Misplaced Pages

Davidka Square

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Davidka Square ( Hebrew : כיכר הדוידקה , romanized :  Kikar HaDavidka ) is a public square at the intersection of Jaffa Road , Street of the Prophets , and Pines Street in West Jerusalem . Its official name is Kikar Haherut ( Hebrew : כיכר החירות , lit.   'Freedom Square'). It features a small memorial to the Davidka , a homemade Israeli mortar used in the defense of Jerusalem and other cities during the 1948 Arab–Israeli War .

#919080

152-549: In the early stages of the War of Independence, the Israeli army had no artillery other than a primitive, homemade mortar that was not accurate but that made a thunderous explosion. The noise from this weapon – called the Davidka ("Little David") after its inventor, engineer David Leibovitch – often sent the enemy fleeing in panic. Mistaking the Davidka's explosion for an atomic bomb ,

304-513: A misnomer , as their energy comes from the nucleus of the atom, just as it does with fusion weapons. In fission weapons, a mass of fissile material ( enriched uranium or plutonium ) is forced into supercriticality —allowing an exponential growth of nuclear chain reactions —either by shooting one piece of sub-critical material into another (the "gun" method) or by compression of a sub-critical sphere or cylinder of fissile material using chemically fueled explosive lenses . The latter approach,

456-651: A policy of deliberate ambiguity , it does not acknowledge having them. Germany , Italy , Turkey , Belgium , the Netherlands , and Belarus are nuclear weapons sharing states. South Africa is the only country to have independently developed and then renounced and dismantled its nuclear weapons. The Treaty on the Non-Proliferation of Nuclear Weapons aims to reduce the spread of nuclear weapons, but there are different views of its effectiveness. There are two basic types of nuclear weapons: those that derive

608-445: A capacity of 398 GWE , with about 85% being light-water cooled reactors such as pressurized water reactors or boiling water reactors . Energy from fission is transmitted through conduction or convection to the nuclear reactor coolant , then to a heat exchanger , and the resultant generated steam is used to drive a turbine or generator. The objective of an atomic bomb is to produce a device, according to Serber, "...in which energy

760-597: A combination of fission and fusion reactions ( thermonuclear bomb ), producing a nuclear explosion . Both bomb types release large quantities of energy from relatively small amounts of matter . The first test of a fission ("atomic") bomb released an amount of energy approximately equal to 20,000 tons of TNT (84  TJ ). The first thermonuclear ("hydrogen") bomb test released energy approximately equal to 10 million tons of TNT (42 PJ). Nuclear bombs have had yields between 10 tons TNT (the W54 ) and 50 megatons for

912-678: A conference—called for in the manifesto—in Pugwash, Nova Scotia , Eaton's birthplace. This conference was to be the first of the Pugwash Conferences on Science and World Affairs , held in July 1957. By the 1960s, steps were taken to limit both the proliferation of nuclear weapons to other countries and the environmental effects of nuclear testing . The Partial Nuclear Test Ban Treaty (1963) restricted all nuclear testing to underground nuclear testing , to prevent contamination from nuclear fallout, whereas

1064-401: A deformed nucleus relative to a spherical form for the surface and Coulomb terms. Additional terms can be included such as symmetry, pairing, the finite range of the nuclear force, and charge distribution within the nuclei to improve the estimate. Normally binding energy is referred to and plotted as average binding energy per nucleon. According to Lilley, "The binding energy of a nucleus B

1216-448: A fast neutron. This energy release profile holds for thorium and the various minor actinides as well. When a uranium nucleus fissions into two daughter nuclei fragments, about 0.1 percent of the mass of the uranium nucleus appears as the fission energy of ~200 MeV. For uranium-235 (total mean fission energy 202.79 MeV ), typically ~169 MeV appears as the kinetic energy of the daughter nuclei, which fly apart at about 3% of

1368-458: A faster and less vulnerable attack, the development of long-range intercontinental ballistic missiles (ICBMs) and submarine-launched ballistic missiles (SLBMs) has given some nations the ability to plausibly deliver missiles anywhere on the globe with a high likelihood of success. More advanced systems, such as multiple independently targetable reentry vehicles (MIRVs), can launch multiple warheads at different targets from one missile, reducing

1520-594: A few nations possess such weapons or are suspected of seeking them. The only countries known to have detonated nuclear weapons—and acknowledge possessing them—are (chronologically by date of first test) the United States , the Soviet Union (succeeded as a nuclear power by Russia ), the United Kingdom , France , China , India , Pakistan , and North Korea . Israel is believed to possess nuclear weapons, though, in

1672-538: A fission bomb to initiate them. Such a device might provide a simpler path to thermonuclear weapons than one that required the development of fission weapons first, and pure fusion weapons would create significantly less nuclear fallout than other thermonuclear weapons because they would not disperse fission products. In 1998, the United States Department of Energy divulged that the United States had, "...made

SECTION 10

#1732855128920

1824-480: A fission bomb where growth is at an explosive rate. If k is exactly unity, the reactions proceed at a steady rate and the reactor is said to be critical. It is possible to achieve criticality in a reactor using natural uranium as fuel, provided that the neutrons have been efficiently moderated to thermal energies." Moderators include light water, heavy water , and graphite . According to John C. Lee, "For all nuclear reactors in operation and those under development,

1976-432: A fission reaction is produced by its fission products , though a large majority of it, about 85 percent, is found in fragment kinetic energy , while about 6 percent each comes from initial neutrons and gamma rays and those emitted after beta decay , plus about 3 percent from neutrinos as the product of such decay. Nuclear fission can occur without neutron bombardment as a type of radioactive decay. This type of fission

2128-421: A fusion weapon as of January 2016 , though this claim is disputed. Thermonuclear weapons are considered much more difficult to successfully design and execute than primitive fission weapons. Almost all of the nuclear weapons deployed today use the thermonuclear design because it results in an explosion hundreds of times stronger than that of a fission bomb of similar weight. Thermonuclear bombs work by using

2280-413: A limitation associated with the energy of his alpha particle source. Eventually, in 1932, a fully artificial nuclear reaction and nuclear transmutation was achieved by Rutherford's colleagues Ernest Walton and John Cockcroft , who used artificially accelerated protons against lithium-7, to split this nucleus into two alpha particles. The feat was popularly known as "splitting the atom", and would win them

2432-408: A major gamma ray emitter. All actinides are fertile or fissile and fast breeder reactors can fission them all albeit only in certain configurations. Nuclear reprocessing aims to recover usable material from spent nuclear fuel to both enable uranium (and thorium) supplies to last longer and to reduce the amount of "waste". The industry term for a process that fissions all or nearly all actinides

2584-406: A mass ratio of products of about 3 to 2, for common fissile isotopes . Most fissions are binary fissions (producing two charged fragments), but occasionally (2 to 4 times per 1000 events), three positively charged fragments are produced, in a ternary fission . The smallest of these fragments in ternary processes ranges in size from a proton to an argon nucleus. Apart from fission induced by

2736-472: A nation's economic electronics-based infrastructure. Because the effect is most effectively produced by high altitude nuclear detonations (by military weapons delivered by air, though ground bursts also produce EMP effects over a localized area), it can produce damage to electronics over a wide, even continental, geographical area. Research has been done into the possibility of pure fusion bombs : nuclear weapons that consist of fusion reactions without requiring

2888-461: A neutron, harnessed and exploited by humans, a natural form of spontaneous radioactive decay (not requiring a neutron) is also referred to as fission, and occurs especially in very high-mass-number isotopes. Spontaneous fission was discovered in 1940 by Flyorov , Petrzhak , and Kurchatov in Moscow, in an experiment intended to confirm that, without bombardment by neutrons, the fission rate of uranium

3040-469: A neutron-driven chain reaction using beryllium. Szilard stated, "...if we could find an element which is split by neutrons and which would emit two neutrons when it absorbs one neutron, such an element, if assembled in sufficiently large mass, could sustain a nuclear chain reaction." On 25 January 1939, after learning of Hahn's discovery from Eugene Wigner , Szilard noted, "...if enough neutrons are emitted...then it should be, of course, possible to sustain

3192-532: A new nuclear strategy, one that is distinct from that which gave relative stability during the Cold War. Since 1996, the United States has had a policy of allowing the targeting of its nuclear weapons at terrorists armed with weapons of mass destruction . Robert Gallucci argues that although traditional deterrence is not an effective approach toward terrorist groups bent on causing a nuclear catastrophe, Gallucci believes that "the United States should instead consider

SECTION 20

#1732855128920

3344-659: A new, heavier element 93, that "it is conceivable that the nucleus breaks up into several large fragments." However, the quoted objection comes some distance down, and was but one of several gaps she noted in Fermi's claim. Although Noddack was a renowned analytical chemist, she lacked the background in physics to appreciate the enormity of what she was proposing. After the Fermi publication, Otto Hahn , Lise Meitner , and Fritz Strassmann began performing similar experiments in Berlin . Meitner, an Austrian Jew, lost her Austrian citizenship with

3496-416: A nuclear reaction. Cross sections are a function of incident neutron energy, and those for U and Pu are a million times higher than U at lower neutron energy levels. Absorption of any neutron makes available to the nucleus binding energy of about 5.3 MeV. U needs a fast neutron to supply the additional 1 MeV needed to cross the critical energy barrier for fission. In

3648-404: A nuclear reactor or nuclear weapon, the overwhelming majority of fission events are induced by bombardment with another particle, a neutron, which is itself produced by prior fission events. Fissionable isotopes such as uranium-238 require additional energy provided by fast neutrons (such as those produced by nuclear fusion in thermonuclear weapons ). While some of the neutrons released from

3800-622: A nuclear reactor, ternary fission can produce three positively charged fragments (plus neutrons) and the smallest of these may range from so small a charge and mass as a proton ( Z  = 1), to as large a fragment as argon ( Z  = 18). The most common small fragments, however, are composed of 90% helium-4 nuclei with more energy than alpha particles from alpha decay (so-called "long range alphas" at ~16 megaelectronvolts (MeV)), plus helium-6 nuclei, and tritons (the nuclei of tritium ). Though less common than binary fission, it still produces significant helium-4 and tritium gas buildup in

3952-425: A nuclear war between two nations would result in mutual annihilation. From this point of view, the significance of nuclear weapons is to deter war because any nuclear war would escalate out of mutual distrust and fear, resulting in mutually assured destruction . This threat of national, if not global, destruction has been a strong motivation for anti-nuclear weapons activism. Critics from the peace movement and within

4104-411: A nuclear weapon from another country by threatening nuclear retaliation is known as the strategy of nuclear deterrence . The goal in deterrence is to always maintain a second strike capability (the ability of a country to respond to a nuclear attack with one of its own) and potentially to strive for first strike status (the ability to destroy an enemy's nuclear forces before they could retaliate). During

4256-465: A nuclear weapon is a gravity bomb dropped from aircraft ; this was the method used by the United States against Japan in 1945. This method places few restrictions on the size of the weapon. It does, however, limit attack range, response time to an impending attack, and the number of weapons that a country can field at the same time. With miniaturization, nuclear bombs can be delivered by both strategic bombers and tactical fighter-bombers . This method

4408-409: A nuclear weapon to its target is an important factor affecting both nuclear weapon design and nuclear strategy . The design, development, and maintenance of delivery systems are among the most expensive parts of a nuclear weapons program; they account, for example, for 57% of the financial resources spent by the United States on nuclear weapons projects since 1940. The simplest method for delivering

4560-433: A nuclear weapon with suitable materials (such as cobalt or gold ) creates a weapon known as a salted bomb . This device can produce exceptionally large quantities of long-lived radioactive contamination . It has been conjectured that such a device could serve as a "doomsday weapon" because such a large quantity of radioactivities with half-lives of decades, lifted into the stratosphere where winds would distribute it around

4712-421: A policy of expanded deterrence, which focuses not solely on the would-be nuclear terrorists but on those states that may deliberately transfer or inadvertently leak nuclear weapons and materials to them. By threatening retaliation against those states, the United States may be able to deter that which it cannot physically prevent.". Graham Allison makes a similar case, arguing that the key to expanded deterrence

Davidka Square - Misplaced Pages Continue

4864-447: A significant portion of their energy from fission reactions used to "trigger" fusion reactions, and fusion reactions can themselves trigger additional fission reactions. Only six countries—the United States , Russia , the United Kingdom , China , France , and India —have conducted thermonuclear weapon tests. Whether India has detonated a "true" multi-staged thermonuclear weapon is controversial. North Korea claims to have tested

5016-583: A small fraction of fission products. Neutron absorption which does not lead to fission produces plutonium (from U ) and minor actinides (from both U and U ) whose radiotoxicity is far higher than that of the long lived fission products. Concerns over nuclear waste accumulation and the destructive potential of nuclear weapons are a counterbalance to the peaceful desire to use fission as an energy source . The thorium fuel cycle produces virtually no plutonium and much less minor actinides, but U - or rather its decay products - are

5168-547: A substantial investment" in the past to develop pure fusion weapons, but that, "The U.S. does not have and is not developing a pure fusion weapon", and that, "No credible design for a pure fusion weapon resulted from the DOE investment". Nuclear isomers provide a possible pathway to fissionless fusion bombs. These are naturally occurring isotopes ( Hf being a prominent example) which exist in an elevated energy state. Mechanisms to release this energy as bursts of gamma radiation (as in

5320-601: A supercritical chain-reaction (one in which each fission cycle yields more neutrons than it absorbs). Without their existence, the nuclear chain-reaction would be prompt critical and increase in size faster than it could be controlled by human intervention. In this case, the first experimental atomic reactors would have run away to a dangerous and messy "prompt critical reaction" before their operators could have manually shut them down (for this reason, designer Enrico Fermi included radiation-counter-triggered control rods, suspended by electromagnets, which could automatically drop into

5472-631: A superior breeding potential for fast reactors." Critical fission reactors are the most common type of nuclear reactor. In a critical fission reactor, neutrons produced by fission of fuel atoms are used to induce yet more fissions, to sustain a controllable amount of energy release. Devices that produce engineered but non-self-sustaining fission reactions are subcritical fission reactors . Such devices use radioactive decay or particle accelerators to trigger fissions. Critical fission reactors are built for three primary purposes, which typically involve different engineering trade-offs to take advantage of either

5624-411: A third particle is emitted. This third particle is commonly an α particle . Since in nuclear fission, the nucleus emits more neutrons than the one it absorbs, a chain reaction is possible. Binary fission may produce any of the fission products, at 95±15 and 135±15 daltons . However, the binary process happens merely because it is the most probable. In anywhere from two to four fissions per 1000 in

5776-454: A very large amount of energy even by the energetic standards of radioactive decay . Nuclear fission was discovered by chemists Otto Hahn and Fritz Strassmann and physicists Lise Meitner and Otto Robert Frisch . Hahn and Strassmann proved that a fission reaction had taken place on 19 December 1938, and Meitner and her nephew Frisch explained it theoretically in January 1939. Frisch named

5928-496: Is a " closed fuel cycle ". Younes and Loveland define fission as, "...a collective motion of the protons and neutrons that make up the nucleus, and as such it is distinguishable from other phenomena that break up the nucleus. Nuclear fission is an extreme example of large- amplitude collective motion that results in the division of a parent nucleus into two or more fragment nuclei. The fission process can occur spontaneously, or it can be induced by an incident particle." The energy from

6080-420: Is a thermonuclear weapon that yields a relatively small explosion but a relatively large amount of neutron radiation . Such a weapon could, according to tacticians, be used to cause massive biological casualties while leaving inanimate infrastructure mostly intact and creating minimal fallout. Because high energy neutrons are capable of penetrating dense matter, such as tank armor, neutron warheads were procured in

6232-451: Is analogous to identifying a criminal by fingerprints. "The goal would be twofold: first, to deter leaders of nuclear states from selling weapons to terrorists by holding them accountable for any use of their weapons; second, to give leaders every incentive to tightly secure their nuclear weapons and materials." According to the Pentagon's June 2019 " Doctrine for Joint Nuclear Operations " of

Davidka Square - Misplaced Pages Continue

6384-503: Is by definition a reactor that produces more fissile material than it consumes and needs a minimum of two neutrons produced for each neutron absorbed in a fissile nucleus. Thus, in general, the conversion ratio (CR) is defined as the ratio of fissile material produced to that destroyed ...when the CR is greater than 1.0, it is called the breeding ratio (BR)... U offers a superior breeding potential for both thermal and fast reactors, while Pu offers

6536-427: Is called spontaneous fission , and was first observed in 1940. During induced fission, a compound system is formed after an incident particle fuses with a target. The resultant excitation energy may be sufficient to emit neutrons, or gamma-rays, and nuclear scission. Fission into two fragments is called binary fission, and is the most common nuclear reaction . Occurring least frequently is ternary fission , in which

6688-438: Is called the odd–even effect on the fragments' charge distribution. This can be seen in the empirical fragment yield data for each fission product, as products with even Z have higher yield values. However, no odd–even effect is observed on fragment distribution based on their A . This result is attributed to nucleon pair breaking . In nuclear fission events the nuclei may break into any combination of lighter nuclei, but

6840-413: Is characterized by the neutron multiplication factor k , which is defined as the ratio of the number of neutrons in one generation to the number in the preceding generation. If, in a reactor, k is less than unity, the reactor is subcritical, the number of neutrons decreases and the chain reaction dies out. If k > 1, the reactor is supercritical and the chain reaction diverges. This is the situation in

6992-403: Is coming up with ways of tracing nuclear material to the country that forged the fissile material. "After a nuclear bomb detonates, nuclear forensics cops would collect debris samples and send them to a laboratory for radiological analysis. By identifying unique attributes of the fissile material, including its impurities and contaminants, one could trace the path back to its origin." The process

7144-481: Is for the purpose of achieving different yields for different situations , and in manipulating design elements to attempt to minimize weapon size, radiation hardness or requirements for special materials, especially fissile fuel or tritium. Some nuclear weapons are designed for special purposes; most of these are for non-strategic (decisively war-winning) purposes and are referred to as tactical nuclear weapons . The neutron bomb purportedly conceived by Sam Cohen

7296-407: Is much less than the prompt energy, but it is a significant amount and is why reactors must continue to be cooled after they have been shut down and why the waste products must be handled with great care and stored safely." John Lilley states, "...neutron-induced fission generates extra neutrons which can induce further fissions in the next generation and so on in a chain reaction. The chain reaction

7448-498: Is no evidence that it is feasible beyond the military domain. However, the U.S. Air Force funded studies of the physics of antimatter in the Cold War , and began considering its possible use in weapons, not just as a trigger, but as the explosive itself. A fourth generation nuclear weapon design is related to, and relies upon, the same principle as antimatter-catalyzed nuclear pulse propulsion . Most variation in nuclear weapon design

7600-409: Is not a fusion bomb. In the boosted bomb, the neutrons produced by the fusion reactions serve primarily to increase the efficiency of the fission bomb. There are two types of boosted fission bomb: internally boosted, in which a deuterium-tritium mixture is injected into the bomb core, and externally boosted, in which concentric shells of lithium-deuteride and depleted uranium are layered on the outside of

7752-490: Is not clear that this has ever been implemented, and their plausible use in nuclear weapons is a matter of dispute. The other basic type of nuclear weapon produces a large proportion of its energy in nuclear fusion reactions. Such fusion weapons are generally referred to as thermonuclear weapons or more colloquially as hydrogen bombs (abbreviated as H-bombs ), as they rely on fusion reactions between isotopes of hydrogen ( deuterium and tritium ). All such weapons derive

SECTION 50

#1732855128920

7904-417: Is recoverable, Prompt fission fragments amount to 168 MeV, which are easily stopped with a fraction of a millimeter. Prompt neutrons total 5 MeV, and this energy is recovered as heat via scattering in the reactor. However, many fission fragments are neutron-rich and decay via β emissions. According to Lilley, "The radioactive decay energy from the fission chains is the second release of energy due to fission. It

8056-402: Is released by a fast neutron chain reaction in one or more of the materials known to show nuclear fission." According to Rhodes, "Untamped, a bomb core even as large as twice the critical mass would completely fission less than 1 percent of its nuclear material before it expanded enough to stop the chain reaction from proceeding. Tamper always increased efficiency: it reflected neutrons back into

8208-423: Is the atomic mass of a hydrogen atom, m n is the mass of a neutron, and c is the speed of light . Thus, the mass of an atom is less than the mass of its constituent protons and neutrons, assuming the average binding energy of its electrons is negligible. The binding energy B is expressed in energy units, using Einstein's mass-energy equivalence relationship. The binding energy also provides an estimate of

8360-418: Is the energy required to separate it into its constituent neutrons and protons." m ( A , Z ) = Z m H + N m n − B / c 2 {\displaystyle m(\mathbf {A} ,\mathbf {Z} )=\mathbf {Z} m_{H}+\mathbf {N} m_{n}-\mathbf {B} /c^{2}} where A is mass number , Z is atomic number , m H

8512-451: Is the primary means of nuclear weapons delivery; the majority of U.S. nuclear warheads, for example, are free-fall gravity bombs, namely the B61 , which is being improved upon to this day. Preferable from a strategic point of view is a nuclear weapon mounted on a missile , which can use a ballistic trajectory to deliver the warhead over the horizon. Although even short-range missiles allow for

8664-599: The Anschluss , the union of Austria with Germany in March 1938, but she fled in July 1938 to Sweden and started a correspondence by mail with Hahn in Berlin. By coincidence, her nephew Otto Robert Frisch , also a refugee, was also in Sweden when Meitner received a letter from Hahn dated 19 December describing his chemical proof that some of the product of the bombardment of uranium with neutrons

8816-684: The Kaiser Wilhelm Society for Chemistry, today part of the Free University of Berlin , following over four decades of work on the science of radioactivity and the elaboration of new nuclear physics that described the components of atoms. In 1911, Ernest Rutherford proposed a model of the atom in which a very small, dense and positively charged nucleus of protons was surrounded by orbiting, negatively charged electrons (the Rutherford model ). Niels Bohr improved upon this in 1913 by reconciling

8968-688: The Starfish Prime high-altitude nuclear test in 1962, an unexpected effect was produced which is called a nuclear electromagnetic pulse . This is an intense flash of electromagnetic energy produced by a rain of high-energy electrons which in turn are produced by a nuclear bomb's gamma rays. This flash of energy can permanently destroy or disrupt electronic equipment if insufficiently shielded. It has been proposed to use this effect to disable an enemy's military and civilian infrastructure as an adjunct to other nuclear or conventional military operations. By itself it could as well be useful to terrorists for crippling

9120-539: The Treaty on the Non-Proliferation of Nuclear Weapons (1968) attempted to place restrictions on the types of activities signatories could participate in, with the goal of allowing the transference of non-military nuclear technology to member countries without fear of proliferation. Nuclear fission Nuclear fission is a reaction in which the nucleus of an atom splits into two or more smaller nuclei. The fission process often produces gamma photons , and releases

9272-548: The Tsar Bomba (see TNT equivalent ). A thermonuclear weapon weighing as little as 600 pounds (270 kg) can release energy equal to more than 1.2 megatonnes of TNT (5.0 PJ). A nuclear device no larger than a conventional bomb can devastate an entire city by blast, fire, and radiation . Since they are weapons of mass destruction , the proliferation of nuclear weapons is a focus of international relations policy. Nuclear weapons have been deployed twice in war , both by

SECTION 60

#1732855128920

9424-663: The Tsar Bomba of the USSR, which released an energy equivalent of over 50 megatons of TNT (210 PJ), was a three-stage weapon. Most thermonuclear weapons are considerably smaller than this, due to practical constraints from missile warhead space and weight requirements. In the early 1950s the Livermore Laboratory in the United States had plans for the testing of two massive bombs, Gnomon and Sundial , 1 gigaton of TNT and 10 gigatons of TNT respectively. Fusion reactions do not create fission products, and thus contribute far less to

9576-424: The hafnium controversy ) have been proposed as possible triggers for conventional thermonuclear reactions. Antimatter , which consists of particles resembling ordinary matter particles in most of their properties but having opposite electric charge , has been considered as a trigger mechanism for nuclear weapons. A major obstacle is the difficulty of producing antimatter in large enough quantities, and there

9728-599: The head of government or head of state . Despite controls and regulations governing nuclear weapons, there is an inherent danger of "accidents, mistakes, false alarms, blackmail, theft, and sabotage". In the late 1940s, lack of mutual trust prevented the United States and the Soviet Union from making progress on arms control agreements. The Russell–Einstein Manifesto was issued in London on July 9, 1955, by Bertrand Russell in

9880-421: The nuclear fuel cycle is based on one of three fissile materials, U, U, and Pu, and the associated isotopic chains. For the current generation of LWRs , the enriched U contains 2.5~4.5 wt% of U, which is fabricated into UO 2 fuel rods and loaded into fuel assemblies." Lee states, "One important comparison for the three major fissile nuclides, U, U, and Pu, is their breeding potential. A breeder

10032-621: The nuclear shell model for the nucleus. The nuclides that can sustain a fission chain reaction are suitable for use as nuclear fuels . The most common nuclear fuels are U (the isotope of uranium with mass number 235 and of use in nuclear reactors) and Pu (the isotope of plutonium with mass number 239). These fuels break apart into a bimodal range of chemical elements with atomic masses centering near 95 and 135 daltons ( fission products ). Most nuclear fuels undergo spontaneous fission only very slowly, decaying instead mainly via an alpha - beta decay chain over periods of millennia to eons . In

10184-436: The tropopause into the stratosphere , where the calm non-turbulent winds permit the debris to travel great distances from the burst, eventually settling and unpredictably contaminating areas far removed from the target of the explosion. There are other types of nuclear weapons as well. For example, a boosted fission weapon is a fission bomb that increases its explosive yield through a small number of fusion reactions, but it

10336-537: The "implosion" method, is more sophisticated and more efficient (smaller, less massive, and requiring less of the expensive fissile fuel) than the former. A major challenge in all nuclear weapon designs is to ensure that a significant fraction of the fuel is consumed before the weapon destroys itself. The amount of energy released by fission bombs can range from the equivalent of just under a ton to upwards of 500,000 tons (500 kilotons ) of TNT (4.2 to 2.1 × 10  GJ). All fission reactions generate fission products ,

10488-543: The 1951 Nobel Prize in Physics for "Transmutation of atomic nuclei by artificially accelerated atomic particles" , although it was not the nuclear fission reaction later discovered in heavy elements. English physicist James Chadwick discovered the neutron in 1932. Chadwick used an ionization chamber to observe protons knocked out of several elements by beryllium radiation, following up on earlier observations made by Joliot-Curies . In Chadwick's words, "...In order to explain

10640-578: The 1980s (though not deployed in Europe) for use as tactical payloads for US Army artillery shells (200 mm W79 and 155 mm W82 ) and short range missile forces. Soviet authorities announced similar intentions for neutron warhead deployment in Europe; indeed, they claimed to have originally invented the neutron bomb, but their deployment on USSR tactical nuclear forces is unverifiable. A type of nuclear explosive most suitable for use by ground special forces

10792-576: The Arabs abandoned the northern town of Safed . The mortar was also used by the Harel Brigade in its defense of Jerusalem. The Israeli army used the Davidka exclusively until July 1948, when it was able to acquire conventional artillery such as mountain howitzers, cannons and field guns. In 1956 the Jerusalem municipality commissioned a memorial to the Davidka designed by architect Asher Hiram. A Davidka used by

10944-425: The Cold War, policy and military theorists considered the sorts of policies that might prevent a nuclear attack, and they developed game theory models that could lead to stable deterrence conditions. Different forms of nuclear weapons delivery (see above) allow for different types of nuclear strategies. The goals of any strategy are generally to make it difficult for an enemy to launch a pre-emptive strike against

11096-499: The Davidka in memory of the soldiers who died in defense of the city. Davidka Square is one of the few commercial squares in the city. It is surrounded on three sides by shops, and opens on to Jaffa Road, a major commercial artery. For decades it stood as a dreary, gray corner. In 2009, when work on the Jerusalem Light Rail project necessitated extensive infrastructure and redesign work on all three squares on Jaffa Road –

11248-530: The Harel Brigade was mounted on a stone platform engraved with part of the verse from the Book of Kings : "I will defend this city, to save it" ( 2 Kings 19:34 ). Two small, rounded projections on one side of the memorial and one larger protection on the other evoke the shape of the cap worn by Palmach soldiers. On Israeli Fallen Soldiers and Victims of Terrorism Remembrance Day , city representatives lay wreaths on

11400-488: The Joint Chiefs of Staffs website Publication, "Integration of nuclear weapons employment with conventional and special operations forces is essential to the success of any mission or operation." Because they are weapons of mass destruction, the proliferation and possible use of nuclear weapons are important issues in international relations and diplomacy. In most countries, the use of nuclear force can only be authorized by

11552-581: The Lemallah grassroots citizens watch group, which produced a YouTube video, circulated a petition, and brought protesters to city planning meetings, nixed the red wall installation. In 2011 the Abraham Hostel opened in Davidka Square which was ranked 8th best large hostel in the world by HostelWorld.com. The future inter-city Jerusalem–Central railway station is planned for construction underground nearby

11704-497: The Nuclear Age (1961) that mere possession of a nuclear arsenal was enough to ensure deterrence, and thus concluded that the spread of nuclear weapons could increase international stability . Some prominent neo-realist scholars, such as Kenneth Waltz and John Mearsheimer , have argued, along the lines of Gallois, that some forms of nuclear proliferation would decrease the likelihood of total war , especially in troubled regions of

11856-651: The USAAF detonated a plutonium implosion-type fission bomb nicknamed " Fat Man " over the Japanese city of Nagasaki . These bombings caused injuries that resulted in the deaths of approximately 200,000 civilians and military personnel . The ethics of these bombings and their role in Japan's surrender are to this day, still subjects of debate . Since the atomic bombings of Hiroshima and Nagasaki , nuclear weapons have been detonated over 2,000 times for testing and demonstration. Only

12008-753: The USAF AIR-2 Genie , the AIM-26 Falcon and US Army Nike Hercules . Missile interceptors such as the Sprint and the Spartan also used small nuclear warheads (optimized to produce neutron or X-ray flux) but were for use against enemy strategic warheads. Other small, or tactical, nuclear weapons were deployed by naval forces for use primarily as antisubmarine weapons. These included nuclear depth bombs or nuclear armed torpedoes. Nuclear mines for use on land or at sea are also possibilities. The system used to deliver

12160-515: The United States against the Japanese cities of Hiroshima and Nagasaki in 1945 during World War II . Nuclear weapons have only twice been used in warfare, both times by the United States against Japan at the end of World War II . On August 6, 1945, the United States Army Air Forces (USAAF) detonated a uranium gun-type fission bomb nicknamed " Little Boy " over the Japanese city of Hiroshima ; three days later, on August 9,

12312-512: The United States. Small, two-man portable tactical weapons (somewhat misleadingly referred to as suitcase bombs ), such as the Special Atomic Demolition Munition , have been developed, although the difficulty of combining sufficient yield with portability limits their military utility. Nuclear warfare strategy is a set of policies that deal with preventing or fighting a nuclear war. The policy of trying to prevent an attack by

12464-698: The binding energy as the sum of five terms, which are the volume energy, a surface correction, Coulomb energy, a symmetry term, and a pairing term: B = a v A − a s A 2 / 3 − a c Z 2 A 1 / 3 − a a ( N − Z ) 2 A ± Δ {\displaystyle B=a_{v}\mathbf {A} -a_{s}\mathbf {A} ^{2/3}-a_{c}{\frac {\mathbf {Z} ^{2}}{\mathbf {A} ^{1/3}}}-a_{a}{\frac {(\mathbf {N} -\mathbf {Z} )^{2}}{\mathbf {A} }}\pm \Delta } where

12616-456: The case of U however, that extra energy is provided when U adjusts from an odd to an even mass. In the words of Younes and Lovelace, "...the neutron absorption on a U target forms a U nucleus with excitation energy greater than the critical fission energy, whereas in the case of n + U , the resulting U nucleus has an excitation energy below the critical fission energy." About 6 MeV of

12768-446: The center of Chicago Pile-1 ). If these delayed neutrons are captured without producing fissions, they produce heat as well. The binding energy of the nucleus is the difference between the rest-mass energy of the nucleus and the rest-mass energy of the neutron and proton nucleons. The binding energy formula includes volume, surface and Coulomb energy terms that include empirically derived coefficients for all three, plus energy ratios of

12920-485: The chance of a successful missile defense . Today, missiles are most common among systems designed for delivery of nuclear weapons. Making a warhead small enough to fit onto a missile, though, can be difficult. Tactical weapons have involved the most variety of delivery types, including not only gravity bombs and missiles but also artillery shells, land mines , and nuclear depth charges and torpedoes for anti-submarine warfare . An atomic mortar has been tested by

13072-548: The city conducts a wreath-laying ceremony here. A Davidka also stands on display at the Beit Hativat Givati Museum in Metzudat Yoav. 31°47′5″N 35°12′53″E  /  31.78472°N 35.21472°E  / 31.78472; 35.21472 Nuclear weapon A nuclear weapon is an explosive device that derives its destructive force from nuclear reactions , either fission (fission bomb) or

13224-419: The core and its inertia...slowed the core's expansion and helped keep the core surface from blowing away." Rearrangement of the core material's subcritical components would need to proceed as fast as possible to ensure effective detonation. Additionally, a third basic component was necessary, "...an initiator—a Ra + Be source or, better, a Po + Be source, with the radium or polonium attached perhaps to one piece of

13376-405: The core and the beryllium to the other, to smash together and spray neutrons when the parts mated to start the chain reaction." However, any bomb would "necessitate locating, mining and processing hundreds of tons of uranium ore...", while U-235 separation or the production of Pu-239 would require additional industrial capacity. The discovery of nuclear fission occurred in 1938 in the buildings of

13528-435: The creation of nuclear fallout than fission reactions, but because all thermonuclear weapons contain at least one fission stage, and many high-yield thermonuclear devices have a final fission stage, thermonuclear weapons can generate at least as much nuclear fallout as fission-only weapons. Furthermore, high yield thermonuclear explosions (most dangerously ground bursts) have the force to lift radioactive debris upwards past

13680-414: The curve of binding energy, where the fission products cluster, it is easily observed that the binding energy of the fission products tends to center around 8.5 MeV per nucleon. Thus, in any fission event of an isotope in the actinide mass range, roughly 0.9 MeV are released per nucleon of the starting element. The fission of U by a slow neutron yields nearly identical energy to the fission of U by

13832-450: The decision process. The prospect of mutually assured destruction might not deter an enemy who expects to die in the confrontation. Further, if the initial act is from a stateless terrorist instead of a sovereign nation, there might not be a nation or specific target to retaliate against. It has been argued, especially after the September 11, 2001, attacks , that this complication calls for

13984-416: The element thorium was slowly and spontaneously transmuting itself into argon gas!" In 1919, following up on an earlier anomaly Ernest Marsden noted in 1915, Rutherford attempted to "break up the atom." Rutherford was able to accomplish the first artificial transmutation of nitrogen into oxygen, using alpha particles directed at nitrogen N + α → O + p.  Rutherford stated, "...we must conclude that

14136-463: The energy of a fission bomb to compress and heat fusion fuel. In the Teller-Ulam design , which accounts for all multi-megaton yield hydrogen bombs, this is accomplished by placing a fission bomb and fusion fuel ( tritium , deuterium , or lithium deuteride ) in proximity within a special, radiation-reflecting container. When the fission bomb is detonated, gamma rays and X-rays emitted first compress

14288-406: The energy spectrum for fast fission is similar. ) Among the heavy actinide elements, however, those isotopes that have an odd number of neutrons (such as U with 143 neutrons) bind an extra neutron with an additional 1 to 2 MeV of energy over an isotope of the same element with an even number of neutrons (such as U with 146 neutrons). This extra binding energy is made available as a result of

14440-661: The energy thus released. The results confirmed that fission was occurring and hinted strongly that it was the isotope uranium 235 in particular that was fissioning. The next day, the Fifth Washington Conference on Theoretical Physics began in Washington, D.C. under the joint auspices of the George Washington University and the Carnegie Institution of Washington . There, the news on nuclear fission

14592-450: The equivalent of roughly >2 trillion kelvin, for each fission event. The exact isotope which is fissioned, and whether or not it is fissionable or fissile, has only a small impact on the amount of energy released. This can be easily seen by examining the curve of binding energy (image below), and noting that the average binding energy of the actinide nuclides beginning with uranium is around 7.6 MeV per nucleon. Looking further left on

14744-449: The excitation energy is sufficient, the nucleus breaks into fragments. This is called scission, and occurs at about 10 seconds. The fragments can emit prompt neutrons at between 10 and 10 seconds. At about 10 seconds, the fragments can emit gamma rays. At 10 seconds β decay, β- delayed neutrons , and gamma rays are emitted from the decay products . Typical fission events release about two hundred million eV (200 MeV) of energy,

14896-432: The explosion of nuclear weapons . Both uses are possible because certain substances called nuclear fuels undergo fission when struck by fission neutrons, and in turn emit neutrons when they break apart. This makes a self-sustaining nuclear chain reaction possible, releasing energy at a controlled rate in a nuclear reactor or at a very rapid, uncontrolled rate in a nuclear weapon. The amount of free energy released in

15048-424: The fact that effective forces in the nucleus are stronger for unlike neutron-proton pairs, rather than like neutron–neutron or proton–proton pairs. The pairing term arises from the fact that like nucleons form spin-zero pairs in the same spatial state. The pairing is positive if N and Z are both even, adding to the binding energy. In fission there is a preference for fission fragments with even Z , which

15200-426: The fast neutrons are supplied by nuclear fusion). However, this process cannot happen to a great extent in a nuclear reactor, as too small a fraction of the fission neutrons produced by any type of fission have enough energy to efficiently fission U . (For example, neutrons from thermal fission of U have a mean energy of 2 MeV, a median energy of 1.6 MeV, and a mode of 0.75 MeV, and

15352-451: The fission bomb core. The external method of boosting enabled the USSR to field the first partially thermonuclear weapons, but it is now obsolete because it demands a spherical bomb geometry, which was adequate during the 1950s arms race when bomber aircraft were the only available delivery vehicles. The detonation of any nuclear weapon is accompanied by a blast of neutron radiation . Surrounding

15504-409: The fission of U are fast enough to induce another fission in U , most are not, meaning it can never achieve criticality. While there is a very small (albeit nonzero) chance of a thermal neutron inducing fission in U , neutron absorption is orders of magnitude more likely. Fission cross sections are a measurable property related to the probability that fission will occur in

15656-450: The fission of an equivalent amount of U is a million times more than that released in the combustion of methane or from hydrogen fuel cells . The products of nuclear fission, however, are on average far more radioactive than the heavy elements which are normally fissioned as fuel, and remain so for significant amounts of time, giving rise to a nuclear waste problem. However, the seven long-lived fission products make up only

15808-431: The fission-input energy is supplied by the simple binding of an extra neutron to the heavy nucleus via the strong force; however, in many fissionable isotopes, this amount of energy is not enough for fission. Uranium-238, for example, has a near-zero fission cross section for neutrons of less than 1 MeV energy. If no additional energy is supplied by any other mechanism, the nucleus will not fission, but will merely absorb

15960-491: The fragments ( heating the bulk material where fission takes place). Like nuclear fusion , for fission to produce energy, the total binding energy of the resulting elements must be greater than that of the starting element. Fission is a form of nuclear transmutation because the resulting fragments (or daughter atoms) are not the same element as the original parent atom. The two (or more) nuclei produced are most often of comparable but slightly different sizes, typically with

16112-410: The fuel rods of modern nuclear reactors. Bohr and Wheeler used their liquid drop model , the packing fraction curve of Arthur Jeffrey Dempster , and Eugene Feenberg's estimates of nucleus radius and surface tension, to estimate the mass differences of parent and daughters in fission. They then equated this mass difference to energy using Einstein's mass-energy equivalence formula. The stimulation of

16264-420: The fusion fuel, then heat it to thermonuclear temperatures. The ensuing fusion reaction creates enormous numbers of high-speed neutrons , which can then induce fission in materials not normally prone to it, such as depleted uranium . Each of these components is known as a "stage", with the fission bomb as the "primary" and the fusion capsule as the "secondary". In large, megaton-range hydrogen bombs, about half of

16416-520: The globe, would make all life on the planet extinct. In connection with the Strategic Defense Initiative , research into the nuclear pumped laser was conducted under the DOD program Project Excalibur but this did not result in a working weapon. The concept involves the tapping of the energy of an exploding nuclear bomb to power a single-shot laser that is directed at a distant target. During

16568-405: The great penetrating power of the radiation we must further assume that the particle has no net charge..." The existence of the neutron was first postulated by Rutherford in 1920, and in the words of Chadwick, "...how on earth were you going to build up a big nucleus with a large positive charge? And the answer was a neutral particle." Subsequently, he communicated his findings in more detail. In

16720-435: The group dubbed ausenium and hesperium . However, not all were convinced by Fermi's analysis of his results, though he would win the 1938 Nobel Prize in Physics for his "demonstrations of the existence of new radioactive elements produced by neutron irradiation, and for his related discovery of nuclear reactions brought about by slow neutrons". The German chemist Ida Noddack notably suggested in 1934 that instead of creating

16872-487: The heat or the neutrons produced by the fission chain reaction: While, in principle, all fission reactors can act in all three capacities, in practice the tasks lead to conflicting engineering goals and most reactors have been built with only one of the above tasks in mind. (There are several early counter-examples, such as the Hanford N reactor , now decommissioned). As of 2019, the 448 nuclear power plants worldwide provided

17024-503: The historical importance of the site, Legorretta also designed elements on a double scale. These include a wall measuring 18 metres (59 ft) high and 9 metres (30 ft) wide, covered by red ceramic plaques, allowing the square "to be identified from far away" and stone columns 4.5 metres (15 ft) in height that function as "vertical lamps" during the night. The standout design elements generated controversy among Jerusalem residents when they were first proposed. A public protest led by

17176-412: The latter are used in fast-neutron reactors , and in weapons). According to Younes and Loveland, "Actinides like U that fission easily following the absorption of a thermal (0.25 meV) neutron are called fissile , whereas those like U that do not easily fission when they absorb a thermal neutron are called fissionable ." After an incident particle has fused with a parent nucleus, if

17328-427: The line has the slope N = Z , while the heavier nuclei require additional neutrons to remain stable. Nuclei that are neutron- or proton-rich have excessive binding energy for stability, and the excess energy may convert a neutron to a proton or a proton to a neutron via the weak nuclear force, a process known as beta decay . Neutron-induced fission of U-235 emits a total energy of 207 MeV, of which about 200 MeV

17480-496: The majority of their energy from nuclear fission reactions alone, and those that use fission reactions to begin nuclear fusion reactions that produce a large amount of the total energy output. All existing nuclear weapons derive some of their explosive energy from nuclear fission reactions. Weapons whose explosive output is exclusively from fission reactions are commonly referred to as atomic bombs or atom bombs (abbreviated as A-bombs ). This has long been noted as something of

17632-474: The mechanism of neutron pairing effects , which itself is caused by the Pauli exclusion principle , allowing an extra neutron to occupy the same nuclear orbital as the last neutron in the nucleus. In such isotopes, therefore, no neutron kinetic energy is needed, for all the necessary energy is supplied by absorption of any neutron, either of the slow or fast variety (the former are used in moderated nuclear reactors, and

17784-407: The midst of the Cold War. It highlighted the dangers posed by nuclear weapons and called for world leaders to seek peaceful resolutions to international conflict. The signatories included eleven pre-eminent intellectuals and scientists, including Albert Einstein , who signed it just days before his death on April 18, 1955. A few days after the release, philanthropist Cyrus S. Eaton offered to sponsor

17936-536: The military establishment have questioned the usefulness of such weapons in the current military climate. According to an advisory opinion issued by the International Court of Justice in 1996, the use of (or threat of use of) such weapons would generally be contrary to the rules of international law applicable in armed conflict, but the court did not reach an opinion as to whether or not the threat or use would be lawful in specific extreme circumstances such as if

18088-408: The missiles before they land or implementing civil defense measures using early-warning systems to evacuate citizens to safe areas before an attack. Weapons designed to threaten large populations or to deter attacks are known as strategic weapons . Nuclear weapons for use on a battlefield in military situations are called tactical weapons . Critics of nuclear war strategy often suggest that

18240-465: The most common event is not fission to equal mass nuclei of about mass 120; the most common event (depending on isotope and process) is a slightly unequal fission in which one daughter nucleus has a mass of about 90 to 100 daltons and the other the remaining 130 to 140 daltons. Stable nuclei, and unstable nuclei with very long half-lives , follow a trend of stability evident when Z is plotted against N . For lighter nuclei less than N = 20,

18392-523: The neutron, as happens when U absorbs slow and even some fraction of fast neutrons, to become U . The remaining energy to initiate fission can be supplied by two other mechanisms: one of these is more kinetic energy of the incoming neutron, which is increasingly able to fission a fissionable heavy nucleus as it exceeds a kinetic energy of 1 MeV or more (so-called fast neutrons). Such high energy neutrons are able to fission U directly (see thermonuclear weapon for application, where

18544-399: The news and carried it back to Columbia. Rabi said he told Enrico Fermi; Fermi gave credit to Lamb. Bohr soon thereafter went from Princeton to Columbia to see Fermi. Not finding Fermi in his office, Bohr went down to the cyclotron area and found Herbert L. Anderson . Bohr grabbed him by the shoulder and said: "Young man, let me explain to you about something new and exciting in physics." It

18696-433: The nitrogen atom is disintegrated," while the newspapers stated he had split the atom . This was the first observation of a nuclear reaction, that is, a reaction in which particles from one decay are used to transform another atomic nucleus. It also offered a new way to study the nucleus. Rutherford and James Chadwick then used alpha particles to "disintegrate" boron, fluorine, sodium, aluminum, and phosphorus before reaching

18848-441: The nuclear binding energy is proportional to the nuclear volume, while nucleons near the surface interact with fewer nucleons, reducing the effect of the volume term. According to Lilley, "For all naturally occurring nuclei, the surface-energy term dominates and the nucleus exists in a state of equilibrium." The negative contribution of Coulomb energy arises from the repulsive electric force of the protons. The symmetry term arises from

19000-452: The nuclear force approaches a constant value for large A , while the Coulomb acts over a larger distance so that electrical potential energy per proton grows as Z increases. Fission energy is released when a A is larger than 120 nucleus fragments. Fusion energy is released when lighter nuclei combine. Carl Friedrich von Weizsäcker's semi-empirical mass formula may be used to express

19152-465: The nucleus after neutron bombardment was analogous to the vibrations of a liquid drop, with surface tension and the Coulomb force in opposition. Plotting the sum of these two energies as a function of elongated shape, they determined the resultant energy surface had a saddle shape. The saddle provided an energy barrier called the critical energy barrier. Energy of about 6 MeV provided by the incident neutron

19304-450: The others being Tzahal Square near the Old City walls and Zion Square – the Jerusalem municipality hired Mexican architect Ricardo Legorreta to renovate Davidka Square. Legorreta's plan enlarged the area designated for pedestrians and greenery to 99.486 square feet (9.2426 m). He paved the square with reddish stones and added a blue trench as a "water element". To emphasize

19456-430: The plutonium-239 is later fissioned. On the other hand, so-called delayed neutrons emitted as radioactive decay products with half-lives up to several minutes, from fission-daughters, are very important to reactor control , because they give a characteristic "reaction" time for the total nuclear reaction to double in size, if the reaction is run in a " delayed-critical " zone which deliberately relies on these neutrons for

19608-410: The possibility of a nuclear chain reaction. The 11 February 1939 paper by Meitner and Frisch compared the process to the division of a liquid drop and estimated the energy released at 200 MeV. The 1 September 1939 paper by Bohr and Wheeler used this liquid drop model to quantify fission details, including the energy released, estimated the cross section for neutron-induced fission, and deduced U

19760-521: The process "fission" by analogy with biological fission of living cells. In their second publication on nuclear fission in February 1939, Hahn and Strassmann predicted the existence and liberation of additional neutrons during the fission process, opening up the possibility of a nuclear chain reaction . For heavy nuclides , it is an exothermic reaction which can release large amounts of energy both as electromagnetic radiation and as kinetic energy of

19912-514: The quantum behavior of electrons (the Bohr model ). In 1928, George Gamow proposed the Liquid drop model , which became essential to understanding the physics of fission. In 1896, Henri Becquerel had found, and Marie Curie named, radioactivity. In 1900, Rutherford and Frederick Soddy , investigating the radioactive gas emanating from thorium , "conveyed the tremendous and inevitable conclusion that

20064-428: The remains of the split atomic nuclei. Many fission products are either highly radioactive (but short-lived) or moderately radioactive (but long-lived), and as such, they are a serious form of radioactive contamination . Fission products are the principal radioactive component of nuclear fallout . Another source of radioactivity is the burst of free neutrons produced by the weapon. When they collide with other nuclei in

20216-406: The rest as kinetic energy of fission fragments (this appears almost immediately when the fragments impact surrounding matter, as simple heat). Some processes involving neutrons are notable for absorbing or finally yielding energy — for example neutron kinetic energy does not yield heat immediately if the neutron is captured by a uranium-238 atom to breed plutonium-239, but this energy is emitted if

20368-475: The speed of light, due to Coulomb repulsion . Also, an average of 2.5 neutrons are emitted, with a mean kinetic energy per neutron of ~2 MeV (total of 4.8 MeV). The fission reaction also releases ~7 MeV in prompt gamma ray photons . The latter figure means that a nuclear fission explosion or criticality accident emits about 3.5% of its energy as gamma rays, less than 2.5% of its energy as fast neutrons (total of both types of radiation ~6%), and

20520-417: The square. Another Davidka memorial stands a few meters south of Safed's Town Hall, opposite the old British police station. The memorial, established on 29 April 1956 and renovated in the 2000s, includes an engraved stone marker and an audio information post relating information about the liberation of Safed in both Hebrew and English, along with seating for tour groups. Every year on Israel's Remembrance Day,

20672-402: The surrounding material, the neutrons transmute those nuclei into other isotopes, altering their stability and making them radioactive. The most commonly used fissile materials for nuclear weapons applications have been uranium-235 and plutonium-239 . Less commonly used has been uranium-233 . Neptunium-237 and some isotopes of americium may be usable for nuclear explosives as well, but it

20824-498: The survival of the state were at stake. Another deterrence position is that nuclear proliferation can be desirable. In this case, it is argued that, unlike conventional weapons, nuclear weapons deter all-out war between states, and they succeeded in doing this during the Cold War between the U.S. and the Soviet Union . In the late 1950s and early 1960s, Gen. Pierre Marie Gallois of France, an adviser to Charles de Gaulle , argued in books like The Balance of Terror: Strategy for

20976-403: The techniques were well-known. Meitner and Frisch then correctly interpreted Hahn's results to mean that the nucleus of uranium had split roughly in half. Frisch suggested the process be named "nuclear fission", by analogy to the process of living cell division into two cells, which was then called binary fission . Just as the term nuclear "chain reaction" would later be borrowed from chemistry, so

21128-536: The term "fission" was borrowed from biology. News spread quickly of the new discovery, which was correctly seen as an entirely novel physical effect with great scientific—and potentially practical—possibilities. Meitner's and Frisch's interpretation of the discovery of Hahn and Strassmann crossed the Atlantic Ocean with Niels Bohr, who was to lecture at Princeton University . I.I. Rabi and Willis Lamb , two Columbia University physicists working at Princeton, heard

21280-414: The total energy released from fission. The curve of binding energy is characterized by a broad maximum near mass number 60 at 8.6 MeV, then gradually decreases to 7.6 MeV at the highest mass numbers. Mass numbers higher than 238 are rare. At the lighter end of the scale, peaks are noted for helium-4, and the multiples such as beryllium-8, carbon-12, oxygen-16, neon-20 and magnesium-24. Binding energy due to

21432-584: The vicinity of the nucleus, and that gave it more time to be captured." Fermi's team, studying radiative capture which is the emission of gamma radiation after the nucleus captures a neutron, studied sixty elements, inducing radioactivity in forty. In the process, they discovered the ability of hydrogen to slow down the neutrons. Enrico Fermi and his colleagues in Rome studied the results of bombarding uranium with neutrons in 1934. Fermi concluded that his experiments had created new elements with 93 and 94 protons, which

21584-446: The weapon system and difficult to defend against the delivery of the weapon during a potential conflict. This can mean keeping weapon locations hidden, such as deploying them on submarines or land mobile transporter erector launchers whose locations are difficult to track, or it can mean protecting weapons by burying them in hardened missile silo bunkers. Other components of nuclear strategies included using missile defenses to destroy

21736-428: The words of Richard Rhodes , referring to the neutron, "It would therefore serve as a new nuclear probe of surpassing power of penetration." Philip Morrison stated, "A beam of thermal neutrons moving at about the speed of sound...produces nuclear reactions in many materials much more easily than a beam of protons...traveling thousands of times faster." According to Rhodes, "Slowing down a neutron gave it more time in

21888-631: The world where there exists a single nuclear-weapon state. Aside from the public opinion that opposes proliferation in any form, there are two schools of thought on the matter: those, like Mearsheimer, who favored selective proliferation, and Waltz, who was somewhat more non- interventionist . Interest in proliferation and the stability-instability paradox that it generates continues to this day, with ongoing debate about indigenous Japanese and South Korean nuclear deterrent against North Korea . The threat of potentially suicidal terrorists possessing nuclear weapons (a form of nuclear terrorism ) complicates

22040-624: The yield comes from the final fissioning of depleted uranium. Virtually all thermonuclear weapons deployed today use the "two-stage" design described to the right, but it is possible to add additional fusion stages—each stage igniting a larger amount of fusion fuel in the next stage. This technique can be used to construct thermonuclear weapons of arbitrarily large yield. This is in contrast to fission bombs, which are limited in their explosive power due to criticality danger (premature nuclear chain reaction caused by too-large amounts of pre-assembled fissile fuel). The largest nuclear weapon ever detonated,

22192-438: Was barium . Hahn suggested a bursting of the nucleus, but he was unsure of what the physical basis for the results were. Barium had an atomic mass 40% less than uranium, and no previously known methods of radioactive decay could account for such a large difference in the mass of the nucleus. Frisch was skeptical, but Meitner trusted Hahn's ability as a chemist. Marie Curie had been separating barium from radium for many years, and

22344-496: Was clear to a number of scientists at Columbia that they should try to detect the energy released in the nuclear fission of uranium from neutron bombardment. On 25 January 1939, a Columbia University team conducted the first nuclear fission experiment in the United States, which was done in the basement of Pupin Hall . The experiment involved placing uranium oxide inside of an ionization chamber and irradiating it with neutrons, and measuring

22496-494: Was necessary to overcome this barrier and cause the nucleus to fission. According to John Lilley, "The energy required to overcome the barrier to fission is called the activation energy or fission barrier and is about 6 MeV for A  ≈ 240. It is found that the activation energy decreases as A increases. Eventually, a point is reached where activation energy disappears altogether...it would undergo very rapid spontaneous fission." Maria Goeppert Mayer later proposed

22648-413: Was negligible, as predicted by Niels Bohr ; it was not negligible. The unpredictable composition of the products (which vary in a broad probabilistic and somewhat chaotic manner) distinguishes fission from purely quantum tunneling processes such as proton emission , alpha decay , and cluster decay , which give the same products each time. Nuclear fission produces energy for nuclear power and drives

22800-415: Was spread even further, which fostered many more experimental demonstrations. The 6 January 1939 Hahn and Strassman paper announced the discover of fission. In their second publication on nuclear fission in February 1939, Hahn and Strassmann used the term Uranspaltung (uranium fission) for the first time, and predicted the existence and liberation of additional neutrons during the fission process, opening up

22952-744: Was the Special Atomic Demolition Munition , or SADM, sometimes popularly known as a suitcase nuke . This is a nuclear bomb that is man-portable, or at least truck-portable, and though of a relatively small yield (one or two kilotons) is sufficient to destroy important tactical targets such as bridges, dams, tunnels, important military or commercial installations, etc. either behind enemy lines or pre-emptively on friendly territory soon to be overtaken by invading enemy forces. These weapons require plutonium fuel and are particularly "dirty". They also demand especially stringent security precautions in their storage and deployment. Small "tactical" nuclear weapons were deployed for use as antiaircraft weapons. Examples include

23104-511: Was the major contributor to that cross section and slow-neutron fission. During this period the Hungarian physicist Leó Szilárd realized that the neutron-driven fission of heavy atoms could be used to create a nuclear chain reaction. Such a reaction using neutrons was an idea he had first formulated in 1933, upon reading Rutherford's disparaging remarks about generating power from neutron collisions. However, Szilárd had not been able to achieve

#919080