In materials science , a single crystal (or single-crystal solid or monocrystalline solid ) is a material in which the crystal lattice of the entire sample is continuous and unbroken to the edges of the sample, with no grain boundaries . The absence of the defects associated with grain boundaries can give monocrystals unique properties, particularly mechanical, optical and electrical, which can also be anisotropic , depending on the type of crystallographic structure. These properties, in addition to making some gems precious, are industrially used in technological applications, especially in optics and electronics.
82-462: The Pratt & Whitney Canada PT6 is a turboprop aircraft engine produced by Pratt & Whitney Canada . Its design was started in 1958, it first ran in February 1960, first flew on 30 May 1961, entered service in 1964, and has been continuously updated since. The PT6 consists of two basic sections: a gas generator with accessory gearbox, and a free-power turbine with reduction gearbox. In aircraft,
164-408: A free power turbine . The starter has to accelerate only the gas generator, making the engine easy to start, particularly in cold weather. Air enters the gas-generator through an inlet screen into the low-pressure axial compressor . This has three stages on small and medium versions of the engine and four stages on large versions. The air then flows into a single-stage centrifugal compressor , through
246-519: A PT6 and propeller flying test-bed until it was replaced with a Beech King Air in 1980. The King Air test-engine or propeller replaced one of the standard ones. In 1974 the Beech 18 had been unable to fly fast enough and high enough to test the PT6A-50 for the de Havilland Canada Dash 7 so a Vickers Viscount was modified as a PT6 test-bed with a Dash-7 installation in the nose. The first production PT6 model,
328-432: A bleed arrangement which reuses the bleed air by returning it in a tangential direction at the entry to the compressor, an idea patented by Schaum et al. and titled "Turbine Engine With Induced Pre-Swirl at Compressor Inlet". It acts like a variable vane and is known as a "Jet-Flap". All versions of the engine consist of two sections that can be easily separated for maintenance: a gas generator supplies hot pressurized gas to
410-406: A constant-speed propeller increase their pitch as aircraft speed increases. Another benefit of this type of propeller is that it can also be used to generate reverse thrust to reduce stopping distance on the runway. Additionally, in the event of an engine failure, the propeller can be feathered , thus minimizing the drag of the non-functioning propeller. While the power turbine may be integral with
492-451: A few crystals per meter of length. Another application of single-crystal solids is in materials science in the production of high strength materials with low thermal creep , such as turbine blades . Here, the absence of grain boundaries actually gives a decrease in yield strength, but more importantly decreases the amount of creep which is critical for high temperature, close tolerance part applications. Researcher Barry Piearcey found that
574-408: A folded annular combustion chamber , and finally through a single-stage turbine that powers the compressors at about 45,000 rpm. Hot gas from the gas generator flows into the power turbine, which turns at about 30,000 rpm. It has one stage on the small engines and two stages on the medium and large ones. For turboprop use, this powers a two-stage planetary output reduction gearbox, which turns
656-416: A large amount of air by a small degree than a small amount of air by a large degree, a low disc loading (thrust per unit disc area) increases the aircraft's energy efficiency , and this reduces the fuel use. Propellers work well until the flight speed of the aircraft is high enough that the airflow past the blade tips reaches the speed of sound. Beyond that speed, the proportion of the power that drives
738-450: A means to understand the ultimate performance of metallic conductors. It is vital for understanding the basic science such as catalytic chemistry, surface physics, electrons, and monochromators . Production of metallic single crystals have the highest quality requirements and are grown, or pulled, in the form of rods. Certain companies can produce specific geometries, grooves, holes, and reference faces along with varying diameters. Of all
820-409: A modified Kyropoulos method can be used to grow high quality 300 kg sapphire single crystals. The Verneuil method , also called the flame-fusion method, was used in the early 1900s to make rubies before CZ. The diagram on the right illustrates most of the conventional methods. There have been new breakthroughs such as chemical vapor depositions (CVD) along with different variations and tweaks to
902-452: A number of smaller crystals known as crystallites , and paracrystalline phases. Single crystals will usually have distinctive plane faces and some symmetry, where the angles between the faces will dictate its ideal shape. Gemstones are often single crystals artificially cut along crystallographic planes to take advantage of refractive and reflective properties. Although current methods are extremely sophisticated with modern technology,
SECTION 10
#1732844083858984-564: A possible new market such as a Super PC-12, a more powerful TBM, or a bigger King Air. When de Havilland Canada asked for a much larger engine for the DHC-8 , roughly twice the power of the Large PT6, Pratt & Whitney Canada responded with a new design initially known as the PT7, later renamed Pratt & Whitney Canada PW100 . The rate at which parts deteriorate in a gas turbine is unbalanced insofar as
1066-572: A proposed 2,000 shp (1,500 kW) engine to replace the most powerful versions of the PT6. It was considered likely to be a development of the PT6C core, and would fit between the 1,750 shp (1,300 kW) PT6C-67C/E and the 2,300 shp (1,700 kW) PW100 family. It was expected to be ready to launch by the end of 2017 for an initial helicopter platform with a 10-15% reduction in brake specific fuel consumption . This 2,000 hp engine would target
1148-463: A right-angle bend at the casting mold would decrease the number of columnar crystals and later, scientist Giamei used this to start the single-crystal structure of the turbine blade. Single crystals are essential in research especially condensed-matter physics and all aspects of materials science such as surface science . The detailed study of the crystal structure of a material by techniques such as Bragg diffraction and helium atom scattering
1230-700: A small gas turbine engine. Demand for the Wasp radial engine was still strong and its production was profitable but the aim was to become Canada's prime engine company by focusing on a small gas turbine engine. Riley gave Guthrie a modest budget of C$ 100,000. Guthrie recruited twelve engineers with experience gained at various places including the National Research Council in Ottawa , Orenda Engines in Ontario , Bristol Aero Engines and Blackburn Aircraft . They completed
1312-575: A test-bed not intended for production. It first flew on 20 September 1945. From their experience with the Trent, Rolls-Royce developed the Rolls-Royce Clyde , the first turboprop engine to receive a type certificate for military and civil use, and the Dart , which became one of the most reliable turboprop engines ever built. Dart production continued for more than fifty years. The Dart-powered Vickers Viscount
1394-486: A topic of fervent research. One of the main challenges has been growing uniform single crystals of bilayer or multilayer graphene over large areas; epitaxial growth and the new CVD (mentioned above) are among the new promising methods under investigation. Organic semiconducting single crystals are different from the inorganic crystals. The weak intermolecular bonds mean lower melting temperatures, and higher vapor pressures and greater solubility. For single crystals to grow,
1476-429: Is a turbine engine that drives an aircraft propeller . A turboprop consists of an intake , reduction gearbox , compressor , combustor , turbine , and a propelling nozzle . Air enters the intake and is compressed by the compressor. Fuel is then added to the compressed air in the combustor, where the fuel-air mixture then combusts . The hot combustion gases expand through the turbine stages, generating power at
1558-406: Is also used as optical windows because of its transparency at specific infrared (IR) wavelengths , making it very useful for some instruments. Sapphires : Also known as the alpha phase of aluminum oxide (Al 2 O 3 ) to scientists, sapphire single crystals are widely used in hi-tech engineering. It can be grown from gaseous, solid, or solution phases. The diameter of the crystals resulting from
1640-437: Is easier with single crystals because it is possible to study directional dependence of various properties and compare with theoretical predictions. Furthermore, macroscopically averaging techniques such as angle-resolved photoemission spectroscopy or low-energy electron diffraction are only possible or meaningful on surfaces of single crystals. In superconductivity there have been cases of materials where superconductivity
1722-527: Is extremely difficult to grow single crystals of the polymers. It is mainly because that the polymer chains are of different length and due to the various entropy reasons. However, topochemical reactions are one of the easy methods to get single crystals of the polymer. [1] One of the most used single crystals is that of Silicon in the semiconductor industry. The four main production methods for semiconductor single crystals are from metallic solutions: liquid phase epitaxy (LPE), liquid phase electroepitaxy (LPEE),
SECTION 20
#17328440838581804-552: Is known for its reliability with an in-flight shutdown rate of 1 per 333,333 hours up to October 2003, 1 per 127,560 hours in 2005 in Canada, 1 per 333,000 hours from 1963 to 2016, 1 per 651,126 hours over 12 months in 2016. Time between overhauls is between 3,600 and 9,000 hours and hot-section inspections between 1,800 and 2,000 hours. Early PT6 versions lacked a FADEC , autothrottle could be installed as an aftermarket upgrade with an actuator , initially for single-engine aircraft like
1886-474: Is known for its reliability, with an in-flight shutdown rate of 1 per 651,126 hours in 2016. The PT6A turboprop engine covers the power range between 580 and 1,940 shp (430 and 1,450 kW), while the PT6B/C are turboshaft variants for helicopters. In 1956, Pratt & Whitney Canada's (PWC) president, Ronald Riley, ordered engineering manager Dick Guthrie to hire a team of gas turbine specialists to design
1968-482: Is normally a constant-speed (variable pitch) propeller type similar to that used with larger aircraft reciprocating engines , except that the propeller-control requirements are very different. Due to the turbine engine's slow response to power inputs, particularly at low speeds, the propeller has a greater range of selected travel in order to make rapid thrust changes, notably for taxi, reverse, and other ground operations. The propeller has 2 modes, Alpha and Beta. Alpha
2050-494: Is sacrificed in favor of shaft power, which is obtained by extracting additional power (beyond that necessary to drive the compressor) from turbine expansion. Owing to the additional expansion in the turbine system, the residual energy in the exhaust jet is low. Consequently, the exhaust jet produces about 10% of the total thrust. A higher proportion of the thrust comes from the propeller at low speeds and less at higher speeds. Turboprops have bypass ratios of 50–100, although
2132-404: Is the mode for all flight operations including takeoff. Beta, a mode typically consisting of zero to negative thrust, is used for all ground operations aside from takeoff. The Beta mode is further broken down into 2 additional modes, Beta for taxi and Beta plus power. Beta for taxi as the name implies is used for taxi operations and consists of all pitch ranges from the lowest alpha range pitch, all
2214-559: Is the same as in 1964, updates have included a cooled first-stage turbine vane, additional compressor and turbine stages and single-crystal turbine blades in the early 1990s. Its pressure ratio is 13:1 in the AgustaWestland AW609 tiltrotor, the highest that can be used without cooled turbine blades. In response to the General Electric GE93 , in 2017 Pratt & Whitney Canada started testing core technology and systems for
2296-601: The Czochralski process (CZ) , Floating zone (or Zone Movement), and the Bridgman technique . Dr. Teal and Dr. Little of Bell Telephone Laboratories were the first to use the Czochralski method to create Ge and Si single crystals. Other methods of crystallization may be used, depending on the physical properties of the substance, including hydrothermal synthesis , sublimation , or simply solvent-based crystallization . For example,
2378-616: The P-3 Orion , and the C-130 Hercules military transport aircraft. The first turbine-powered, shaft-driven helicopter was the Kaman K-225 , a development of Charles Kaman 's K-125 synchropter , which used a Boeing T50 turboshaft engine to power it on 11 December 1951. December 1963 saw the first delivery of Pratt & Whitney Canada's PT6 turboprop engine for the then Beechcraft 87, soon to become Beechcraft King Air . 1964 saw
2460-608: The PC-12 and potentially in twin-turboprop aircraft. In October 2019 the PT6 E-Series was launched on the PC-12 NGX, the first general aviation turboprop with an electronic propeller and engine control system with a single lever and better monitoring for longer maintenance intervals, increased from 300 to 600 hours, and a TBO increased by 43% to 5,000 hours, reducing engine operating costs by at least 15%. In April 2022, Daher announced that
2542-830: The Piper Meridian , Socata TBM , Pilatus PC-12 , Piaggio P.180 Avanti , Beechcraft King Air and Super King Air . In April 2017, there were 14,311 business turboprops in the worldwide fleet. Between 2012 and 2016, the ATSB observed 417 events with turboprop aircraft, 83 per year, over 1.4 million flight hours: 2.2 per 10,000 hours. Three were "high risk" involving engine malfunction and unplanned landing in single‑engine Cessna 208 Caravans , four "medium risk" and 96% "low risk". Two occurrences resulted in minor injuries due to engine malfunction and terrain collision in agricultural aircraft and five accidents involved aerial work: four in agriculture and one in an air ambulance . Jane's All
Pratt & Whitney Canada PT6 - Misplaced Pages Continue
2624-590: The Tupolev Tu-114 can reach 470 kn (870 km/h; 540 mph). Large military aircraft , like the Tupolev Tu-95 , and civil aircraft , such as the Lockheed L-188 Electra , were also turboprop powered. The Airbus A400M is powered by four Europrop TP400 engines, which are the second most powerful turboprop engines ever produced, after the 11 MW (15,000 hp) Kuznetsov NK-12 . In 2017,
2706-461: The PT6 have appeared over time: The PT6A family is a series of free-turbine turboprop engines providing 500 to 1,940 shaft horsepower (370 to 1,450 kilowatts) BX Turbo de Havilland Canada Beaver DHC-2 (STC) ARON M80 (WIG CRAFT) Piper PA-46 (M700 Fury) The engine is used in over 100 different applications. Data from Jane's 62-63, Related development Comparable engines Related lists Turboprop A turboprop
2788-459: The PT6, which first ran in December 1963, was beset with engineering problems, cost overruns and lack of sales. It was almost cancelled. The team lacked the ability to deal with the technical difficulties, i.e. how to develop the engine, because, as one of the team Elvie Smith recalled, they came from research and design backgrounds. They learned how to run a development program, such as testing around
2870-450: The PT6A-20, was the pipe diffuser patented by Vrana, another of the original PT6 team. It replaced the vaned type diffuser used in centrifugal compressors. The pipe diffuser became standard design practice for P&WC. Another design change improved the part-speed functioning of the compressor. It is common to bleed air from a compressor to make it work properly at low engine speeds. The PT6 has
2952-660: The PT6A-6, was certificated in December 1963. The first application was the Beech Queen Air , enticing the U.S. Army to buy a fleet of the U-21 Ute variant. This helped launch the King Air with Beechcraft selling about 7,000 by 2012. From 1963 to 2016 power-to-weight ratio was improved by 50%, brake specific fuel consumption by 20% and overall pressure ratio reached 14:1. Its development continues and while today its basic configuration
3034-519: The Soviet Union had the technology to create the airframe for a jet-powered strategic bomber comparable to Boeing's B-52 Stratofortress , they instead produced the Tupolev Tu-95 Bear, powered with four Kuznetsov NK-12 turboprops, mated to eight contra-rotating propellers (two per nacelle) with supersonic tip speeds to achieve maximum cruise speeds in excess of 575 mph, faster than many of
3116-460: The World's Aircraft . 2005–2006. Single-crystal Because entropic effects favor the presence of some imperfections in the microstructure of solids , such as impurities , inhomogeneous strain and crystallographic defects such as dislocations , perfect single crystals of meaningful size are exceedingly rare in nature. The necessary laboratory conditions often add to the cost of production. On
3198-453: The clock rather than on one shift, from a PWA team which directed the development for several months. The PT6 first flew on 30 May 1961, mounted as a third engine in the nose of a Beech 18 aircraft which had been converted by de Havilland at its Downsview facility in North York, Ontario . Full-scale production started in 1963, with service entry the following year. The Beech 18 continued as
3280-699: The compressor intake by inertial separators in the inlet. In some installation such as the PT6A-66B version in the Piaggio P.180 Avanti , the engine is reversed, with the propeller acting as a "pusher", the accessory gearbox facing the front of the aircraft. By the 40th anniversary of its maiden flight in 2001, over 36,000 PT6As had been delivered, not including the other versions. Up to October 2003, 31,606 delivered engines have flown more than 252 million hours. Till November 2015, 51,000 have been produced. The family logged 400 million flight hours from 1963 to 2016. The PT6 family
3362-417: The compressor intake is at the aft of the engine, and the exhaust is situated forward, reducing the distance between the turbine and the propeller. Unlike the small-diameter fans used in turbofan engines, the propeller has a large diameter that lets it accelerate a large volume of air. This permits a lower airstream velocity for a given amount of thrust. Since it is more efficient at low speeds to accelerate
Pratt & Whitney Canada PT6 - Misplaced Pages Continue
3444-459: The control system. The turboprop system consists of 3 propeller governors , a governor, and overspeed governor, and a fuel-topping governor. The governor works in much the same way a reciprocating engine propeller governor works, though a turboprop governor may incorporate beta control valve or beta lift rod for beta operation and is typically located in the 12 o'clock position. There are also other governors that are included in addition depending on
3526-506: The detailed design of an engine for Canadair's small jet trainer, the CL-41 . It was a 3,000-pound-force (13 kN) thrust turbojet but the design was taken over by P&WA who developed it into the Pratt & Whitney JT12 . The team had to wait for market assessments to define their next engine, a 450 shaft horsepower (340 kW) turboprop for twin-engined aircraft, the PT6. The early development of
3608-405: The dislocations and other crystal defects which are sources of resistance. But the resulting wires are still polycrystalline. The grain boundaries and remaining crystal defects are responsible for some residual resistance. This can be quantified and better understood by examining single crystals. Single-crystal copper did prove to have better conductivity than polycrystalline copper. However,
3690-473: The engine is often mounted "backwards," with the intake at the rear and the exhaust at the front, so that the turbine is directly connected to the propeller. Many variants of the PT6 have been produced, not only as turboprops but also as turboshaft engines for helicopters, land vehicles, hovercraft, and boats; as auxiliary power units; and for industrial uses. By November 2015, 51,000 had been produced, which had logged 400 million flight hours from 1963 to 2016. It
3772-491: The existing methods. These are not shown in the diagram. In the case of metal single crystals, fabrication techniques also include epitaxy and abnormal grain growth in solids. Epitaxy is used to deposit very thin (micrometer to nanometer scale) layers of the same or different materials on the surface of an existing single crystal. Applications of this technique lie in the areas of semiconductor production, with potential uses in other nanotechnological fields and catalysis. It
3854-493: The first jet aircraft and comparable to jet cruising speeds for most missions. The Bear would serve as their most successful long-range combat and surveillance aircraft and symbol of Soviet power projection through to the end of the 20th century. The USA used turboprop engines with contra-rotating propellers, such as the Allison T40 , on some experimental aircraft during the 1950s. The T40-powered Convair R3Y Tradewind flying-boat
3936-546: The first deliveries of the Garrett AiResearch TPE331 , (now owned by Honeywell Aerospace ) on the Mitsubishi MU-2 , making it the fastest turboprop aircraft for that year. In contrast to turbofans , turboprops are most efficient at flight speeds below 725 km/h (450 mph; 390 knots) because the jet velocity of the propeller (and exhaust) is relatively low. Modern turboprop airliners operate at nearly
4018-565: The focus of ultrafast electronic devices for its intrinsic carrier mobility. Arsenide : Arsenide III can be combined with various elements such as B, Al, Ga, and In, with the GaAs compound being in high demand for wafers. Cadmium Telluride : CdTe crystals have several applications as substrates for IR imaging, electrooptic devices, and solar cells . By alloying CdTe and ZnTe together room-temperature X-ray and gamma-ray detectors can be made. Metals can be produced in single-crystal form and provide
4100-447: The form of optical fiber with its large-diameter substrates. Other photonic devices include lasers, photodetectors, avalanche photo diodes, optical modulators and amplifiers, signal processing, and both optoelectronic and photonic integrated circuits. Germanium : This was the material in the first transistor invented by Bardeen, Brattain, and Shockley in 1947. It is used in some gamma-ray detectors and infrared optics. Now it has become
4182-558: The gas generator section, many turboprops today feature a free power turbine on a separate coaxial shaft. This enables the propeller to rotate freely, independent of compressor speed. Alan Arnold Griffith had published a paper on compressor design in 1926. Subsequent work at the Royal Aircraft Establishment investigated axial compressor-based designs that would drive a propeller. From 1929, Frank Whittle began work on centrifugal compressor-based designs that would use all
SECTION 50
#17328440838584264-455: The gas power produced by the engine for jet thrust. The world's first turboprop was designed by the Hungarian mechanical engineer György Jendrassik . Jendrassik published a turboprop idea in 1928, and on 12 March 1929 he patented his invention. In 1938, he built a small-scale (100 Hp; 74.6 kW) experimental gas turbine. The larger Jendrassik Cs-1 , with a predicted output of 1,000 bhp,
4346-399: The growth method are important when considering electronic uses after. They are used for lasers and nonlinear optics . Some notable uses are as in the window of a biometric fingerprint reader, optical disks for long-term data storage, and X-ray interferometer. Indium Phosphide : These single crystals are particularly appropriate for combining optoelectronics with high-speed electronics in
4428-424: The growth of Silicon crystals. Other inorganic semiconducting single crystals include GaAs, GaP, GaSb, Ge, InAs, InP, InSb, CdS, CdSe, CdTe, ZnS, ZnSe, and ZnTe. Most of these can also be tuned with various doping for desired properties. Single-crystal graphene is also highly desired for applications in electronics and optoelectronics with its large carrier mobility and high thermal conductivity, and remains
4510-445: The highest light-to-electricity conversion. On the quantum scale that microprocessors operate on, the presence of grain boundaries would have a significant impact on the functionality of field effect transistors by altering local electrical properties. Therefore, microprocessor fabricators have invested heavily in facilities to produce large single crystals of silicon. The Czochralski method and floating zone are popular methods for
4592-421: The hottest parts need replacing or repairing more often than the cooler-running parts. If the hotter parts can be removed without disturbing the rest of the engine, for example without removing the complete engine from the aircraft, maintenance costs are reduced. It was achieved with the PT6 by having the hottest parts, the gas generator turbine and combustor, at the propeller end. They are removed without disturbing
4674-513: The metallic elements, silver and copper have the best conductivity at room temperature, setting the bar for performance. The size of the market, and vagaries in supply and cost, have provided strong incentives to seek alternatives or find ways to use less of them by improving performance. The conductivity of commercial conductors is often expressed relative to the International Annealed Copper Standard , according to which
4756-406: The model, such as an overspeed and fuel topping governor on a Pratt & Whitney Canada PT6 , and an under-speed governor on a Honeywell TPE331 . The turboprop is also distinguished from other kinds of turbine engine in that the fuel control unit is connected to the governor to help dictate power. To make the engine more compact, reverse airflow can be used. On a reverse-flow turboprop engine,
4838-657: The most widespread turboprop airliners in service were the ATR 42 / 72 (950 aircraft), Bombardier Q400 (506), De Havilland Canada Dash 8 -100/200/300 (374), Beechcraft 1900 (328), de Havilland Canada DHC-6 Twin Otter (270), Saab 340 (225). Less widespread and older airliners include the BAe Jetstream 31 , Embraer EMB 120 Brasilia , Fairchild Swearingen Metroliner , Dornier 328 , Saab 2000 , Xian MA60 , MA600 and MA700 , Fokker 27 and 50 . Turboprop business aircraft include
4920-457: The origins of crystal growth can be traced back to salt purification by crystallization in 2500 BCE. A more advanced method using an aqueous solution was started in 1600 CE while the melt and vapor methods began around 1850 CE. Basic crystal growth methods can be separated into four categories based on what they are artificially grown from: melt, solid, vapor, and solution. Specific techniques to produce large single crystals (aka boules ) include
5002-408: The other hand, imperfect single crystals can reach enormous sizes in nature: several mineral species such as beryl , gypsum and feldspars are known to have produced crystals several meters across. The opposite of a single crystal is an amorphous structure where the atomic position is limited to short-range order only. In between the two extremes exist polycrystalline , which is made up of
SECTION 60
#17328440838585084-416: The pilot not being able to see out of the rear of the aircraft for backing and the amount of debris reverse stirs up, manufacturers will often limit the speeds beta plus power may be used and restrict its use on unimproved runways. Feathering of these propellers is performed by the propeller control lever. The constant-speed propeller is distinguished from the reciprocating engine constant-speed propeller by
5166-403: The point of exhaust. Some of the power generated by the turbine is used to drive the compressor and electric generator . The gases are then exhausted from the turbine. In contrast to a turbojet or turbofan , the engine's exhaust gases do not provide enough power to create significant thrust, since almost all of the engine's power is used to drive the propeller. Exhaust thrust in a turboprop
5248-464: The power section at the front of the nacelle, where it can drive the propeller directly without the need for a long shaft. Intake air is usually fed to the engine via an underside mounted duct, and the two exhaust outlets are directed rearward. This arrangement aids maintenance by allowing the entire power section to be removed along with the propeller, exposing the gas-generator section. To facilitate rough-field operations, foreign objects are diverted from
5330-427: The propeller at a speed of 1,900 to 2,200 rpm. The exhaust gas then escapes through two side-mounted ducts in the power turbine housing. The turbines are concentric with the combustion chamber, reducing overall length. In most aircraft installations the PT6 is mounted so that the intake end of the engine is towards the rear of the aircraft, leading to it being known by many as the "back-to-front" engine. This places
5412-494: The propeller that is converted to propeller thrust falls dramatically. For this reason turboprop engines are not commonly used on aircraft that fly faster than 0.6–0.7 Mach , with some exceptions such as the Tupolev Tu-95 . However, propfan engines, which are very similar to turboprop engines, can cruise at flight speeds approaching 0.75 Mach. To maintain propeller efficiency across a wide range of airspeeds, turboprops use constant-speed (variable-pitch) propellers. The blades of
5494-477: The propeller. This allows for propeller strike or similar damage to occur without damaging the gas generator and allowing for only the power section (turbine and gearbox) to be removed and replaced in such an event, and also allows for less stress on the start during engine ground starts. Whereas a fixed shaft has the gearbox and gas generator connected, such as on the Honeywell TPE331 . The propeller itself
5576-399: The propulsion airflow is less clearly defined for propellers than for fans. The propeller is coupled to the turbine through a reduction gear that converts the high RPM /low torque output to low RPM/high torque. This can be of two primary designs, free-turbine and fixed. A free-turbine turboshaft found on the Pratt & Whitney Canada PT6 , where the gas generator is not connected to
5658-420: The purest copper wire available in 1914 measured around 100%. The purest modern copper wire is a better conductor, measuring over 103% on this scale. The gains are from two sources. First, modern copper is more pure. However, this avenue for improvement seems at an end. Making the copper purer still makes no significant improvement. Second, annealing and other processes have been improved. Annealing reduces
5740-405: The purity of the material is crucial and the production of organic materials usually require many steps to reach the necessary purity. Extensive research is being done to look for materials that are thermally stable with high charge-carrier mobility. Past discoveries include naphthalene, tetracene, and 9,10-diphenylanthacene (DPA). Triphenylamine derivatives have shown promise, and recently in 2021,
5822-465: The rest of the engine with its connections to the aircraft. This arrangement was patented by designer Newland, one of the original PT6 team. A similar general arrangement with a free-turbine power take-off at the exhaust end (the 1,000 shp (750 kW) P.181 engine) had been shown by Armstrong Siddeley Motors at the Farnborough Airshow in 1957. An early design improvement, incorporated in
5904-585: The same speed as small regional jet airliners but burn two-thirds of the fuel per passenger. Compared to piston engines, their greater power-to-weight ratio (which allows for shorter takeoffs) and reliability can offset their higher initial cost, maintenance and fuel consumption. As jet fuel can be easier to obtain than avgas in remote areas, turboprop-powered aircraft like the Cessna Caravan and Quest Kodiak are used as bush airplanes . Turboprop engines are generally used on small subsonic aircraft, but
5986-620: The single-crystal copper not only became a better conductor than high purity polycrystalline silver, but with prescribed heat and pressure treatment could surpass even single-crystal silver. Although impurities are usually bad for conductivity, a silver single crystal with a small amount of copper substitutions proved to be the best. As of 2009, no single-crystal copper is manufactured on a large scale industrially, but methods of producing very large individual crystal sizes for copper conductors are exploited for high performance electrical applications. These can be considered meta-single crystals with only
6068-409: The single-crystal structure of α-phenyl-4′-(diphenylamino)stilbene (TPA) grown using the solution method exhibited even greater potential for semiconductor use with its anisotropic hole transport property. Single crystals have unique physical properties due to being a single grain with molecules in a strict order and no grain boundaries. This includes optical properties, and single crystals of silicon
6150-441: The traveling heater method (THM), and liquid phase diffusion (LPD). However, there are many other single crystals besides inorganic single crystals capable semiconducting, including single-crystal organic semiconductors . Monocrystalline silicon used in the fabrication of semiconductors and photovoltaics is the greatest use of single-crystal technology today. In photovoltaics, the most efficient crystal structure will yield
6232-577: The updated SOCATA TBM -960 would be powered by the PT6E-66XT. The main variant, the PT6A , is available in a wide variety of models, covering the power range between 580 and 920 shaft horsepower (430 and 690 kilowatts ) in the original series, and up to 1,940 shaft horsepower (1,450 kilowatts) in the 'large' lines. The PT6B and PT6C are turboshaft variants for helicopters. In US military use, they are designated as T74 or T101 . Several other versions of
6314-410: The way down to zero pitch, producing very little to zero-thrust and is typically accessed by moving the power lever to a beta for taxi range. Beta plus power is a reverse range and produces negative thrust, often used for landing on short runways where the aircraft would need to rapidly slow down, as well as backing operations and is accessed by moving the power lever below the beta for taxi range. Due to
6396-453: Was destroyed in a bombing raid. In 1941, the engine was abandoned due to war, and the factory converted to conventional engine production. The first mention of turboprop engines in the general public press was in the February 1944 issue of the British aviation publication Flight , which included a detailed cutaway drawing of what a possible future turboprop engine could look like. The drawing
6478-635: Was operated by the U.S. Navy for a short time. The first American turboprop engine was the General Electric XT31 , first used in the experimental Consolidated Vultee XP-81 . The XP-81 first flew in December 1945, the first aircraft to use a combination of turboprop and turbojet power. The technology of Allison's earlier T38 design evolved into the Allison T56 , used to power the Lockheed Electra airliner, its military maritime patrol derivative
6560-629: Was produced and tested at the Ganz Works in Budapest between 1937 and 1941. It was of axial-flow design with 15 compressor and 7 turbine stages, annular combustion chamber. First run in 1940, combustion problems limited its output to 400 bhp. Two Jendrassik Cs-1s were the engines for the world's first turboprop aircraft – the Varga RMI-1 X/H . This was a Hungarian fighter-bomber of WWII which had one model completed, but before its first flight it
6642-593: Was the first turboprop aircraft of any kind to go into production and sold in large numbers. It was also the first four-engined turboprop. Its first flight was on 16 July 1948. The world's first single engined turboprop aircraft was the Armstrong Siddeley Mamba -powered Boulton Paul Balliol , which first flew on 24 March 1948. The Soviet Union built on German World War II turboprop preliminary design work by Junkers Motorenwerke, while BMW, Heinkel-Hirth and Daimler-Benz also worked on projected designs. While
6724-481: Was very close to what the future Rolls-Royce Trent would look like. The first British turboprop engine was the Rolls-Royce RB.50 Trent , a converted Derwent II fitted with reduction gear and a Rotol 7 ft 11 in (2.41 m) five-bladed propeller. Two Trents were fitted to Gloster Meteor EE227 — the sole "Trent-Meteor" — which thus became the world's first turboprop-powered aircraft to fly, albeit as
#857142