomotive to be built in Germany, the Saxonia , was manufactured by the Maschinenbaufirma Übigau near Dresden , built by Prof. Johann Andreas Schubert . The first independently designed locomotive in Germany was the Beuth , built by August Borsig in 1841. The first locomotive produced by Henschel-Werke in Kassel ,

7566-548: Was Puffing Billy , built 1813–14 by engineer William Hedley . It was intended to work on the Wylam Colliery near Newcastle upon Tyne. This locomotive is the oldest preserved, and is on static display at the Science Museum, London . George Stephenson , a former miner working as an engine-wright at Killingworth Colliery , developed up to sixteen Killingworth locomotives , including Blücher in 1814, another in 1815, and

7663-456: Was a former pit surface labourer named James Hewitt who had been trained by Fenton, Murray & Wood's test driver. The first member of the public to be killed by a locomotive was almost certainly a 13-year-old boy named John Bruce killed in February 1813 whilst running alongside the tracks. The Leeds Mercury reported that this would "operate as a warning to others" . Though it was considered

7760-625: Was built in 1834 by Cherepanovs , however, it suffered from the lack of coal in the area and was replaced with horse traction after all the woods nearby had been cut down. The first Russian Tsarskoye Selo steam railway started in 1837 with locomotives purchased from Robert Stephenson and Company . In 1837, the first steam railway started in Austria on the Emperor Ferdinand Northern Railway between Vienna-Floridsdorf and Deutsch-Wagram . The oldest continually working steam engine in

7857-472: Was completed. It is currently awaiting funding and resources to become available to restore the interior and fix several major mechanical issues. It is unknown when this will return to service as little work has been completed on it since 2017. Following the closure of the Mumbles Railway by South Wales Transport attempts were made to preserve some rolling stock at the Middleton Railway. One car (no. 2)

7954-735: Was constructed for the Coalbrookdale ironworks in Shropshire in the United Kingdom though no record of it working there has survived. On 21 February 1804, the first recorded steam-hauled railway journey took place as another of Trevithick's locomotives hauled a train along the 4 ft 4 in ( 1,321 mm )-wide tramway from the Pen-y-darren ironworks, near Merthyr Tydfil , to Abercynon in South Wales. Accompanied by Andrew Vivian , it ran with mixed success. The design incorporated

8051-411: Was dictated by the maximum axle loading of the railroad in question. A builder would typically add axles until the maximum weight on any one axle was acceptable to the railroad's maximum axle loading. A locomotive with a wheel arrangement of two lead axles, two drive axles, and one trailing axle was a high-speed machine. Two lead axles were necessary to have good tracking at high speeds. Two drive axles had

8148-480: Was entered in and won the Rainhill Trials . This success led to the company emerging as the pre-eminent builder of steam locomotives used on railways in the UK, US and much of Europe. The Liverpool and Manchester Railway opened a year later making exclusive use of steam power for passenger and goods trains . Before the arrival of British imports, some domestic steam locomotive prototypes were built and tested in

8245-723: Was featured in the 1968 BBC TV version of " The Railway Children ". The locomotive is owned by the Vintage Carriages Trust of Ingrow near Keighley . Although the operational line starts at Moor Road , the line actually begins with the Balm Road Branch which joins the Middleton Railway with the Leeds - Sheffield route of the Hallam & Pontefract Lines. However, the connection to the main network has not been used since 1990 and has been bolted closed preventing access. This section of track crosses Beza Road , Tulip Street and Moor Road . It

8342-527: Was his agent. Brandling was in competition with the Fentons in Rothwell who were able to transport coal into Leeds by river, putting the Middleton pits at considerable disadvantage. Humble's solution was to build waggonways which were common in his native north east. The first waggonway in 1755 crossed Brandling land and that of friendly neighbours to riverside staithes at Thwaite Gate. In 1757 he proposed to build

8439-673: Was named Lancashire Witch in March 1928. Later that year an engraved brass plaque was added, depicting the original locomotive of 1828. The name and engraved plaque were removed in July 1935, and on 30 July 1936 a new name 3rd Carabinier was unveiled at a ceremony. The Royal Scot class loco was built by the North British Locomotive Company at Glasgow in September 1927 and withdrawn in October 1964 as 46125. Class 86 locomotive 86 213

8536-481: Was named Lancashire Witch . This locomotive has been preserved in operational condition by the AC Locomotive Group . Steam locomotive A steam locomotive is a locomotive that provides the force to move itself and other vehicles by means of the expansion of steam . It is fuelled by burning combustible material (usually coal , oil or, rarely, wood ) to heat water in the locomotive's boiler to

8633-632: Was named The Elephant , which on 5 May 1835 hauled a train on the first line in Belgium, linking Mechelen and Brussels. In Germany, the first working steam locomotive was a rack-and-pinion engine, similar to the Salamanca , designed by the British locomotive pioneer John Blenkinsop . Built in June 1816 by Johann Friedrich Krigar in the Royal Berlin Iron Foundry ( Königliche Eisengießerei zu Berlin),

8730-524: Was opened. The arid nature of south Australia posed distinctive challenges to their early steam locomotion network. The high concentration of magnesium chloride in the well water ( bore water ) used in locomotive boilers on the Trans-Australian Railway caused serious and expensive maintenance problems. At no point along its route does the line cross a permanent freshwater watercourse, so bore water had to be relied on. No inexpensive treatment for

8827-531: Was saved for preservation by members of Leeds University in Yorkshire and stored at the Middleton Railway. However, it was heavily vandalised and eventually destroyed by fire leading to the tram being scrapped. An experimental Leeds single deck tram, number 601, was preserved at the Middleton Railway along with tram 202 owned by Leeds Museums. These were, however, also destroyed by vandalism and arson during 1962. Leeds Horsfield Tram No 160 and Feltham Tram No 517 suffered

8924-417: Was so little) while we stood to watch the engine with its train of coal-wagons pass. We were told it would come up like a flash of lightning, but it only came lumbering on like a cart. Salamanca's boiler exploded on 28 February 1818, killing the driver, as the explosion "carried, with great violence, into an adjoining field the distance of one hundred yards." This was the result of the driver tampering with

9021-563: Was soon established. In 1830, the Baltimore and Ohio Railroad 's Tom Thumb , designed by Peter Cooper , was the first commercial US-built locomotive to run in America; it was intended as a demonstration of the potential of steam traction rather than as a revenue-earning locomotive. The DeWitt Clinton , built in 1831 for the Mohawk and Hudson Railroad , was a notable early locomotive. As of 2021 ,

9118-403: Was supplied at stopping places and locomotive depots from a dedicated water tower connected to water cranes or gantries. In the UK, the US and France, water troughs ( track pans in the US) were provided on some main lines to allow locomotives to replenish their water supply without stopping, from rainwater or snowmelt that filled the trough due to inclement weather. This was achieved by using

9215-439: Was the first commercial steam locomotive to operate successfully. Three other locomotives were built for the Middleton colliery, and the railway was locomotive-operated for more than twenty years. A number of other firsts can be claimed by the railway. Being the first line to use steam locomotives regularly on freight trains it was naturally the first line to employ a train driver. The world's first regular, professional train driver

9312-432: Was the first commercially successful steam locomotive. Locomotion No. 1 , built by George Stephenson and his son Robert's company Robert Stephenson and Company , was the first steam locomotive to haul passengers on a public railway, the Stockton and Darlington Railway , in 1825. Rapid development ensued; in 1830 George Stephenson opened the first public inter-city railway, the Liverpool and Manchester Railway , after

9409-404: Was to use built-up bar frames, with the smokebox saddle/cylinder structure and drag beam integrated therein. In the 1920s, with the introduction of "superpower", the cast-steel locomotive bed became the norm, incorporating frames, spring hangers, motion brackets, smokebox saddle and cylinder blocks into a single complex, sturdy but heavy casting. A SNCF design study using welded tubular frames gave

#859140