A conidium ( / k ə ˈ n ɪ d i ə m , k oʊ -/ kə- NID -ee-əm, koh- ; pl. : conidia ), sometimes termed an asexual chlamydospore or chlamydoconidium ( pl. : chlamydoconidia ), is an asexual , non- motile spore of a fungus . The word conidium comes from the Ancient Greek word for dust , κόνις ( kónis ). They are also called mitospores due to the way they are generated through the cellular process of mitosis . They are produced exogenously. The two new haploid cells are genetically identical to the haploid parent, and can develop into new organisms if conditions are favorable, and serve in biological dispersal .
67-664: Asexual reproduction in ascomycetes (the phylum Ascomycota ) is by the formation of conidia, which are borne on specialized stalks called conidiophores . The morphology of these specialized conidiophores is often distinctive between species and, before the development of molecular techniques at the end of the 20th century, was widely used for identification of ( e.g. Metarhizium ) species. The terms microconidia and macroconidia are sometimes used. There are two main types of conidium development: A conidium may form germ tubes (germination tubes) and/or conidial anastomosis tubes (CATs) in specific conditions. These two are some of
134-1196: A thallus usually referred to as the mycelium , which—when visible to the naked eye (macroscopic)—is commonly called mold . During sexual reproduction, many Ascomycota typically produce large numbers of asci . The ascus is often contained in a multicellular, occasionally readily visible fruiting structure, the ascocarp (also called an ascoma ). Ascocarps come in a very large variety of shapes: cup-shaped, club-shaped, potato-like, spongy, seed-like, oozing and pimple-like, coral-like, nit-like, golf-ball-shaped, perforated tennis ball-like, cushion-shaped, plated and feathered in miniature ( Laboulbeniales ), microscopic classic Greek shield-shaped, stalked or sessile. They can appear solitary or clustered. Their texture can likewise be very variable, including fleshy, like charcoal (carbonaceous), leathery, rubbery, gelatinous, slimy, powdery, or cob-web-like. Ascocarps come in multiple colors such as red, orange, yellow, brown, black, or, more rarely, green or blue. Some ascomyceous fungi, such as Saccharomyces cerevisiae , grow as single-celled yeasts, which—during sexual reproduction—develop into an ascus, and do not form fruiting bodies. In lichenized species,
201-472: A bottle shaped cell called a phialide , from which the spores are produced. Not all of these asexual structures are a single hypha. In some groups, the conidiophores (the structures that bear the conidia) are aggregated to form a thick structure. E.g. In the order Moniliales, all of them are single hyphae with the exception of the aggregations, termed as coremia or synnema. These produce structures rather like corn-stokes, with many conidia being produced in
268-404: A common mold, specifically is of interest. Aspergillus is not only a familiar fungus found across various different settings in the world, but it poses a danger for immunocompromised individuals, as inhaled Aspergillus conidia could germinate inside the respiratory tract and cause aspergillosis, a form of pulmonary infection, and continual developments of aspergillosis such as new risk groups and
335-506: A double-dividing wall with a central lamella (layer) forms between the cells; the central layer then breaks down thereby releasing the spores. In rhexolytic dehiscence, the cell wall that joins the spores on the outside degenerates and releases the conidia. Several Ascomycota species are not known to have a sexual cycle. Such asexual species may be able to undergo genetic recombination between individuals by processes involving heterokaryosis and parasexual events. Parasexuality refers to
402-433: A form of pneumonia . Asci of Ascosphaera fill honey bee larvae and pupae causing mummification with a chalk-like appearance, hence the name "chalkbrood". Yeasts for small colonies in vitro and in vivo , and excessive growth of Candida species in the mouth or vagina causes "thrush", a form of candidiasis . The cell walls of the ascomycetes almost always contain chitin and β-glucans , and divisions within
469-476: A further mitotic division that results in eight nuclei in each ascus. The nuclei along with some cytoplasma become enclosed within membranes and a cell wall to give rise to ascospores that are aligned inside the ascus like peas in a pod. Upon opening of the ascus, ascospores may be dispersed by the wind, while in some cases the spores are forcibly ejected form the ascus; certain species have evolved spore cannons, which can eject ascospores up to 30 cm. away. When
536-737: A hypha. Vegetative hyphae of most ascomycetes contain only one nucleus per cell ( uninucleate hyphae), but multinucleate cells—especially in the apical regions of growing hyphae—can also be present. In common with other fungal phyla, the Ascomycota are heterotrophic organisms that require organic compounds as energy sources. These are obtained by feeding on a variety of organic substrates including dead matter, foodstuffs, or as symbionts in or on other living organisms. To obtain these nutrients from their surroundings, ascomycetous fungi secrete powerful digestive enzymes that break down organic substances into smaller molecules, which are then taken up into
603-529: A large-scale specialized structure that helps to spread them. These two basic types can be further classified as follows: Sometimes the conidia are produced in structures visible to the naked eye, which help to distribute the spores. These structures are called "conidiomata" (singular: conidioma ), and may take the form of pycnidia (which are flask-shaped and arise in the fungal tissue) or acervuli (which are cushion-shaped and arise in host tissue). Dehiscence happens in two ways. In schizolytic dehiscence,
670-433: A mass from the aggregated conidiophores. The diverse conidia and conidiophores sometimes develop in asexual sporocarps with different characteristics (e.g. acervulus, pycnidium, sporodochium). Some species of ascomycetes form their structures within plant tissue, either as parasite or saprophytes. These fungi have evolved more complex asexual sporing structures, probably influenced by the cultural conditions of plant tissue as
737-545: A separate artificial phylum , the Deuteromycota (or "Fungi Imperfecti"). Where recent molecular analyses have identified close relationships with ascus-bearing taxa, anamorphic species have been grouped into the Ascomycota, despite the absence of the defining ascus. Sexual and asexual isolates of the same species commonly carry different binomial species names, as, for example, Aspergillus nidulans and Emericella nidulans , for asexual and sexual isolates, respectively, of
SECTION 10
#1732858327114804-408: A substrate. These structures are called the sporodochium . This is a cushion of conidiophores created from a pseudoparenchymatous stroma in plant tissue. The pycnidium is a globose to flask-shaped parenchymatous structure, lined on its inner wall with conidiophores. The acervulus is a flat saucer shaped bed of conidiophores produced under a plant cuticle, which eventually erupt through
871-551: A tetraploid nucleus which divided into four diploid nuclei by meiosis and then into eight haploid nuclei by a supposed process called brachymeiosis , but this hypothesis was disproven in the 1950s. From the fertilized ascogonium, dinucleate hyphae emerge in which each cell contains two nuclei. These hyphae are called ascogenous or fertile hyphae. They are supported by the vegetative mycelium containing uni– (or mono–) nucleate hyphae, which are sterile. The mycelium containing both sterile and fertile hyphae may grow into fruiting body,
938-423: A variety of stresses such as nutrient limitation. The sexual part of the life cycle commences when two hyphal structures mate . In the case of homothallic species, mating is enabled between hyphae of the same fungal clone , whereas in heterothallic species, the two hyphae must originate from fungal clones that differ genetically, i.e., those that are of a different mating type . Mating types are typical of
1005-417: Is a dictyospore . In staurospores ray-like arms radiate from a central body; in others ( helicospores ) the entire spore is wound up in a spiral like a spring. Very long worm-like spores with a length-to-diameter ratio of more than 15:1, are called scolecospores . Important characteristics of the anamorphs of the Ascomycota are conidiogenesis , which includes spore formation and dehiscence (separation from
1072-779: Is a phylum of the kingdom Fungi that, together with the Basidiomycota , forms the subkingdom Dikarya . Its members are commonly known as the sac fungi or ascomycetes . It is the largest phylum of Fungi, with over 64,000 species . The defining feature of this fungal group is the " ascus " (from Ancient Greek ἀσκός ( askós ) 'sac, wineskin'), a microscopic sexual structure in which nonmotile spores , called ascospores , are formed. However, some species of Ascomycota are asexual and thus do not form asci or ascospores. Familiar examples of sac fungi include morels , truffles , brewers' and bakers' yeast , dead man's fingers , and cup fungi . The fungal symbionts in
1139-471: Is a species of fungus that causes sooty bark disease of maples , particularly sycamore ( Acer pseudoplatanus ). The spores grow profusely under the bark of affected trees or stacked logs. The fungus causes disease and death in trees, and the spores are allergenic and cause a debilitating pneumonitis (inflammation of the lungs) in humans. The fungus is thought to have originated in North America and
1206-484: Is a tube-shaped vessel, a meiosporangium , which contains the sexual spores produced by meiosis and which are called ascospores . Apart from a few exceptions, such as Candida albicans , most ascomycetes are haploid , i.e., they contain one set of chromosomes per nucleus. During sexual reproduction there is a diploid phase, which commonly is very short, and meiosis restores the haploid state. The sexual cycle of one well-studied representative species of Ascomycota
1273-451: Is described in greater detail in Neurospora crassa . Also, the adaptive basis for the maintenance of sexual reproduction in the Ascomycota fungi was reviewed by Wallen and Perlin. They concluded that the most plausible reason for the maintenance of this capability is the benefit of repairing DNA damage by using recombination that occurs during meiosis . DNA damage can be caused by
1340-580: Is known to cause hypersensitivity pneumonitis , an occupational hazard for forest workers and paper mill employees. Conidia are often the method by which some normally harmless but heat-tolerating (thermotolerant), common fungi establish infection in certain types of severely immunocompromised patients (usually acute leukemia patients on induction chemotherapy, AIDS patients with superimposed B-cell lymphoma, bone marrow transplantation patients (taking immunosuppressants), or major organ transplant patients with graft versus host disease ). Their immune system
1407-462: Is not strong enough to fight off the fungus, and it may, for example, colonise the lung, resulting in a pulmonary infection. Especially with species of the Aspergillus genus, germination in the respiratory tract can lead to aspergillosis, which is quite common, can vary in severity, and has shown signs of developing new risk groups and antifungal drug resistance. Ascomycete Ascomycota
SECTION 20
#17328583271141474-522: Is only found on Nothofagus (Southern Beech) in the Southern Hemisphere . Asexual reproduction is the dominant form of propagation in the Ascomycota, and is responsible for the rapid spread of these fungi into new areas. It occurs through vegetative reproductive spores, the conidia . The conidiospores commonly contain one nucleus and are products of mitotic cell divisions and thus are sometimes called mitospores, which are genetically identical to
1541-463: Is usually inconspicuous because it is commonly embedded in the substrate, such as soil, or grows on or inside a living host, and only the ascoma may be seen when fruiting. Pigmentation , such as melanin in hyphal walls, along with prolific growth on surfaces can result in visible mold colonies; examples include Cladosporium species, which form black spots on bathroom caulking and other moist areas. Many ascomycetes cause food spoilage, and, therefore,
1608-416: The ascocarp , which may contain millions of fertile hyphae. An ascocarp is the fruiting body of the sexual phase in Ascomycota. There are five morphologically different types of ascocarp, namely: The sexual structures are formed in the fruiting layer of the ascocarp, the hymenium . At one end of ascogenous hyphae, characteristic U-shaped hooks develop, which curve back opposite to the growth direction of
1675-402: The ascogonium , and merges with a gametangium (the antheridium ) of the other fungal isolate. The nuclei in the antheridium then migrate into the ascogonium, and plasmogamy —the mixing of the cytoplasm —occurs. Unlike in animals and plants, plasmogamy is not immediately followed by the merging of the nuclei (called karyogamy ). Instead, the nuclei from the two hyphae form pairs, initiating
1742-452: The conidia . The asexual, non-motile haploid spores of a fungus, which are named after the Greek word for dust (conia), are hence also known as conidiospores . The conidiospores commonly contain one nucleus and are products of mitotic cell divisions and thus are sometimes called mitospores , which are genetically identical to the mycelium from which they originate. They are typically formed at
1809-627: The detritivores (animals that feed on decomposing material) to obtain their nutrients. Ascomycetes, along with other fungi, can break down large molecules such as cellulose or lignin , and thus have important roles in nutrient cycling such as the carbon cycle . The fruiting bodies of the Ascomycota provide food for many animals ranging from insects and slugs and snails ( Gastropoda ) to rodents and larger mammals such as deer and wild boars . Many ascomycetes also form symbiotic relationships with other organisms, including plants and animals. Probably since early in their evolutionary history,
1876-401: The dikaryophase of the sexual cycle, during which time the pairs of nuclei synchronously divide. Fusion of the paired nuclei leads to mixing of the genetic material and recombination and is followed by meiosis . A similar sexual cycle is present in the red algae (Rhodophyta). A discarded hypothesis held that a second karyogamy event occurred in the ascogonium prior to ascogeny, resulting in
1943-685: The ergot fungi, black knot , and the powdery mildews . The members of the genus Cordyceps are entomopathogenic fungi , meaning that they parasitise and kill insects. Other entomopathogenic ascomycetes have been used successfully in biological pest control , such as Beauveria . Several species of ascomycetes are biological model organisms in laboratory research. Most famously, Neurospora crassa , several species of yeasts , and Aspergillus species are used in many genetics and cell biology studies. Ascomycetes are 'spore shooters'. They are fungi which produce microscopic spores inside special, elongated cells or sacs, known as 'asci', which give
2010-439: The photoautotrophic algal partner generates metabolic energy through photosynthesis, the fungus offers a stable, supportive matrix and protects cells from radiation and dehydration. Around 42% of the Ascomycota (about 18,000 species) form lichens, and almost all the fungal partners of lichens belong to the Ascomycota. Cryptostroma corticale Coniosporium corticale Ellis & Everh., 1889 Cryptostroma corticale
2077-533: The Ascomycota have formed symbiotic associations with green algae ( Chlorophyta ), and other types of algae and cyanobacteria . These mutualistic associations are commonly known as lichens , and can grow and persist in terrestrial regions of the earth that are inhospitable to other organisms and characterized by extremes in temperature and humidity, including the Arctic , the Antarctic , deserts , and mountaintops. While
Conidium - Misplaced Pages Continue
2144-410: The Ascomycota. The most frequent types are the single-celled spores, which are designated amerospores . If the spore is divided into two by a cross-wall ( septum ), it is called a didymospore . When there are two or more cross-walls, the classification depends on spore shape. If the septae are transversal , like the rungs of a ladder, it is a phragmospore , and if they possess a net-like structure it
2211-629: The Ascomycota. These include the following sexual ( teleomorphic ) groups, defined by the structures of their sexual fruiting bodies : the Discomycetes , which included all species forming apothecia ; the Pyrenomycetes , which included all sac fungi that formed perithecia or pseudothecia , or any structure resembling these morphological structures; and the Plectomycetes, which included those species that form cleistothecia . Hemiascomycetes included
2278-449: The atmosphere and freshwater environments, as well as ocean beaches and tidal zones. The distribution of species is variable; while some are found on all continents, others, as for example the white truffle Tuber magnatum , only occur in isolated locations in Italy and Eastern Europe. The distribution of plant-parasitic species is often restricted by host distributions; for example, Cyttaria
2345-755: The cell. Many species live on dead plant material such as leaves, twigs, or logs. Several species colonize plants, animals, or other fungi as parasites or mutualistic symbionts and derive all their metabolic energy in form of nutrients from the tissues of their hosts. Owing to their long evolutionary history, the Ascomycota have evolved the capacity to break down almost every organic substance. Unlike most organisms, they are able to use their own enzymes to digest plant biopolymers such as cellulose or lignin . Collagen , an abundant structural protein in animals, and keratin —a protein that forms hair and nails—, can also serve as food sources. Unusual examples include Aureobasidium pullulans , which feeds on wall paint, and
2412-417: The cuticle for dispersal. Asexual reproduction process in ascomycetes also involves the budding which we clearly observe in yeast. This is termed a "blastic process". It involves the blowing out or blebbing of the hyphal tip wall. The blastic process can involve all wall layers, or there can be a new cell wall synthesized which is extruded from within the old wall. The initial events of budding can be seen as
2479-605: The development of a ring of chitin around the point where the bud is about to appear. This reinforces and stabilizes the cell wall. Enzymatic activity and turgor pressure act to weaken and extrude the cell wall. New cell wall material is incorporated during this phase. Cell contents are forced into the progeny cell, and as the final phase of mitosis ends a cell plate, the point at which a new cell wall will grow inwards from, forms. There are three subphyla that are described and accepted: Several outdated taxon names—based on morphological features—are still occasionally used for species of
2546-514: The dormant conidia are dictated by a few central regulatory proteins, which are the main drivers of the conidia and conidiophore formation. One of these proteins, the developmental regulatory protein wetA, has been found to be particularly essential; in wetA-defective mutants have reduced tolerance to external factors mentioned above, and exhibit weak synthesization of the conidial cell wall. In addition to these central regulators, some notable groups of genes/proteins include other regulatory proteins like
2613-491: The dormant conidia is shed and the growth of the hyphae cells begins, which has a significantly different composition compared to the dormant conidia cell. Breaking of dormancy involves transcription, but not translation; protein synthesis inhibitors prevent isotropic growth, while DNA and RNA synthesis inhibitors do not, and the start of breaking of dormancy is accompanied by and increase in transcripts for genes for biosynthesis of proteins, and immediate protein synthesis. Following
2680-407: The ends of specialized hyphae, the conidiophores. Depending on the species they may be dispersed by wind or water, or by animals. Conidiophores may simply branch off from the mycelia or they may be formed in fruiting bodies. The hypha that creates the sporing (conidiating) tip can be very similar to the normal hyphal tip, or it can be differentiated. The most common differentiation is the formation of
2747-448: The expansion of the cell via isotropic growth, studies have observed many new proteins emerging from the processes in the breaking of dormancy and transcripts associated with remodeling of the cell wall, suggesting that remodeling of the cell wall is a central process during isotropic growth. In the polarized growth stage, upregulated and overexpressed proteins and transcripts included ones involved in synthesis of chitin (a major component of
Conidium - Misplaced Pages Continue
2814-422: The fungal cell wall), mitosis and DNA processing, remodeling of cell morphology, and ones in germ tube formation pertaining to infection and virulence factors. Conidiogenesis is an important mechanism of spread of plant pathogens. In some cases, specialized macroscopic fruiting structures perhaps 1 mm or so in diameter containing masses of conidia are formed under the skin of the host plant and then erupt through
2881-663: The fungal symbiont directly obtains products of photosynthesis . In common with many basidiomycetes and Glomeromycota , some ascomycetes form symbioses with plants by colonizing the roots to form mycorrhizal associations. The Ascomycota also represents several carnivorous fungi , which have developed hyphal traps to capture small protists such as amoebae , as well as roundworms ( Nematoda ), rotifers , tardigrades , and small arthropods such as springtails ( Collembola ). The Ascomycota are represented in all land ecosystems worldwide, occurring on all continents including Antarctica . Spores and hyphal fragments are dispersed through
2948-428: The fungi and correspond roughly to the sexes in plants and animals; however one species may have more than two mating types, resulting in sometimes complex vegetative incompatibility systems. The adaptive function of mating type is discussed in Neurospora crassa . Gametangia are sexual structures formed from hyphae, and are the generative cells. A very fine hypha, called trichogyne emerges from one gametangium,
3015-517: The group its name. Asexual reproduction is the dominant form of propagation in the Ascomycota, and is responsible for the rapid spread of these fungi into new areas. Asexual reproduction of ascomycetes is very diverse from both structural and functional points of view. The most important and general is production of conidia, but chlamydospores are also frequently produced. Furthermore, Ascomycota also reproduce asexually through budding. Asexual reproduction may occur through vegetative reproductive spores,
3082-518: The hook with one nucleus, one at the basal of the original hypha that contains one nucleus, and one that separates the U-shaped part, which contains the other two nuclei. Fusion of the nuclei (karyogamy) takes place in the U-shaped cells in the hymenium, and results in the formation of a diploid zygote . The zygote grows into the ascus , an elongated tube-shaped or cylinder-shaped capsule. Meiosis then gives rise to four haploid nuclei, usually followed by
3149-446: The hyphae, called " septa ", are the internal boundaries of individual cells (or compartments). The cell wall and septa give stability and rigidity to the hyphae and may prevent loss of cytoplasm in case of local damage to cell wall and cell membrane . The septa commonly have a small opening in the center, which functions as a cytoplasmic connection between adjacent cells, also sometimes allowing cell-to-cell movement of nuclei within
3216-416: The hyphae. The two nuclei contained in the apical part of each hypha divide in such a way that the threads of their mitotic spindles run parallel, creating two pairs of genetically different nuclei. One daughter nucleus migrates close to the hook, while the other daughter nucleus locates to the basal part of the hypha. The formation of two parallel cross-walls then divides the hypha into three sections: one at
3283-612: The kerosene fungus Amorphotheca resinae , which feeds on aircraft fuel (causing occasional problems for the airline industry), and may sometimes block fuel pipes. Other species can resist high osmotic stress and grow, for example, on salted fish, and a few ascomycetes are aquatic. The Ascomycota is characterized by a high degree of specialization; for instance, certain species of Laboulbeniales attack only one particular leg of one particular insect species. Many Ascomycota engage in symbiotic relationships such as in lichens—symbiotic associations with green algae or cyanobacteria —in which
3350-1159: The majority of lichens (loosely termed "ascolichens") such as Cladonia belong to the Ascomycota. Ascomycota is a monophyletic group (containing all of the descendants of a common ancestor). Previously placed in the Basidiomycota along with asexual species from other fungal taxa, asexual (or anamorphic ) ascomycetes are now identified and classified based on morphological or physiological similarities to ascus-bearing taxa , and by phylogenetic analyses of DNA sequences. Ascomycetes are of particular use to humans as sources of medicinally important compounds such as antibiotics , as well as for fermenting bread, alcoholic beverages, and cheese. Examples of ascomycetes include Penicillium species on cheeses and those producing antibiotics for treating bacterial infectious diseases . Many ascomycetes are pathogens , both of animals, including humans, and of plants. Examples of ascomycetes that can cause infections in humans include Candida albicans , Aspergillus niger and several tens of species that cause skin infections . The many plant-pathogenic ascomycetes include apple scab , rice blast ,
3417-402: The mycelium from which they originate. They are typically formed at the ends of specialized hyphae , the conidiophores . Depending on the species they may be dispersed by wind or water, or by animals. Different types of asexual spores can be identified by colour, shape, and how they are released as individual spores. Spore types can be used as taxonomic characters in the classification within
SECTION 50
#17328583271143484-436: The original parent nuclei. Alternatively, nuclei may lose some chromosomes, resulting in aneuploid cells. Candida albicans (class Saccharomycetes) is an example of a fungus that has a parasexual cycle (see Candida albicans and Parasexual cycle ). Sexual reproduction in the Ascomycota leads to the formation of the ascus , the structure that defines this fungal group and distinguishes it from other fungal phyla. The ascus
3551-413: The parent structure). Conidiogenesis corresponds to Embryology in animals and plants and can be divided into two fundamental forms of development: blastic conidiogenesis, where the spore is already evident before it separates from the conidiogenic hypha, and thallic conidiogenesis, during which a cross-wall forms and the newly created cell develops into a spore. The spores may or may not be generated in
3618-472: The pellicles or moldy layers that develop on jams, juices, and other foods are the mycelia of these species or occasionally Mucoromycotina and almost never Basidiomycota . Sooty molds that develop on plants, especially in the tropics are the thalli of many species. Large masses of yeast cells, asci or ascus-like cells, or conidia can also form macroscopic structures. For example. Pneumocystis species can colonize lung cavities (visible in x-rays), causing
3685-656: The process of heterokaryosis, caused by merging of two hyphae belonging to different individuals, by a process called anastomosis , followed by a series of events resulting in genetically different cell nuclei in the mycelium . The merging of nuclei is not followed by meiotic events , such as gamete formation and results in an increased number of chromosomes per nuclei. Mitotic crossover may enable recombination , i.e., an exchange of genetic material between homologous chromosomes . The chromosome number may then be restored to its haploid state by nuclear division , with each daughter nuclei being genetically different from
3752-567: The resistance against antifungal drugs. Germination in Aspergillus follows a sequence of three different stages: dormancy, isotropic growth, and polarized growth. The dormant conidia are able to germinate even after an year of remaining at room temperature, due to their resilient intracellular and extracellular characteristics, which enable them to undergo harsh conditions like dehydration, variation in osmotic pressure, oxidation, and temperature, and change in UV exposure and acidity levels. These abilities of
3819-759: The same species. Species of the Deuteromycota were classified as Coelomycetes if they produced their conidia in minute flask- or saucer-shaped conidiomata, known technically as pycnidia and acervuli . The Hyphomycetes were those species where the conidiophores ( i.e. , the hyphal structures that carry conidia-forming cells at the end) are free or loosely organized. They are mostly isolated but sometimes also appear as bundles of cells aligned in parallel (described as synnematal ) or as cushion-shaped masses (described as sporodochial ). Most species grow as filamentous, microscopic structures called hyphae or as budding single cells (yeasts). Many interconnected hyphae form
3886-744: The specialized hyphae that are formed by fungal conidia. The germ tubes will grow to form the hyphae and fungal mycelia . The conidial anastomosis tubes are morphologically and physiologically distinct from germ tubes. After conidia are induced to form conidial anastomosis tubes, they grow homing toward each other, and they fuse. Once fusion happens, the nuclei can pass through fused CATs. These are events of fungal vegetative growth and not sexual reproduction. Fusion between these cells seems to be important for some fungi during early stages of colony establishment. The production of these cells has been suggested to occur in 73 different species of fungi. As evidenced by recent literature, conidia germination of Aspergillus ,
3953-514: The spores reach a suitable substrate, they germinate, form new hyphae, which restarts the fungal life cycle. The form of the ascus is important for classification and is divided into four basic types: unitunicate-operculate, unitunicate-inoperculate, bitunicate, or prototunicate. See the article on asci for further details. The Ascomycota fulfil a central role in most land-based ecosystems . They are important decomposers , breaking down organic materials, such as dead leaves and animals, and helping
4020-484: The surface, allowing the spores to be distributed by wind and rain. One of these structures is called a conidioma (plural: conidiomata ). Two important types of conidiomata, distinguished by their form, are: Pycnidial conidiomata or pycnidia form in the fungal tissue itself, and are shaped like a bulging vase. The conidia are released through a small opening at the apex, the ostiole . Acervular conidiomata, or acervuli , are cushion-like structures that form within
4087-443: The swelling from isotropic growth directs the growth to one side of the cell, and leads to the formation of a germ tube. First, however, the conidia must go through the stage of breaking dormancy. In some species of Aspergillus, dormancy is broken when the dormant conidia is introduced to a carbon source in the presence of water and air, while in other species, the mere presence of glucose is enough to trigger it. The dense outer layer of
SECTION 60
#17328583271144154-409: The thallus of the fungus defines the shape of the symbiotic colony. Some dimorphic species, such as Candida albicans , can switch between growth as single cells and as filamentous, multicellular hyphae. Other species are pleomorphic , exhibiting asexual (anamorphic) as well as a sexual (teleomorphic) growth forms. Except for lichens, the non-reproductive (vegetative) mycelium of most ascomycetes
4221-508: The tissues of a host organism: Mostly they develop a flat layer of relatively short conidiophores which then produce masses of spores. The increasing pressure leads to the splitting of the epidermis and cuticle and allows release of the conidia from the tissue. Conidia are always present in the air, but levels fluctuate from day to day and with the seasons. An average person inhales at least 40 conidia per hour. Exposure to conidia from certain species, such as those of Cryptostroma corticale ,
4288-432: The trunk exposing thick layers of black fungal spores. It has been found that the fungus spreads more rapidly through the tree's tissues at 25 °C (77 °F) than at 15 °C (59 °F), and in the former instance, more rapidly when the tree is under greater water stress. This would seem to suggest that the disease is associated with raised summer temperatures. Maple bark disease, or maple bark stripper’s disease,
4355-401: The velvet regulator proteins, which contribute to fungal growth, and other molecules that target specific unfavorable intra and extracellular conditions, like heat shock proteins. The phases following dormancy include isotropic growth, in which increased intracellular osmotic pressure and water uptake causes swelling of the conidia and increased cellular diameter, and polarized growth, in which
4422-822: The yeasts and yeast-like fungi that have now been placed into the Saccharomycotina or Taphrinomycotina , while the Euascomycetes included the remaining species of the Ascomycota, which are now in the Pezizomycotina , and the Neolecta , which are in the Taphrinomycotina. Some ascomycetes do not reproduce sexually or are not known to produce asci and are therefore anamorphic species. Those anamorphs that produce conidia (mitospores) were previously described as mitosporic Ascomycota . Some taxonomists placed this group into
4489-553: Was originally named Coniosporium corticale by the American mycologists Job Bicknell Ellis and Benjamin Matlack Everhart . The characteristics of the stroma, conidiophores and conidia was the basis for placing it in a new genus as Cryptostroma corticale . It is the type species . Sooty bark disease causes wilting of the crown and dieback of branches. Rectangular patches of bark, and later long strips of bark, become detached from
#113886