Misplaced Pages

Liquid

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In thermodynamics and fluid mechanics , the compressibility (also known as the coefficient of compressibility or, if the temperature is held constant, the isothermal compressibility ) is a measure of the instantaneous relative volume change of a fluid or solid as a response to a pressure (or mean stress ) change. In its simple form, the compressibility κ {\displaystyle \kappa } (denoted β in some fields) may be expressed as

#968031

120-414: A liquid is a nearly incompressible fluid that conforms to the shape of its container but retains a nearly constant volume independent of pressure. It is one of the four fundamental states of matter (the others being solid , gas , and plasma ), and is the only state with a definite volume but no fixed shape. The density of a liquid is usually close to that of a solid, and much higher than that of

240-525: A dike , a sill , a laccolith , a pluton , or a batholith . While the study of magma has relied on observing magma after its transition into a lava flow , magma has been encountered in situ three times during geothermal drilling projects , twice in Iceland (see Use in energy production ) and once in Hawaii. Magma consists of liquid rock that usually contains suspended solid crystals. As magma approaches

360-422: A change in pressure at one point in a liquid is transmitted undiminished to every other part of the liquid and very little energy is lost in the form of compression. However, the negligible compressibility does lead to other phenomena. The banging of pipes, called water hammer , occurs when a valve is suddenly closed, creating a huge pressure-spike at the valve that travels backward through the system at just under

480-452: A combination of these processes. Other mechanisms, such as melting from a meteorite impact , are less important today, but impacts during the accretion of the Earth led to extensive melting, and the outer several hundred kilometers of the early Earth was probably a magma ocean . Impacts of large meteorites in the last few hundred million years have been proposed as one mechanism responsible for

600-423: A container. Although liquid water is abundant on Earth, this state of matter is actually the least common in the known universe, because liquids require a relatively narrow temperature/pressure range to exist. Most known matter in the universe is either gas (as interstellar clouds ) or plasma (as stars ). Liquid is one of the four primary states of matter , with the others being solid, gas and plasma . A liquid

720-420: A depth of 2,488 m (8,163 ft). The temperature of this magma was estimated at 1,050 °C (1,920 °F). Temperatures of deeper magmas must be inferred from theoretical computations and the geothermal gradient. Most magmas contain some solid crystals suspended in the liquid phase. This indicates that the temperature of the magma lies between the solidus , which is defined as the temperature at which

840-427: A dissolved water content in excess of 10%. Water is somewhat less soluble in low-silica magma than high-silica magma, so that at 1,100 °C and 0.5 GPa , a basaltic magma can dissolve 8% H 2 O while a granite pegmatite magma can dissolve 11% H 2 O . However, magmas are not necessarily saturated under typical conditions. Carbon dioxide is much less soluble in magmas than water, and frequently separates into

960-406: A distinct fluid phase even at great depth. This explains the presence of carbon dioxide fluid inclusions in crystals formed in magmas at great depth. Viscosity is a key melt property in understanding the behaviour of magmas. Whereas temperatures in common silicate lavas range from about 800 °C (1,470 °F) for felsic lavas to 1,200 °C (2,190 °F) for mafic lavas, the viscosity of

1080-422: A fairly constant temperature, making a liquid suitable for blanching , boiling , or frying . Even higher rates of heat transfer can be achieved by condensing a gas into a liquid. At the liquid's boiling point, all of the heat energy is used to cause the phase change from a liquid to a gas, without an accompanying increase in temperature, and is stored as chemical potential energy . When the gas condenses back into

1200-408: A fluid has strong implications for its dynamics. Most notably, the propagation of sound is dependent on the compressibility of the medium. Compressibility is an important factor in aerodynamics . At low speeds, the compressibility of air is not significant in relation to aircraft design, but as the airflow nears and exceeds the speed of sound , a host of new aerodynamic effects become important in

1320-459: A gas. Therefore, liquid and solid are both termed condensed matter . On the other hand, as liquids and gases share the ability to flow, they are both called fluids. A liquid is made up of tiny vibrating particles of matter, such as atoms, held together by intermolecular bonds . Like a gas, a liquid is able to flow and take the shape of a container. Unlike a gas, a liquid maintains a fairly constant density and does not disperse to fill every space of

SECTION 10

#1732851403969

1440-402: A given rate, such as when it is being sheared at finite velocity. A specific example is a liquid flowing through a pipe: in this case the liquid undergoes shear deformation since it flows more slowly near the walls of the pipe than near the center. As a result, it exhibits viscous resistance to flow. In order to maintain flow, an external force must be applied, such as a pressure difference between

1560-420: A great deal of energy in a reversible process and this greatly reduces the thermodynamic temperature of hypersonic gas decelerated near the aerospace object. Ions or free radicals transported to the object surface by diffusion may release this extra (nonthermal) energy if the surface catalyzes the slower recombination process. For ordinary materials, the bulk compressibility (sum of the linear compressibilities on

1680-435: A high charge (the high-field-strength elements, or HSFEs), which include such elements as zirconium , niobium , hafnium , tantalum , the rare-earth elements , and the actinides . Potassium can become so enriched in melt produced by a very low degree of partial melting that, when the magma subsequently cools and solidifies, it forms unusual potassic rock such as lamprophyre , lamproite , or kimberlite . When enough rock

1800-546: A hypothetical magma formed entirely from melted silica, NBO/T would be 0, while in a hypothetical magma so low in network formers that no polymerization takes place, NBO/T would be 4. Neither extreme is common in nature, but basalt magmas typically have NBO/T between 0.6 and 0.9, andesitic magmas have NBO/T of 0.3 to 0.5, and rhyolitic magmas have NBO/T of 0.02 to 0.2. Water acts as a network modifier, and dissolved water drastically reduces melt viscosity. Carbon dioxide neutralizes network modifiers, so dissolved carbon dioxide increases

1920-474: A layer that appears to contain silicate melt and that stretches for at least 1,000 kilometers within the middle crust along the southern margin of the Tibetan Plateau. Granite and rhyolite are types of igneous rock commonly interpreted as products of the melting of continental crust because of increases in temperature. Temperature increases also may contribute to the melting of lithosphere dragged down in

2040-404: A limited degree of particle mobility. As the temperature increases, the increased vibrations of the molecules causes distances between the molecules to increase. When a liquid reaches its boiling point , the cohesive forces that bind the molecules closely together break, and the liquid changes to its gaseous state (unless superheating occurs). If the temperature is decreased, the distances between

2160-433: A liquid this excess heat-energy is released at a constant temperature. This phenomenon is used in processes such as steaming . Since liquids often have different boiling points, mixtures or solutions of liquids or gases can typically be separated by distillation , using heat, cold, vacuum , pressure, or other means. Distillation can be found in everything from the production of alcoholic beverages , to oil refineries , to

2280-420: A magma. In practice, it is difficult to unambiguously identify primary magmas, though it has been suggested that boninite is a variety of andesite crystallized from a primary magma. The Great Dyke of Zimbabwe has also been interpreted as rock crystallized from a primary magma. The interpretation of leucosomes of migmatites as primary magmas is contradicted by zircon data, which suggests leucosomes are

2400-450: A mixture of otherwise immiscible liquids can be stabilized to form an emulsion , where one liquid is dispersed throughout the other as microscopic droplets. Usually this requires the presence of a surfactant in order to stabilize the droplets. A familiar example of an emulsion is mayonnaise , which consists of a mixture of water and oil that is stabilized by lecithin , a substance found in egg yolks . The microscopic structure of liquids

2520-465: A real gas. The deviation from ideal gas behavior tends to become particularly significant (or, equivalently, the compressibility factor strays far from unity) near the critical point , or in the case of high pressure or low temperature. In these cases, a generalized compressibility chart or an alternative equation of state better suited to the problem must be utilized to produce accurate results. The Earth sciences use compressibility to quantify

SECTION 20

#1732851403969

2640-532: A result of the changes in airflow from an incompressible fluid (similar in effect to water) to a compressible fluid (acting as a gas) as the speed of sound is approached. There are two effects in particular, wave drag and critical mach . One complication occurs in hypersonic aerodynamics, where dissociation causes an increase in the "notional" molar volume because a mole of oxygen, as O 2 , becomes 2 moles of monatomic oxygen and N 2 similarly dissociates to 2 N. Since this occurs dynamically as air flows over

2760-425: A rock type commonly enriched in incompatible elements. Bowen's reaction series is important for understanding the idealised sequence of fractional crystallisation of a magma. Magma composition can be determined by processes other than partial melting and fractional crystallization. For instance, magmas commonly interact with rocks they intrude, both by melting those rocks and by reacting with them. Assimilation near

2880-479: A rotating liquid forms a circular paraboloid and can therefore be used as a telescope . These are known as liquid-mirror telescopes . They are significantly cheaper than conventional telescopes, but can only point straight upward ( zenith telescope ). A common choice for the liquid is mercury. Quantities of liquids are measured in units of volume . These include the SI unit cubic metre (m) and its divisions, in particular

3000-567: A solidified crust. Most basalt lavas are of ʻAʻā or pāhoehoe types, rather than block lavas. Underwater, they can form pillow lavas , which are rather similar to entrail-type pahoehoe lavas on land. Ultramafic magmas, such as picritic basalt, komatiite , and highly magnesian magmas that form boninite , take the composition and temperatures to the extreme. All have a silica content under 45%. Komatiites contain over 18% magnesium oxide, and are thought to have erupted at temperatures of 1,600 °C (2,910 °F). At this temperature there

3120-407: A subduction zone. When rocks melt, they do so over a range of temperature, because most rocks are made of several minerals , which all have different melting points. The temperature at which the first melt appears (the solidus) is lower than the melting temperature of any one of the pure minerals. This is similar to the lowering of the melting point of ice when it is mixed with salt. The first melt

3240-439: A tetrahedral arrangement around the much smaller silicon ion. This is called a silica tetrahedron . In a magma that is low in silicon, these silica tetrahedra are isolated, but as the silicon content increases, silica tetrahedra begin to partially polymerize, forming chains, sheets, and clumps of silica tetrahedra linked by bridging oxygen ions. These greatly increase the viscosity of the magma. The tendency towards polymerization

3360-638: A typical viscosity of 3.5 × 10 cP (3,500 Pa⋅s) at 1,200 °C (2,190 °F). This is slightly greater than the viscosity of smooth peanut butter . Intermediate magmas show a greater tendency to form phenocrysts . Higher iron and magnesium tends to manifest as a darker groundmass , including amphibole or pyroxene phenocrysts. Mafic or basaltic magmas have a silica content of 52% to 45%. They are typified by their high ferromagnesian content, and generally erupt at temperatures of 1,100 to 1,200 °C (2,010 to 2,190 °F). Viscosities can be relatively low, around 10 to 10 cP (10 to 100 Pa⋅s), although this

3480-633: A viscosity of about 1 cP (0.001 Pa⋅s). Because of this very high viscosity, felsic lavas usually erupt explosively to produce pyroclastic (fragmental) deposits. However, rhyolite lavas occasionally erupt effusively to form lava spines , lava domes or "coulees" (which are thick, short lava flows). The lavas typically fragment as they extrude, producing block lava flows . These often contain obsidian . Felsic lavas can erupt at temperatures as low as 800 °C (1,470 °F). Unusually hot (>950 °C; >1,740 °F) rhyolite lavas, however, may flow for distances of many tens of kilometres, such as in

3600-446: Is a fluid . Unlike a solid, the molecules in a liquid have a much greater freedom to move. The forces that bind the molecules together in a solid are only temporary in a liquid, allowing a liquid to flow while a solid remains rigid. A liquid, like a gas, displays the properties of a fluid. A liquid can flow, assume the shape of a container, and, if placed in a sealed container, will distribute applied pressure evenly to every surface in

3720-470: Is a fixed amount of energy associated with forming a surface of a given area. This quantity is a material property called the surface tension , in units of energy per unit area (SI units: J / m ). Liquids with strong intermolecular forces tend to have large surface tensions. A practical implication of surface tension is that liquids tend to minimize their surface area, forming spherical drops and bubbles unless other constraints are present. Surface tension

Liquid - Misplaced Pages Continue

3840-409: Is added to the rock, the temperature remains at 1274 °C until either the anorthite or diopside is fully melted. The temperature then rises as the remaining mineral continues to melt, which shifts the melt composition away from the eutectic. For example, if the content of anorthite is greater than 43%, the entire supply of diopside will melt at 1274 °C., along with enough of the anorthite to keep

3960-444: Is called the eutectic and has a composition that depends on the combination of minerals present. For example, a mixture of anorthite and diopside , which are two of the predominant minerals in basalt , begins to melt at about 1274 °C. This is well below the melting temperatures of 1392 °C for pure diopside and 1553 °C for pure anorthite. The resulting melt is composed of about 43 wt% anorthite. As additional heat

4080-415: Is called the isothermal bulk modulus . The specification above is incomplete, because for any object or system the magnitude of the compressibility depends strongly on whether the process is isentropic or isothermal . Accordingly, isothermal compressibility is defined: where the subscript T indicates that the partial differential is to be taken at constant temperature. Isentropic compressibility

4200-436: Is complex and historically has been the subject of intense research and debate. A few of the key ideas are explained below. Microscopically, liquids consist of a dense, disordered packing of molecules. This contrasts with the other two common phases of matter, gases and solids. Although gases are disordered, the molecules are well-separated in space and interact primarily through molecule-molecule collisions. Conversely, although

4320-410: Is concentrated in a thin layer in the toothpaste next to the tube, and only here does the toothpaste behave as a fluid. Thixotropic behavior also hinders crystals from settling out of the magma. Once the crystal content reaches about 60%, the magma ceases to behave like a fluid and begins to behave like a solid. Such a mixture of crystals with melted rock is sometimes described as crystal mush . Magma

4440-434: Is considered to be a promising candidate for these applications as it is a liquid near room temperature, has low toxicity, and evaporates slowly. Liquids are sometimes used in measuring devices. A thermometer often uses the thermal expansion of liquids, such as mercury , combined with their ability to flow to indicate temperature. A manometer uses the weight of the liquid to indicate air pressure . The free surface of

4560-405: Is defined as where p is the pressure of the gas, T is its temperature , and V m {\displaystyle V_{m}} is its molar volume , all measured independently of one another. In the case of an ideal gas, the compressibility factor Z is equal to unity, and the familiar ideal gas law is recovered: Z can, in general, be either greater or less than unity for

4680-476: Is defined: where S is entropy. For a solid, the distinction between the two is usually negligible. Since the density ρ of a material is inversely proportional to its volume, it can be shown that in both cases For instance, for an ideal gas , Consequently, the isothermal compressibility of an ideal gas is The ideal gas (where the particles do not interact with each other) is an abstraction. The particles in real materials interact with each other. Then,

4800-456: Is driven out of the oceanic lithosphere in subduction zones , and it causes melting in the overlying mantle. Hydrous magmas with the composition of basalt or andesite are produced directly and indirectly as results of dehydration during the subduction process. Such magmas, and those derived from them, build up island arcs such as those in the Pacific Ring of Fire . These magmas form rocks of

4920-417: Is expressed as NBO/T, where NBO is the number of non-bridging oxygen ions and T is the number of network-forming ions. Silicon is the main network-forming ion, but in magmas high in sodium, aluminium also acts as a network former, and ferric iron can act as a network former when other network formers are lacking. Most other metallic ions reduce the tendency to polymerize and are described as network modifiers. In

Liquid - Misplaced Pages Continue

5040-538: Is found beneath the surface of the Earth , and evidence of magmatism has also been discovered on other terrestrial planets and some natural satellites . Besides molten rock, magma may also contain suspended crystals and gas bubbles . Magma is produced by melting of the mantle or the crust in various tectonic settings, which on Earth include subduction zones , continental rift zones , mid-ocean ridges and hotspots . Mantle and crustal melts migrate upwards through

5160-407: Is given by where: For a body of water open to the air, p 0 {\displaystyle p_{0}} would be the atmospheric pressure . Static liquids in uniform gravitational fields also exhibit the phenomenon of buoyancy , where objects immersed in the liquid experience a net force due to the pressure variation with depth. The magnitude of the force is equal to the weight of

5280-436: Is important since machinery often operate over a range of temperatures (see also viscosity index ). The viscous behavior of a liquid can be either Newtonian or non-Newtonian . A Newtonian liquid exhibits a linear strain/stress curve, meaning its viscosity is independent of time, shear rate, or shear-rate history. Examples of Newtonian liquids include water, glycerin , motor oil , honey , or mercury. A non-Newtonian liquid

5400-418: Is incomplete, both beta (the volume/pressure differential ratio) and the differential, constant pressure heat capacity greatly increases. For moderate pressures, above 10,000 K the gas further dissociates into free electrons and ions. Z for the resulting plasma can similarly be computed for a mole of initial air, producing values between 2 and 4 for partially or singly ionized gas. Each dissociation absorbs

5520-417: Is magma extruded onto the surface, are almost all in the range 700 to 1,400 °C (1,300 to 2,600 °F), but very rare carbonatite magmas may be as cool as 490 °C (910 °F), and komatiite magmas may have been as hot as 1,600 °C (2,900 °F). Magma has occasionally been encountered during drilling in geothermal fields, including drilling in Hawaii that penetrated a dacitic magma body at

5640-647: Is melted before the heat supply is exhausted. Pegmatite may be produced by low degrees of partial melting of the crust. Some granite -composition magmas are eutectic (or cotectic) melts, and they may be produced by low to high degrees of partial melting of the crust, as well as by fractional crystallization . Most magmas are fully melted only for small parts of their histories. More typically, they are mixes of melt and crystals, and sometimes also of gas bubbles. Melt, crystals, and bubbles usually have different densities, and so they can separate as magmas evolve. As magma cools, minerals typically crystallize from

5760-416: Is melted, the small globules of melt (generally occurring between mineral grains) link up and soften the rock. Under pressure within the earth, as little as a fraction of a percent of partial melting may be sufficient to cause melt to be squeezed from its source. Melt rapidly separates from its source rock once the degree of partial melting exceeds 30%. However, usually much less than 30% of a magma source rock

5880-472: Is no equilibrium at this transition under constant pressure, so unless supercooling occurs, the liquid will eventually completely crystallize. However, this is only true under constant pressure, so that (for example) water and ice in a closed, strong container might reach an equilibrium where both phases coexist. For the opposite transition from solid to liquid, see melting . The phase diagram explains why liquids do not exist in space or any other vacuum. Since

6000-802: Is of vital importance in chemistry and biology, and it is necessary for all known forms of life. Inorganic liquids include water, magma , inorganic nonaqueous solvents and many acids . Important everyday liquids include aqueous solutions like household bleach , other mixtures of different substances such as mineral oil and gasoline, emulsions like vinaigrette or mayonnaise , suspensions like blood, and colloids like paint and milk . Many gases can be liquefied by cooling, producing liquids such as liquid oxygen , liquid nitrogen , liquid hydrogen and liquid helium . Not all gases can be liquified at atmospheric pressure, however. Carbon dioxide , for example, can only be liquified at pressures above 5.1 atm . Some materials cannot be classified within

6120-434: Is one where the viscosity is not independent of these factors and either thickens (increases in viscosity) or thins (decreases in viscosity) under shear. Examples of non-Newtonian liquids include ketchup , custard , or starch solutions. The speed of sound in a liquid is given by c = K / ρ {\displaystyle c={\sqrt {K/\rho }}} where K {\displaystyle K}

SECTION 50

#1732851403969

6240-615: Is practically no polymerization of the mineral compounds, creating a highly mobile liquid. Viscosities of komatiite magmas are thought to have been as low as 100 to 1000 cP (0.1 to 1 Pa⋅s), similar to that of light motor oil. Most ultramafic lavas are no younger than the Proterozoic , with a few ultramafic magmas known from the Phanerozoic in Central America that are attributed to a hot mantle plume . No modern komatiite lavas are known, as

6360-447: Is responsible for a range of other phenomena as well, including surface waves , capillary action , wetting , and ripples . In liquids under nanoscale confinement , surface effects can play a dominating role since – compared with a macroscopic sample of liquid – a much greater fraction of molecules are located near a surface. The surface tension of a liquid directly affects its wettability . Most common liquids have tensions ranging in

6480-448: Is still many orders of magnitude higher than water. This viscosity is similar to that of ketchup . Basalt lavas tend to produce low-profile shield volcanoes or flood basalts , because the fluidal lava flows for long distances from the vent. The thickness of a basalt lava, particularly on a low slope, may be much greater than the thickness of the moving lava flow at any one time, because basalt lavas may "inflate" by supply of lava beneath

6600-423: Is the bulk modulus of the liquid and ρ {\displaystyle \rho } the density. As an example, water has a bulk modulus of about 2.2  GPa and a density of 1000 kg/m, which gives c = 1.5 km/s. At a temperature below the boiling point , any matter in liquid form will evaporate until reaching equilibrium with the reverse process of condensation of its vapor. At this point

6720-413: Is typically also viscoelastic , meaning it flows like a liquid under low stresses, but once the applied stress exceeds a critical value, the melt cannot dissipate the stress fast enough through relaxation alone, resulting in transient fracture propagation. Once stresses are reduced below the critical threshold, the melt viscously relaxes once more and heals the fracture. Temperatures of molten lava, which

6840-408: Is typically the most abundant magmatic gas, followed by carbon dioxide and sulfur dioxide . Other principal magmatic gases include hydrogen sulfide , hydrogen chloride , and hydrogen fluoride . The solubility of magmatic gases in magma depends on pressure, magma composition, and temperature. Magma that is extruded as lava is extremely dry, but magma at depth and under great pressure can contain

6960-666: The Snake River Plain of the northwestern United States. Intermediate or andesitic magmas contain 52% to 63% silica, and are lower in aluminium and usually somewhat richer in magnesium and iron than felsic magmas. Intermediate lavas form andesite domes and block lavas, and may occur on steep composite volcanoes , such as in the Andes . They are also commonly hotter, in the range of 850 to 1,100 °C (1,560 to 2,010 °F)). Because of their lower silica content and higher eruptive temperatures, they tend to be much less viscous, with

7080-458: The calc-alkaline series, an important part of the continental crust . With low density and viscosity, hydrous magmas are highly buoyant and will move upwards in Earth's mantle. The addition of carbon dioxide is relatively a much less important cause of magma formation than the addition of water, but genesis of some silica-undersaturated magmas has been attributed to the dominance of carbon dioxide over water in their mantle source regions. In

7200-453: The convection of solid mantle, it will cool slightly as it expands in an adiabatic process , but the cooling is only about 0.3 °C per kilometer. Experimental studies of appropriate peridotite samples document that the solidus temperatures increase by 3 °C to 4 °C per kilometer. If the rock rises far enough, it will begin to melt. Melt droplets can coalesce into larger volumes and be intruded upwards. This process of melting from

7320-1243: The cryogenic distillation of gases such as argon , oxygen , nitrogen , neon , or xenon by liquefaction (cooling them below their individual boiling points). Liquid is the primary component of hydraulic systems, which take advantage of Pascal's law to provide fluid power . Devices such as pumps and waterwheels have been used to change liquid motion into mechanical work since ancient times. Oils are forced through hydraulic pumps , which transmit this force to hydraulic cylinders . Hydraulics can be found in many applications, such as automotive brakes and transmissions , heavy equipment , and airplane control systems. Various hydraulic presses are used extensively in repair and manufacturing, for lifting, pressing, clamping and forming. Liquid metals have several properties that are useful in sensing and actuation , particularly their electrical conductivity and ability to transmit forces (incompressibility). As freely flowing substances, liquid metals retain these bulk properties even under extreme deformation. For this reason, they have been proposed for use in soft robots and wearable healthcare devices , which must be able to operate under repeated deformation. The metal gallium

SECTION 60

#1732851403969

7440-456: The isentropic (or adiabatic ) compressibility by a few relations: where γ is the heat capacity ratio , α is the volumetric coefficient of thermal expansion , ρ = N / V is the particle density, and Λ = ( ∂ P / ∂ T ) V {\displaystyle \Lambda =(\partial P/\partial T)_{V}} is the thermal pressure coefficient . In an extensive thermodynamic system,

7560-708: The operating temperature range of the component. Oils are often used in engines, gear boxes , metalworking , and hydraulic systems for their good lubrication properties. Many liquids are used as solvents , to dissolve other liquids or solids. Solutions are found in a wide variety of applications, including paints , sealants , and adhesives . Naphtha and acetone are used frequently in industry to clean oil, grease, and tar from parts and machinery. Body fluids are water-based solutions. Surfactants are commonly found in soaps and detergents . Solvents like alcohol are often used as antimicrobials . They are found in cosmetics, inks , and liquid dye lasers . They are used in

7680-472: The Earth's mantle has cooled too much to produce highly magnesian magmas. Some silicic magmas have an elevated content of alkali metal oxides (sodium and potassium), particularly in regions of continental rifting , areas overlying deeply subducted plates , or at intraplate hotspots . Their silica content can range from ultramafic ( nephelinites , basanites and tephrites ) to felsic ( trachytes ). They are more likely to be generated at greater depths in

7800-465: The Earth's upper crust, but this varies widely by region, from a low of 5–10 °C/km within oceanic trenches and subduction zones to 30–80 °C/km along mid-ocean ridges or near mantle plumes . The gradient becomes less steep with depth, dropping to just 0.25 to 0.3 °C/km in the mantle, where slow convection efficiently transports heat. The average geothermal gradient is not normally steep enough to bring rocks to their melting point anywhere in

7920-409: The ability of a soil or rock to reduce in volume under applied pressure. This concept is important for specific storage , when estimating groundwater reserves in confined aquifers . Geologic materials are made up of two portions: solids and voids (or same as porosity ). The void space can be full of liquid or gas. Geologic materials reduce in volume only when the void spaces are reduced, which expel

8040-436: The aerospace object, it is convenient to alter the compressibility factor Z , defined for an initial 30 gram moles of air, rather than track the varying mean molecular weight, millisecond by millisecond. This pressure dependent transition occurs for atmospheric oxygen in the 2,500–4,000 K temperature range, and in the 5,000–10,000 K range for nitrogen. In transition regions, where this pressure dependent dissociation

8160-476: The anorthite is melted. If the anorthite content of the mixture is less than 43%, then all the anorthite will melt at the eutectic temperature, along with part of the diopside, and the remaining diopside will then gradually melt as the temperature continues to rise. Because of eutectic melting, the composition of the melt can be quite different from the source rock. For example, a mixture of 10% anorthite with diopside could experience about 23% partial melting before

8280-407: The application of statistical mechanics shows that the isothermal compressibility is also related to the relative size of fluctuations in particle density: where μ is the chemical potential . The term "compressibility" is also used in thermodynamics to describe deviations of the thermodynamic properties of a real gas from those expected from an ideal gas . The compressibility factor

8400-469: The cavities left by the bubbles with tremendous localized force, eroding any adjacent solid surface. In a gravitational field , liquids exert pressure on the sides of a container as well as on anything within the liquid itself. This pressure is transmitted in all directions and increases with depth. If a liquid is at rest in a uniform gravitational field, the pressure p {\displaystyle p} at depth z {\displaystyle z}

8520-458: The classical three states of matter. For example, liquid crystals (used in liquid-crystal displays ) possess both solid-like and liquid-like properties, and belong to their own state of matter distinct from either liquid or solid. Liquids are useful as lubricants due to their ability to form a thin, freely flowing layer between solid materials. Lubricants such as oil are chosen for viscosity and flow characteristics that are suitable throughout

8640-554: The container. If liquid is placed in a bag, it can be squeezed into any shape. Unlike a gas, a liquid is nearly incompressible, meaning that it occupies nearly a constant volume over a wide range of pressures; it does not generally expand to fill available space in a container but forms its own surface, and it may not always mix readily with another liquid. These properties make a liquid suitable for applications such as hydraulics . Liquid particles are bound firmly but not rigidly. They are able to move around one another freely, resulting in

8760-458: The crust or upper mantle, so magma is produced only where the geothermal gradient is unusually steep or the melting point of the rock is unusually low. However, the ascent of magma towards the surface in such settings is the most important process for transporting heat through the crust of the Earth. Rocks may melt in response to a decrease in pressure, to a change in composition (such as an addition of water), to an increase in temperature, or to

8880-432: The crust where they are thought to be stored in magma chambers or trans-crustal crystal-rich mush zones. During magma's storage in the crust, its composition may be modified by fractional crystallization , contamination with crustal melts, magma mixing, and degassing. Following its ascent through the crust, magma may feed a volcano and be extruded as lava, or it may solidify underground to form an intrusion , such as

9000-455: The crystallization process would not change the overall composition of the melt plus solid minerals. This situation is described as equillibrium crystallization . However, in a series of experiments culminating in his 1915 paper, Crystallization-differentiation in silicate liquids , Norman L. Bowen demonstrated that crystals of olivine and diopside that crystallized out of a cooling melt of forsterite , diopside, and silica would sink through

9120-772: The cubic decimeter, more commonly called the litre (1 dm = 1 L = 0.001 m), and the cubic centimetre, also called millilitre (1 cm = 1 mL = 0.001 L = 10 m). The volume of a quantity of liquid is fixed by its temperature and pressure . Liquids generally expand when heated, and contract when cooled. Water between 0 °C and 4 °C is a notable exception. On the other hand, liquids have little compressibility . Water, for example, will compress by only 46.4 parts per million for every unit increase in atmospheric pressure (bar). At around 4000 bar (400 megapascals or 58,000 psi ) of pressure at room temperature water experiences only an 11% decrease in volume. Incompressibility makes liquids suitable for transmitting hydraulic power , because

9240-441: The design of aircraft. These effects, often several of them at a time, made it very difficult for World War II era aircraft to reach speeds much beyond 800 km/h (500 mph). Many effects are often mentioned in conjunction with the term "compressibility", but regularly have little to do with the compressible nature of air. From a strictly aerodynamic point of view, the term should refer only to those side-effects arising as

9360-441: The ends of the pipe. The viscosity of liquids decreases with increasing temperature. Precise control of viscosity is important in many applications, particularly the lubrication industry. One way to achieve such control is by blending two or more liquids of differing viscosities in precise ratios. In addition, various additives exist which can modulate the temperature-dependence of the viscosity of lubricating oils. This capability

9480-422: The enormous variation seen in other mechanical properties, such as viscosity. The free surface of a liquid is disturbed by gravity ( flatness ) and waves ( surface roughness ). An important physical property characterizing the flow of liquids is viscosity . Intuitively, viscosity describes the resistance of a liquid to flow. More technically, viscosity measures the resistance of a liquid to deformation at

9600-399: The eutectic temperature of 1274 °C. This shifts the remaining melt towards its eutectic composition of 43% diopside. The eutectic is reached at 1274 °C, the temperature at which diopside and anorthite begin crystallizing together. If the melt was 90% diopside, the diopside would begin crystallizing first until the eutectic was reached. If the crystals remained suspended in the melt,

9720-512: The extensive basalt magmatism of several large igneous provinces. Decompression melting occurs because of a decrease in pressure. It is the most important mechanism for producing magma from the upper mantle. The solidus temperatures of most rocks (the temperatures below which they are completely solid) increase with increasing pressure in the absence of water. Peridotite at depth in the Earth's mantle may be hotter than its solidus temperature at some shallower level. If such rock rises during

9840-620: The food industry, in processes such as the extraction of vegetable oil . Liquids tend to have better thermal conductivity than gases, and the ability to flow makes a liquid suitable for removing excess heat from mechanical components. The heat can be removed by channeling the liquid through a heat exchanger , such as a radiator , or the heat can be removed with the liquid during evaporation . Water or glycol coolants are used to keep engines from overheating. The coolants used in nuclear reactors include water or liquid metals, such as sodium or bismuth . Liquid propellant films are used to cool

9960-420: The importance of each mechanism being a topic of continuing research. The change of rock composition most responsible for the creation of magma is the addition of water. Water lowers the solidus temperature of rocks at a given pressure. For example, at a depth of about 100 kilometers, peridotite begins to melt near 800 °C in the presence of excess water, but near 1,500 °C in the absence of water. Water

10080-475: The individual elements are solid under the same conditions (see eutectic mixture ). An example is the sodium-potassium metal alloy NaK . Other metal alloys that are liquid at room temperature include galinstan , which is a gallium-indium-tin alloy that melts at −19 °C (−2 °F), as well as some amalgams (alloys involving mercury). Pure substances that are liquid under normal conditions include water, ethanol and many other organic solvents. Liquid water

10200-408: The isentropic compressibility can be expressed as: The inverse of the compressibility is called the bulk modulus , often denoted K (sometimes B or β {\displaystyle \beta } ).). The compressibility equation relates the isothermal compressibility (and indirectly the pressure) to the structure of the liquid. The isothermal compressibility is generally related to

10320-415: The liquid displaced by the object, and the direction of the force depends on the average density of the immersed object. If the density is smaller than that of the liquid, the buoyant force points upward and the object floats, whereas if the density is larger , the buoyant force points downward and the object sinks. This is known as Archimedes' principle . Unless the volume of a liquid exactly matches

10440-468: The liquid or gas from the voids. This can happen over a period of time, resulting in settlement . It is an important concept in geotechnical engineering in the design of certain structural foundations. For example, the construction of high-rise structures over underlying layers of highly compressible bay mud poses a considerable design constraint, and often leads to use of driven piles or other innovative techniques. The degree of compressibility of

10560-476: The magma completely solidifies, and the liquidus , defined as the temperature at which the magma is completely liquid. Calculations of solidus temperatures at likely depths suggests that magma generated beneath areas of rifting starts at a temperature of about 1,300 to 1,500 °C (2,400 to 2,700 °F). Magma generated from mantle plumes may be as hot as 1,600 °C (2,900 °F). The temperature of magma generated in subduction zones, where water vapor lowers

10680-408: The magma. Gabbro may have a liquidus temperature near 1,200 °C, and the derivative granite-composition melt may have a liquidus temperature as low as about 700 °C. Incompatible elements are concentrated in the last residues of magma during fractional crystallization and in the first melts produced during partial melting: either process can form the magma that crystallizes to pegmatite ,

10800-419: The mantle than subalkaline magmas. Olivine nephelinite magmas are both ultramafic and highly alkaline, and are thought to have come from much deeper in the mantle of the Earth than other magmas. Tholeiitic basalt magma Rhyolite magma Some lavas of unusual composition have erupted onto the surface of the Earth. These include: The concentrations of different gases can vary considerably. Water vapor

10920-424: The melt at different temperatures. This resembles the original melting process in reverse. However, because the melt has usually separated from its original source rock and moved to a shallower depth, the reverse process of crystallization is not precisely identical. For example, if a melt was 50% each of diopside and anorthite, then anorthite would begin crystallizing from the melt at a temperature somewhat higher than

11040-438: The melt at the eutectic composition. Further heating causes the temperature to slowly rise as the remaining anorthite gradually melts and the melt becomes increasingly rich in anorthite liquid. If the mixture has only a slight excess of anorthite, this will melt before the temperature rises much above 1274 °C. If the mixture is almost all anorthite, the temperature will reach nearly the melting point of pure anorthite before all

11160-449: The melt deviated from the eutectic, which has the composition of about 43% anorthite. This effect of partial melting is reflected in the compositions of different magmas. A low degree of partial melting of the upper mantle (2% to 4%) can produce highly alkaline magmas such as melilitites , while a greater degree of partial melting (8% to 11%) can produce alkali olivine basalt. Oceanic magmas likely result from partial melting of 3% to 15% of

11280-402: The melt on geologically relevant time scales. Geologists subsequently found considerable field evidence of such fractional crystallization . When crystals separate from a magma, then the residual magma will differ in composition from the parent magma. For instance, a magma of gabbroic composition can produce a residual melt of granitic composition if early formed crystals are separated from

11400-429: The melting temperature, may be as low as 1,060 °C (1,940 °F). Magma densities depend mostly on composition, iron content being the most important parameter. Magma expands slightly at lower pressure or higher temperature. When magma approaches the surface, its dissolved gases begin to bubble out of the liquid. These bubbles had significantly reduced the density of the magma at depth and helped drive it toward

11520-593: The molecules become smaller. When the liquid reaches its freezing point the molecules will usually lock into a very specific order, called crystallizing, and the bonds between them become more rigid, changing the liquid into its solid state (unless supercooling occurs). Only two elements are liquid at standard conditions for temperature and pressure : mercury and bromine . Four more elements have melting points slightly above room temperature : francium , caesium , gallium and rubidium . In addition, certain mixtures of elements are liquid at room temperature, even if

11640-464: The molecules in solids are densely packed, they usually fall into a regular structure, such as a crystalline lattice ( glasses are a notable exception). Compressibility where V is volume and p is pressure. The choice to define compressibility as the negative of the fraction makes compressibility positive in the (usual) case that an increase in pressure induces a reduction in volume. The reciprocal of compressibility at fixed temperature

11760-481: The more abundant elements in the source rock. The ions of these elements fit rather poorly in the structure of the minerals making up the source rock, and readily leave the solid minerals to become highly concentrated in melts produced by a low degree of partial melting. Incompatible elements commonly include potassium , barium , caesium , and rubidium , which are large and weakly charged (the large-ion lithophile elements, or LILEs), as well as elements whose ions carry

11880-415: The most abundant chemical elements in the Earth's crust, with smaller quantities of aluminium , calcium , magnesium , iron , sodium , and potassium , and minor amounts of many other elements. Petrologists routinely express the composition of a silicate magma in terms of the weight or molar mass fraction of the oxides of the major elements (other than oxygen) present in the magma. Because many of

12000-439: The presence of carbon dioxide, experiments document that the peridotite solidus temperature decreases by about 200 °C in a narrow pressure interval at pressures corresponding to a depth of about 70 km. At greater depths, carbon dioxide can have more effect: at depths to about 200 km, the temperatures of initial melting of a carbonated peridotite composition were determined to be 450 °C to 600 °C lower than for

12120-470: The pressure is essentially zero (except on surfaces or interiors of planets and moons) water and other liquids exposed to space will either immediately boil or freeze depending on the temperature. In regions of space near the Earth, water will freeze if the sun is not shining directly on it and vaporize (sublime) as soon as it is in sunlight. If water exists as ice on the Moon, it can only exist in shadowed holes where

12240-630: The properties of a magma (such as its viscosity and temperature) are observed to correlate with silica content, silicate magmas are divided into four chemical types based on silica content: felsic , intermediate , mafic , and ultramafic . Felsic or silicic magmas have a silica content greater than 63%. They include rhyolite and dacite magmas. With such a high silica content, these magmas are extremely viscous, ranging from 10 cP (10 Pa⋅s) for hot rhyolite magma at 1,200 °C (2,190 °F) to 10 cP (10 Pa⋅s) for cool rhyolite magma at 800 °C (1,470 °F). For comparison, water has

12360-411: The rate of flow is proportional to the shear stress . Instead, a typical magma is a Bingham fluid , which shows considerable resistance to flow until a stress threshold, called the yield stress, is crossed. This results in plug flow of partially crystalline magma. A familiar example of plug flow is toothpaste squeezed out of a toothpaste tube. The toothpaste comes out as a semisolid plug, because shear

12480-463: The relation between the pressure, density and temperature is known as the equation of state denoted by some function F {\displaystyle F} . The Van der Waals equation is an example of an equation of state for a realistic gas. Knowing the equation of state, the compressibility can be determined for any substance. The speed of sound is defined in classical mechanics as: It follows, by replacing partial derivatives , that

12600-405: The roof of a magma chamber and fractional crystallization near its base can even take place simultaneously. Magmas of different compositions can mix with one another. In rare cases, melts can separate into two immiscible melts of contrasting compositions. When rock melts, the liquid is a primary magma . Primary magmas have not undergone any differentiation and represent the starting composition of

12720-405: The same composition with no carbon dioxide. Magmas of rock types such as nephelinite , carbonatite , and kimberlite are among those that may be generated following an influx of carbon dioxide into mantle at depths greater than about 70 km. Increase in temperature is the most typical mechanism for formation of magma within continental crust. Such temperature increases can occur because of

12840-442: The same lavas ranges over seven orders of magnitude, from 10 cP (10 Pa⋅s) for mafic lava to 10 cP (10 Pa⋅s) for felsic magmas. The viscosity is mostly determined by composition but is also dependent on temperature. The tendency of felsic lava to be cooler than mafic lava increases the viscosity difference. The silicon ion is small and highly charged, and so it has a strong tendency to coordinate with four oxygen ions, which form

12960-404: The source rock. Some calk-alkaline granitoids may be produced by a high degree of partial melting, as much as 15% to 30%. High-magnesium magmas, such as komatiite and picrite , may also be the products of a high degree of partial melting of mantle rock. Certain chemical elements, called incompatible elements , have a combination of ionic radius and ionic charge that is unlike that of

13080-460: The speed of sound. Another phenomenon caused by liquid's incompressibility is cavitation . Because liquids have little elasticity they can literally be pulled apart in areas of high turbulence or dramatic change in direction, such as the trailing edge of a boat propeller or a sharp corner in a pipe. A liquid in an area of low pressure (vacuum) vaporizes and forms bubbles, which then collapse as they enter high pressure areas. This causes liquid to fill

13200-624: The sun never shines and where the surrounding rock does not heat it up too much. At some point near the orbit of Saturn, the light from the Sun is too faint to sublime ice to water vapor. This is evident from the longevity of the ice that composes Saturn's rings. Liquids can form solutions with gases, solids, and other liquids. Two liquids are said to be miscible if they can form a solution in any proportion; otherwise they are immiscible. As an example, water and ethanol (drinking alcohol) are miscible whereas water and gasoline are immiscible. In some cases

13320-468: The surface and the overburden pressure drops, dissolved gases bubble out of the liquid, so that magma near the surface consists of materials in solid, liquid, and gas phases . Most magma is rich in silica . Rare nonsilicate magma can form by local melting of nonsilicate mineral deposits or by separation of a magma into separate immiscible silicate and nonsilicate liquid phases. Silicate magmas are molten mixtures dominated by oxygen and silicon ,

13440-401: The surface in the first place. The temperature within the interior of the earth is described by the geothermal gradient , which is the rate of temperature change with depth. The geothermal gradient is established by the balance between heating through radioactive decay in the Earth's interior and heat loss from the surface of the earth. The geothermal gradient averages about 25 °C/km in

13560-448: The tens of mJ/m, so droplets of oil, water, or glue can easily merge and adhere to other surfaces, whereas liquid metals such as mercury may have tensions ranging in the hundreds of mJ/m, thus droplets do not combine easily and surfaces may only wet under specific conditions. The surface tensions of common liquids occupy a relatively narrow range of values when exposed to changing conditions such as temperature, which contrasts strongly with

13680-536: The three axes) is positive, that is, an increase in pressure squeezes the material to a smaller volume. This condition is required for mechanical stability. However, under very specific conditions, materials can exhibit a compressibility that can be negative. Magma Magma (from Ancient Greek μάγμα ( mágma )  'thick unguent ') is the molten or semi-molten natural material from which all igneous rocks are formed. Magma (sometimes colloquially but incorrectly referred to as lava )

13800-730: The thrust chambers of rockets . In machining , water and oils are used to remove the excess heat generated, which can quickly ruin both the work piece and the tooling. During perspiration , sweat removes heat from the human body by evaporating. In the heating, ventilation, and air-conditioning industry (HVAC), liquids such as water are used to transfer heat from one area to another. Liquids are often used in cooking due to their excellent heat-transfer capabilities. In addition to thermal conduction, liquids transmit energy by convection. In particular, because warmer fluids expand and rise while cooler areas contract and sink, liquids with low kinematic viscosity tend to transfer heat through convection at

13920-613: The upward intrusion of magma from the mantle. Temperatures can also exceed the solidus of a crustal rock in continental crust thickened by compression at a plate boundary . The plate boundary between the Indian and Asian continental masses provides a well-studied example, as the Tibetan Plateau just north of the boundary has crust about 80 kilometers thick, roughly twice the thickness of normal continental crust. Studies of electrical resistivity deduced from magnetotelluric data have detected

14040-462: The upward movement of solid mantle is critical in the evolution of the Earth. Decompression melting creates the ocean crust at mid-ocean ridges , making it by far the most important source of magma on Earth. It also causes volcanism in intraplate regions, such as Europe, Africa and the Pacific sea floor. Intraplate volcanism is attributed to the rise of mantle plumes or to intraplate extension, with

14160-425: The vapor will condense at the same rate as the liquid evaporates. Thus, a liquid cannot exist permanently if the evaporated liquid is continually removed. A liquid at or above its boiling point will normally boil, though superheating can prevent this in certain circumstances. At a temperature below the freezing point, a liquid will tend to crystallize , changing to its solid form. Unlike the transition to gas, there

14280-467: The viscosity. Higher-temperature melts are less viscous, since more thermal energy is available to break bonds between oxygen and network formers. Most magmas contain solid crystals of various minerals, fragments of exotic rocks known as xenoliths and fragments of previously solidified magma. The crystal content of most magmas gives them thixotropic and shear thinning properties. In other words, most magmas do not behave like Newtonian fluids, in which

14400-405: The volume of its container, one or more surfaces are observed. The presence of a surface introduces new phenomena which are not present in a bulk liquid. This is because a molecule at a surface possesses bonds with other liquid molecules only on the inner side of the surface, which implies a net force pulling surface molecules inward. Equivalently, this force can be described in terms of energy: there

#968031