A complex instruction set computer ( CISC / ˈ s ɪ s k / ) is a computer architecture in which single instructions can execute several low-level operations (such as a load from memory , an arithmetic operation , and a memory store) or are capable of multi-step operations or addressing modes within single instructions. The term was retroactively coined in contrast to reduced instruction set computer (RISC) and has therefore become something of an umbrella term for everything that is not RISC, where the typical differentiating characteristic is that most RISC designs use uniform instruction length for almost all instructions, and employ strictly separate load and store instructions.
115-447: X86 (also known as 80x86 or the 8086 family ) is a family of complex instruction set computer (CISC) instruction set architectures initially developed by Intel based on the 8086 microprocessor and its 8-bit-external-bus variant, the 8088 . The 8086 was introduced in 1978 as a fully 16-bit extension of 8-bit Intel's 8080 microprocessor, with memory segmentation as a solution for addressing more memory than can be covered by
230-618: A 64 KB (one segment) stack in memory supported by computer hardware . Only words (two bytes) can be pushed to the stack. The stack grows toward numerically lower addresses, with SS:SP pointing to the most recently pushed item. There are 256 interrupts , which can be invoked by both hardware and software. The interrupts can cascade, using the stack to store the return address . The original Intel 8086 and 8088 have fourteen 16- bit registers. Four of them (AX, BX, CX, DX) are general-purpose registers (GPRs), although each may have an additional purpose; for example, only CX can be used as
345-520: A PDP-8 , an Intel 80386 , an Intel 4004 , a Motorola 68000 , a System z mainframe, a Burroughs B5000 , a VAX , a Zilog Z80000 , and a MOS Technology 6502 all vary widely in the number, sizes, and formats of instructions, the number, types, and sizes of registers, and the available data types. Some have hardware support for operations like scanning for a substring, arbitrary-precision BCD arithmetic, or transcendental functions , while others have only 8-bit addition and subtraction. But they are all in
460-579: A backward compatible version of this functionality on the same microprocessor as the main processor. In addition to this, modern x86 designs also contain a SIMD -unit (see SSE below) where instructions can work in parallel on (one or two) 128-bit words, each containing two or four floating-point numbers (each 64 or 32 bits wide respectively), or alternatively, 2, 4, 8 or 16 integers (each 64, 32, 16 or 8 bits wide respectively). The presence of wide SIMD registers means that existing x86 processors can load or store up to 128 bits of memory data in
575-637: A CPU's complexity and costs slightly less because it reads all sizes of words in the same order. For example, the RISC-V instruction set decodes starting at the lowest-addressed byte of the instruction. Big-endian and bi-endian variants were defined for support of legacy code bases that assume big-endianness. The privileged ISA defines bits in the mstatus and mstatush registers that indicate and, optionally, control whether M-mode, S-mode, and U-mode memory accesses other than instruction fetches are little-endian or big-endian; those bits may be read-only, in which case
690-464: A chip (SoCs) that incorporate one or more RISC-V compatible CPU cores. As a RISC architecture, the RISC-V ISA is a load–store architecture . Its floating-point instructions use IEEE 754 floating-point. Notable features of the RISC-V ISA include: instruction bit field locations chosen to simplify the use of multiplexers in a CPU, a design that is architecturally neutral, and a fixed location for
805-420: A combinatorial explosion in possible ISA choices. Profiles specify a much smaller common set of ISA choices that capture the most value for most users, and which thereby enable the software community to focus resources on building a rich software ecosystem. The platform specification defines a set of platforms that specify requirements for interoperability between software and hardware. The Platform Policy defines
920-401: A compatible design) and the scalability of x86 chips in the form of modern multi-core CPUs, is underlining x86 as an example of how continuous refinement of established industry standards can resist the competition from completely new architectures. The table below lists processor models and model series implementing various architectures in the x86 family, in chronological order. Each line item
1035-539: A counter with the loop instruction. Each can be accessed as two separate bytes (thus BX's high byte can be accessed as BH and low byte as BL). Two pointer registers have special roles: SP (stack pointer) points to the "top" of the stack , and BP (base pointer) is often used to point at some other place in the stack, typically above the local variables (see frame pointer ). The registers SI, DI, BX and BP are address registers , and may also be used for array indexing. One of four possible 'segment registers' (CS, DS, SS and ES)
1150-477: A description of a 128-bit flat address space variant, as an extrapolation of 32- and 64-bit variants, but the 128-bit ISA remains "not frozen" intentionally, because as of 2023 , there is still little practical experience with such large memory systems. Unlike other academic designs which are typically optimized only for simplicity of exposition, the designers intended that the RISC-V instruction set be usable for practical computers. As of June 2019, version 2.2 of
1265-489: A fairly simple superscalar design to be located after the (fairly complex) decoders (and buffers), giving, so to speak, the best of both worlds in many respects. This technique is also used in IBM z196 and later z/Architecture microprocessors. The terms CISC and RISC have become less meaningful with the continued evolution of both CISC and RISC designs and implementations. The first highly (or tightly) pipelined x86 implementations,
SECTION 10
#17328524297261380-431: A given microarchitecture . The requirements of a large base of contributors is part of the reason why RISC-V was engineered to address many possible uses. The designers' primary assertion is that the instruction set is the key interface in a computer as it is situated at the interface between the hardware and the software. If a good instruction set were open and available for use by all, then it can dramatically reduce
1495-420: A larger subset of instructions in a pipelined (overlapping) fashion, and facilitates more advanced extraction of parallelism out of the code stream, for even higher performance. Contrary to popular simplifications (present also in some academic texts,) not all CISCs are microcoded or have "complex" instructions. As CISC became a catch-all term meaning anything that's not a load–store (RISC) architecture, it's not
1610-472: A major change to the architecture referred to as X86S (formerly known as X86-S). The S in X86S stands for "simplification", which aims to remove support for legacy execution modes and instructions. A processor implementing this proposal would start execution directly in long mode and would only support 64-bit operating systems. 32-bit code would only be supported for user applications running in ring 3, and would use
1725-546: A memory location. However, this memory operand may also be the destination (or a combined source and destination), while the other operand, the source, can be either register or immediate. Among other factors, this contributes to a code size that rivals eight-bit machines and enables efficient use of instruction cache memory. The relatively small number of general registers (also inherited from its 8-bit ancestors) has made register-relative addressing (using small immediate offsets) an important method of accessing operands, especially on
1840-551: A more complex micro-op which fits the execution model better and thus can be executed faster or with fewer machine resources involved. Another way to try to improve performance is to cache the decoded micro-operations, so the processor can directly access the decoded micro-operations from a special cache, instead of decoding them again. Intel followed this approach with the Execution Trace Cache feature in their NetBurst microarchitecture (for Pentium 4 processors) and later in
1955-436: A plain 16-bit address. The term "x86" came into being because the names of several successors to Intel's 8086 processor end in "86", including the 80186 , 80286 , 80386 and 80486 . Colloquially, their names were "186", "286", "386" and "486". The term is not synonymous with IBM PC compatibility , as this implies a multitude of other computer hardware . Embedded systems and general-purpose computers used x86 chips before
2070-449: A processor which in many ways is reminiscent in structure to very early CPU designs. In the early 1970s, this gave rise to ideas to return to simpler processor designs in order to make it more feasible to cope without ( then relatively large and expensive) ROM tables and/or PLA structures for sequencing and/or decoding. An early (retroactively) RISC- labeled processor ( IBM 801 – IBM 's Watson Research Center, mid-1970s)
2185-736: A product that may last many years. To address this issue, the RISC-V Foundation was formed in 2015 to own, maintain, and publish intellectual property related to RISC-V's definition. The original authors and owners have surrendered their rights to the foundation. The foundation is led by CEO Calista Redmond , who took on the role in 2019 after leading open infrastructure projects at IBM . The founding members of RISC-V were: Andes, Antmicro, Bluespec, CEVA, Codasip, Cortus, Esperanto, Espressif, ETH Zurich, Google, IBM, ICT, IIT Madras, Lattice, lowRISC, Microchip, MIT (Csail), Qualcomm, Rambus, Rumble, SiFive, Syntacore and Technolution. In November 2019,
2300-539: A public-domain instruction set and are still supported by the GNU Compiler Collection (GCC), a popular free-software compiler. Three open-source cores exist for this ISA, but were never manufactured. OpenRISC , OpenPOWER , and OpenSPARC / LEON cores are offered, by a number of vendors, and have mainline GCC and Linux kernel support. Krste Asanović at the University of California, Berkeley , had
2415-446: A reorder buffer, is a RISC, while Minimal CISC has 8 instructions, but is clearly a CISC because it combines memory access and computation in the same instructions. RISC-V RISC-V (pronounced "risk-five" ) is an open standard instruction set architecture (ISA) based on established reduced instruction set computer (RISC) principles. The project began in 2010 at the University of California, Berkeley , transferred to
SECTION 20
#17328524297262530-527: A research requirement for an open-source computer system, and in 2010, he decided to develop and publish one in a "short, three-month project over the summer" with several of his graduate students. The plan was to aid both academic and industrial users. David Patterson at Berkeley joined the collaboration as he was the originator of the Berkeley RISC, and the RISC-V is the eponymous fifth generation of his long series of cooperative RISC-based research projects at
2645-491: A response to the successful 8080-compatible Zilog Z80 , the x86 line soon grew in features and processing power. Today, x86 is ubiquitous in both stationary and portable personal computers, and is also used in midrange computers , workstations , servers, and most new supercomputer clusters of the TOP500 list. A large amount of software , including a large list of x86 operating systems are using x86-based hardware. Modern x86
2760-415: A sequence of simpler instructions. One reason for this was that architects ( microcode writers) sometimes "over-designed" assembly language instructions, including features that could not be implemented efficiently on the basic hardware available. There could, for instance, be "side effects" (above conventional flags), such as the setting of a register or memory location that was perhaps seldom used; if this
2875-410: A series of academic computer-design projects, especially Berkeley RISC . RISC-V was originated in part to aid all such projects. To build a large, continuing community of users and thereby accumulate designs and software, the RISC-V ISA designers intentionally support a wide variety of practical use cases: compact, performance, and low-power real-world implementations without over-architecting for
2990-450: A simplified general-purpose computer, with full software support, including a general-purpose compiler. The standard extensions are specified to work with all of the standard bases, and with each other without conflict. Many RISC-V computers might implement the compressed instructions extension to reduce power consumption, code size, and memory use. There are also future plans to support hypervisors and virtualization . Together with
3105-639: A single instruction and also perform bitwise operations (although not integer arithmetic) on full 128-bits quantities in parallel. Intel's Sandy Bridge processors added the Advanced Vector Extensions (AVX) instructions, widening the SIMD registers to 256 bits. The Intel Initial Many Core Instructions implemented by the Knights Corner Xeon Phi processors, and the AVX-512 instructions implemented by
3220-411: Is a load–store architecture : instructions address only registers, with load and store instructions conveying data to and from memory. Most load and store instructions include a 12-bit offset and two register identifiers. One register is the base register. The other register is the destination (for a load) or the source (for a store). The offset is added to a base register to get the address. Forming
3335-537: Is a zero register , and the remainder are general-purpose registers. A store to the zero register has no effect, and a read always provides 0. Using the zero register as a placeholder makes for a simpler instruction set. Control and status registers exist, but user-mode programs can access only those used for performance measurement and floating-point management. No instructions exist to save and restore multiple registers. Those were thought to be needless, too complex, and perhaps too slow. Like many RISC designs, RISC-V
3450-451: Is absent, and 1.0 if all of a version number is absent. Thus RV64IMAFD may be written as RV64I1p0M1p0A1p0F1p0D1p0 or more simply as RV64I1M1A1F1D1 . Underscores may be used between extensions for readability, for example RV32I2_M2_A2 . The base, extended integer & floating-point calculations, with synchronization primitives for multi-core computing, are considered to be necessary for general-purpose computing, and thus we have
3565-420: Is addressed as 8-bit bytes, with instructions being in little-endian order, and with data being in the byte order defined by the execution environment interface in which code is running. Words, up to the register size, can be accessed with the load and store instructions. RISC-V was originally specified as little-endian to resemble other familiar, successful computers, for example, x86 . This also reduces
x86 - Misplaced Pages Continue
3680-469: Is allowed for almost all instructions. The largest native size for integer arithmetic and memory addresses (or offsets ) is 16, 32 or 64 bits depending on architecture generation (newer processors include direct support for smaller integers as well). Multiple scalar values can be handled simultaneously via the SIMD unit present in later generations, as described below. Immediate addressing offsets and immediate data may be expressed as 8-bit quantities for
3795-689: Is characterized by significantly improved or commercially successful processor microarchitecture designs. At various times, companies such as IBM , VIA , NEC , AMD , TI , STM , Fujitsu , OKI , Siemens , Cyrix , Intersil , C&T , NexGen , UMC , and DM&P started to design or manufacture x86 processors (CPUs) intended for personal computers and embedded systems. Other companies that designed or manufactured x86 or x87 processors include ITT Corporation , National Semiconductor , ULSI System Technology, and Weitek . Such x86 implementations were seldom simple copies but often employed different internal microarchitectures and different solutions at
3910-463: Is one of the two modes only available in long mode . The addressing modes were not dramatically changed from 32-bit mode, except that addressing was extended to 64 bits, virtual addresses are now sign extended to 64 bits (in order to disallow mode bits in virtual addresses), and other selector details were dramatically reduced. In addition, an addressing mode was added to allow memory references relative to RIP (the instruction pointer ), to ease
4025-586: Is relatively uncommon in embedded systems , however, and small low power applications (using tiny batteries), and low-cost microprocessor markets, such as home appliances and toys, lack significant x86 presence. Simple 8- and 16-bit based architectures are common here, as well as simpler RISC architectures like RISC-V , although the x86-compatible VIA C7 , VIA Nano , AMD 's Geode , Athlon Neo and Intel Atom are examples of 32- and 64-bit designs used in some relatively low-power and low-cost segments. There have been several attempts, including by Intel, to end
4140-491: Is used to form a memory address. In the original 8086 / 8088 / 80186 / 80188 every address was built from a segment register and one of the general purpose registers. For example ds:si is the notation for an address formed as [16 * ds + si] to allow 20-bit addressing rather than 16 bits, although this changed in later processors. At that time only certain combinations were supported. The FLAGS register contains flags such as carry flag , overflow flag and zero flag . Finally,
4255-453: The fstsw instruction, and it is common to simply use some of its bits for branching by copying it into the normal FLAGS. In the Intel 80286 , to support protected mode , three special registers hold descriptor table addresses (GDTR, LDTR, IDTR ), and a fourth task register (TR) is used for task switching. The 80287 is the floating-point coprocessor for the 80286 and has the same registers as
4370-516: The 6x86 was significantly faster than the Pentium on integer code. AMD later managed to grow into a serious contender with the K6 set of processors, which gave way to the very successful Athlon and Opteron . There were also other contenders, such as Centaur Technology (formerly IDT ), Rise Technology , and Transmeta . VIA Technologies ' energy efficient C3 and C7 processors, which were designed by
4485-488: The 80486 and all subsequent x86 models, the floating-point processing unit (FPU) is integrated on-chip. The Pentium MMX added eight 64-bit MMX integer vector registers (MM0 to MM7, which share lower bits with the 80-bit-wide FPU stack). With the Pentium III , Intel added a 32-bit Streaming SIMD Extensions (SSE) control/status register (MXCSR) and eight 128-bit SSE floating-point registers (XMM0 to XMM7). Starting with
4600-406: The 8088 and 80286 were still in common use, the term x86 usually represented any 8086-compatible CPU. Today, however, x86 usually implies binary compatibility with the 32-bit instruction set of the 80386 . This is due to the fact that this instruction set has become something of a lowest common denominator for many modern operating systems and also probably because the term became common after
4715-567: The AMD Opteron processor, the x86 architecture extended the 32-bit registers into 64-bit registers in a way similar to how the 16 to 32-bit extension took place. An R -prefix (for "register") identifies the 64-bit registers (RAX, RBX, RCX, RDX, RSI, RDI, RBP, RSP, RFLAGS, RIP), and eight additional 64-bit general registers (R8–R15) were also introduced in the creation of x86-64 . Also, eight more SSE vector registers (XMM8–XMM15) were added. However, these extensions are only usable in 64-bit mode, which
x86 - Misplaced Pages Continue
4830-631: The Centaur company, were sold for many years following their release in 2005. Centaur's 2008 design, the VIA Nano , was their first processor with superscalar and speculative execution . It was introduced at about the same time (in 2008) as Intel introduced the Intel Atom , its first "in-order" processor after the P5 Pentium . Many additions and extensions have been added to the original x86 instruction set over
4945-774: The Motorola 6800 , 6809 and 68000 families; the Intel 8080 , iAPX 432 , x86 and 8051 families; the Zilog Z80 , Z8 and Z8000 families; the National Semiconductor NS320xx family; the MOS Technology 6502 family; and others. Some designs have been regarded as borderline cases by some writers. For instance, the Microchip Technology PIC has been labeled RISC in some circles and CISC in others. Before
5060-459: The machine code format was expanded. To provide backward compatibility, segments with executable code can be marked as containing either 16-bit or 32-bit instructions. Special prefixes allow inclusion of 32-bit instructions in a 16-bit segment or vice versa. The 80386 had an optional floating-point coprocessor, the 80387 ; it had eight 80-bit wide registers: st(0) to st(7), like the 8087 and 80287. The 80386 could also use an 80287 coprocessor. With
5175-481: The trademarked compatibility logo. RISC-V has a modular design, consisting of alternative base parts, with added optional extensions. The ISA base and its extensions are developed in a collective effort between industry, the research community and educational institutions. The base specifies instructions (and their encoding), control flow, registers (and their sizes), memory and addressing, logic (i.e., integer) manipulation, and ancillaries. The base alone can implement
5290-511: The 1970s, analysis of high-level languages indicated compilers produced some complex corresponding machine language. It was determined that new instructions could improve performance. Some instructions were added that were never intended to be used in assembly language but fit well with compiled high-level languages. Compilers were updated to take advantage of these instructions. The benefits of semantically rich instructions with compact encodings can be seen in modern processors as well, particularly in
5405-546: The 486 designs from Intel , AMD , Cyrix , and IBM , supported every instruction that their predecessors did, but achieved maximum efficiency only on a fairly simple x86 subset that was only a little more than a typical RISC instruction set (i.e., without typical RISC load–store limits). The Intel P5 Pentium generation was a superscalar version of these principles. However, modern x86 processors also (typically) decode and split instructions into dynamic sequences of internally buffered micro-operations , which helps execute
5520-468: The 8087 with the same data formats. With the advent of the 32-bit 80386 processor, the 16-bit general-purpose registers, base registers, index registers, instruction pointer, and FLAGS register , but not the segment registers, were expanded to 32 bits. The nomenclature represented this by prefixing an " E " (for "extended") to the register names in x86 assembly language . Thus, the AX register corresponds to
5635-520: The CISC category . because they have "load-operate" instructions that load and/or store memory contents within the same instructions that perform the actual calculations. For instance, the PDP-8, having only 8 fixed-length instructions and no microcode at all, is a CISC because of how the instructions work, PowerPC, which has over 230 instructions (more than some VAXes), and complex internals like register renaming and
5750-621: The Decoded Stream Buffer (for Core-branded processors since Sandy Bridge). Transmeta used a completely different method in their Crusoe x86 compatible CPUs. They used just-in-time translation to convert x86 instructions to the CPU's native VLIW instruction set. Transmeta argued that their approach allows for more power efficient designs since the CPU can forgo the complicated decode step of more traditional x86 implementations. Addressing modes for 16-bit processor modes can be summarized by
5865-867: The Knights Landing Xeon Phi processors and by Skylake-X processors, use 512-bit wide SIMD registers. During execution , current x86 processors employ a few extra decoding steps to split most instructions into smaller pieces called micro-operations. These are then handed to a control unit that buffers and schedules them in compliance with x86-semantics so that they can be executed, partly in parallel, by one of several (more or less specialized) execution units . These modern x86 designs are thus pipelined , superscalar , and also capable of out of order and speculative execution (via branch prediction , register renaming , and memory dependence prediction ), which means they may execute multiple (partial or complete) x86 instructions simultaneously, and not necessarily in
SECTION 50
#17328524297265980-525: The PC-compatible market started , some of them before the IBM PC (1981) debut. As of June 2022, most desktop and laptop computers sold are based on the x86 architecture family, while mobile categories such as smartphones or tablets are dominated by ARM . At the high end, x86 continues to dominate computation-intensive workstation and cloud computing segments. In the 1980s and early 1990s, when
6095-479: The RISC instruction set DLX for the first edition of Computer Architecture: A Quantitative Approach in 1990 of which David Patterson was a co-author, and he later participated in the RISC-V origination. DLX was intended for educational use; academics and hobbyists implemented it using field-programmable gate arrays (FPGA), but it was never truly intended for commercial deployment. ARM CPUs, versions 2 and earlier, had
6210-427: The RISC philosophy became prominent, many computer architects tried to bridge the so-called semantic gap , i.e., to design instruction sets that directly support high-level programming constructs such as procedure calls, loop control, and complex addressing modes , allowing data structure and array accesses to be combined into single instructions. Instructions are also typically highly encoded in order to further enhance
6325-540: The RISC-V Foundation announced that it would relocate to Switzerland, citing concerns over U.S. trade regulations. As of March 2020, the organization was named RISC-V International, a Swiss nonprofit business association. As of 2019 , RISC-V International freely publishes the documents defining RISC-V and permits unrestricted use of the ISA for design of software and hardware. However, only members of RISC-V International can vote to approve changes, and only member organizations use
6440-456: The RISC-V Foundation in 2015, and on to RISC-V International, a Swiss non-profit entity, in November 2019. Like several other RISC ISAs, e.g. Amber (ARMv2) or OpenRISC , RISC-V is offered under royalty-free open-source licenses . The documents defining the RISC-V instruction set architecture (ISA) are offered under a Creative Commons license or a BSD License . Mainline support for RISC-V
6555-712: The University of California, Berkeley ( RISC-I and RISC-II published in 1981 by Patterson, who refers to the SOAR architecture from 1984 as "RISC-III" and the SPUR architecture from 1988 as "RISC-IV"). At this stage, students provided initial software, simulations, and CPU designs. The RISC-V authors and their institution originally sourced the ISA documents and several CPU designs under BSD licenses , which allow derivative works—such as RISC-V chip designs—to be either open and free, or closed and proprietary. The ISA specification itself (i.e.,
6670-467: The address as a base register plus offset allows single instructions to access data structures. For example, if the base register points to the top of a stack, single instructions can access a subroutine's local variables in the stack. Likewise the load and store instructions can access a record-style structure or a memory-mapped I/O device. Using the constant zero register as a base address allows single instructions to access memory near address zero. Memory
6785-434: The advanced but delayed 5k86 ( K5 ), which, internally, was closely based on AMD's earlier 29K RISC design; similar to NexGen 's Nx586 , it used a strategy such that dedicated pipeline stages decode x86 instructions into uniform and easily handled micro-operations , a method that has remained the basis for most x86 designs to this day. Some early versions of these microprocessors had heat dissipation problems. The 6x86
6900-438: The aim of higher throughput at lower cost and also allowed high-level language constructs to be expressed by fewer instructions, it was observed that this was not always the case. For instance, low-end versions of complex architectures (i.e. using less hardware) could lead to situations where it was possible to improve performance by not using a complex instruction (such as a procedure call or enter instruction) but instead using
7015-413: The art, had been planned for 2021; as of March 2022 the release had not taken place, however. The instruction set architecture has twice been extended to a larger word size. In 1985, Intel released the 32-bit 80386 (later known as i386) which gradually replaced the earlier 16-bit chips in computers (although typically not in embedded systems ) during the following years; this extended programming model
SECTION 60
#17328524297267130-440: The basic structure of RISC processors. The CDC 6600 supercomputer, first delivered in 1965, has also been retroactively described as RISC. It had a load–store architecture which allowed up to five loads and two stores to be in progress simultaneously under programmer control. It also had multiple function units which could operate at the same time. In a more modern context, the complex variable-length encoding used by some of
7245-621: The code density. The compact nature of such instruction sets results in smaller program sizes and fewer main memory accesses (which were often slow), which at the time (early 1960s and onwards) resulted in a tremendous saving on the cost of computer memory and disc storage, as well as faster execution. It also meant good programming productivity even in assembly language , as high level languages such as Fortran or Algol were not always available or appropriate. Indeed, microprocessors in this category are sometimes still programmed in assembly language for certain types of critical applications. In
7360-526: The code, although this is strongly mediated by the fast cache structures used in modern designs, as well as by other measures. Due to inherently compact and semantically rich instructions, the average amount of work performed per machine code unit (i.e. per byte or bit) is higher for a CISC than a RISC processor, which may give it a significant advantage in a modern cache-based implementation. Transistors for logic, PLAs, and microcode are no longer scarce resources; only large high-speed cache memories are limited by
7475-611: The corresponding YMM register. Complex instruction set computer Examples of CISC architectures include complex mainframe computers to simplistic microcontrollers where memory load and store operations are not separated from arithmetic instructions. Specific instruction set architectures that have been retroactively labeled CISC are System/360 through z/Architecture , the PDP-11 and VAX architectures, and many others. Well known microprocessors and microcontrollers that have also been labeled CISC in many academic publications include
7590-490: The cost of software by enabling far more reuse. It should also trigger increased competition among hardware providers, who can then devote more resources toward design and less for software support. The designers maintain that new principles are becoming rare in instruction set design, as the most successful designs of the last forty years have grown increasingly similar. Of those that failed, most did so because their sponsoring companies were financially unsuccessful, not because
7705-406: The costs of such a team, commercial vendors of processor intellectual property (IP), such as Arm Ltd. and MIPS Technologies , charge royalties for the use of their designs and patents . They also often require non-disclosure agreements before releasing documents that describe their designs' detailed advantages. In many cases, they never describe the reasons for their design choices. RISC-V
7820-412: The current ratified Unprivileged ISA Specification. The instruction set base is specified first, coding for RISC-V, the register bit-width, and the variant; e.g., RV64I or RV32E . Then follows letters specifying implemented extensions, in the order of the above table. Each letter may be followed by a major optionally followed by "p" and a minor option number. It defaults to 0 if a minor version number
7935-564: The electronic and physical levels. Quite naturally, early compatible microprocessors were 16-bit, while 32-bit designs were developed much later. For the personal computer market, real quantities started to appear around 1990 with i386 and i486 compatible processors, often named similarly to Intel's original chips. After the fully pipelined i486 , in 1993 Intel introduced the Pentium brand name (which, unlike numbers, could be trademarked ) for their new set of superscalar x86 designs. With
8050-548: The encoding of the instruction set) was published in 2011 as open source, with all rights reserved. The actual technical report (an expression of the specification) was later placed under a Creative Commons license to permit enhancement by external contributors through the RISC-V Foundation, and later RISC-V International. A full history of RISC-V has been published on the RISC-V International website. Commercial users require an ISA to be stable before they can use it in
8165-599: The endianness of the implementation is hardwired, or may be writable. An execution environment interface may allow accessed memory addresses not to be aligned to their word width, but accesses to aligned addresses may be faster; for example, simple CPUs may implement unaligned accesses with slow software emulation driven from an alignment failure interrupt . Like many RISC instruction sets (and some complex instruction set computer (CISC) instruction sets, such as x86 and IBM System/360 and its successors through z/Architecture ), RISC-V lacks address-modes that write back to
8280-401: The execution units with the decode steps opens up possibilities for more analysis of the (buffered) code stream, and therefore permits detection of operations that can be performed in parallel, simultaneously feeding more than one execution unit. The latest processors also do the opposite when appropriate; they combine certain x86 sequences (such as a compare followed by a conditional jump) into
8395-538: The first two actively produce modern 64-bit designs, leading to what has been called a "duopoly" of Intel and AMD in x86 processors. However, in 2014 the Shanghai-based Chinese company Zhaoxin , a joint venture between a Chinese company and VIA Technologies, began designing VIA based x86 processors for desktops and laptops. The release of its newest "7" family of x86 processors (e.g. KX-7000), which are not quite as fast as AMD or Intel chips but are still state of
8510-522: The formula: Addressing modes for 32-bit x86 processor modes can be summarized by the formula: Addressing modes for the 64-bit processor mode can be summarized by the formula: Instruction relative addressing in 64-bit code (RIP + displacement, where RIP is the instruction pointer register ) simplifies the implementation of position-independent code (as used in shared libraries in some operating systems). The 8086 had 64 KB of eight-bit (or alternatively 32 K-word of 16-bit ) I/O space, and
8625-399: The frequently occurring cases or contexts where a −128..127 range is enough. Typical instructions are therefore 2 or 3 bytes in length (although some are much longer, and some are single-byte). To further conserve encoding space, most registers are expressed in opcodes using three or four bits, the latter via an opcode prefix in 64-bit mode, while at most one operand to an instruction can be
8740-419: The high-performance segment where caches are a central component (as opposed to most embedded systems ). This is because these fast, but complex and expensive, memories are inherently limited in size, making compact code beneficial. Of course, the fundamental reason they are needed is that main memories (i.e., dynamic RAM today) remain slow compared to a (high-performance) CPU core. While many designs achieved
8855-495: The implementation of position-independent code , used in shared libraries in some operating systems. SIMD registers XMM0–XMM15 (XMM0–XMM31 when AVX-512 is supported). SIMD registers YMM0–YMM15 (YMM0–YMM31 when AVX-512 is supported). Lower half of each of the YMM registers maps onto the corresponding XMM register. SIMD registers ZMM0–ZMM31. Lower half of each of the ZMM registers maps onto
8970-407: The instruction pointer (IP) points to the next instruction that will be fetched from memory and then executed; this register cannot be directly accessed (read or written) by a program. The Intel 80186 and 80188 are essentially an upgraded 8086 or 8088 CPU, respectively, with on-chip peripherals added, and they have the same CPU registers as the 8086 and 8088 (in addition to interface registers for
9085-483: The instruction sets were technically poor. Thus, a well-designed open instruction set designed using well-established principles should attract long-term support by many vendors. RISC-V also encourages academic usage. The simplicity of the integer subset permits basic student exercises, and is a simple enough ISA to enable software to control research machines. The variable-length ISA provides room for instruction set extensions for both student exercises and research, and
9200-440: The introduction of the 80386 in 1985. A few years after the introduction of the 8086 and 8088, Intel added some complexity to its naming scheme and terminology as the "iAPX" of the ambitious but ill-fated Intel iAPX 432 processor was tried on the more successful 8086 family of chips, applied as a kind of system-level prefix. An 8086 system, including coprocessors such as 8087 and 8089 , and simpler Intel-specific system chips,
9315-610: The loads and stores. They set the upper 16 bits by a load upper word instruction. This permits upper-halfword values to be set easily, without shifting bits. However, most use of the upper half-word instruction makes 32-bit constants, like addresses. RISC-V uses a SPARC -like combination of 12-bit offsets and 20-bit set upper instructions. The smaller 12-bit offset helps compact, 32-bit load and store instructions select two of 32 registers yet still have enough bits to support RISC-V's variable-length instruction coding. RISC-V handles 32-bit constants and addresses with instructions that set
9430-447: The lower 16 bits of the new 32-bit EAX register, SI corresponds to the lower 16 bits of ESI, and so on. The general-purpose registers, base registers, and index registers can all be used as the base in addressing modes, and all of those registers except for the stack pointer can be used as the index in addressing modes. Two new segment registers (FS and GS) were added. With a greater number of registers, instructions and operands,
9545-591: The market dominance of the "inelegant" x86 architecture designed directly from the first simple 8-bit microprocessors. Examples of this are the iAPX 432 (a project originally named the Intel 8800 ), the Intel 960 , Intel 860 and the Intel/Hewlett-Packard Itanium architecture. However, the continuous refinement of x86 microarchitectures , circuitry and semiconductor manufacturing would make it hard to replace x86 in many segments. AMD's 64-bit extension of x86 (which Intel eventually responded to with
9660-462: The maximum number of transistors today. Although complex, the transistor count of CISC decoders do not grow exponentially like the total number of transistors per processor (the majority typically used for caches). Together with better tools and enhanced technologies, this has led to new implementations of highly encoded and variable-length designs without load–store limitations (i.e. non-RISC). This governs re-implementations of older architectures such as
9775-468: The name EM64T and finally using Intel 64. Microsoft and Sun Microsystems / Oracle also use term "x64", while many Linux distributions , and the BSDs also use the "amd64" term. Microsoft Windows, for example, designates its 32-bit versions as "x86" and 64-bit versions as "x64", while installation files of 64-bit Windows versions are required to be placed into a directory called "AMD64". In 2023, Intel proposed
9890-444: The number of instructions, nor the complexity of the implementation or of the instructions, that define CISC, but that arithmetic instructions also perform memory accesses. Compared to a small 8-bit CISC processor, a RISC floating-point instruction is complex. CISC does not even need to have complex addressing modes; 32- or 64-bit RISC processors may well have more complex addressing modes than small 8-bit CISC processors. A PDP-10 ,
10005-456: The part of the processor designer in cases where a simpler, but (typically) slower, solution based on decode tables and/or microcode sequencing is not appropriate. At a time when transistors and other components were a limited resource, this also left fewer components and less opportunity for other types of performance optimizations. The circuitry that performs the actions defined by the microcode in many (but not all) CISC processors is, in itself,
10120-452: The peripherals). The 8086, 8088, 80186, and 80188 can use an optional floating-point coprocessor, the 8087 . The 8087 appears to the programmer as part of the CPU and adds eight 80-bit wide registers, st(0) to st(7), each of which can hold numeric data in one of seven formats: 32-, 64-, or 80-bit floating point, 16-, 32-, or 64-bit (binary) integer, and 80-bit packed decimal integer. It also has its own 16-bit status register accessible through
10235-425: The prefix. They should be specified after all standard extensions, and if multiple non-standard extensions are listed, they should be listed alphabetically. Profiles and platforms for standard ISA choice lists are under discussion. ... This flexibility can be used to highly optimize a specialized design by including only the exact set of ISA features required for an application, but the same flexibility also leads to
10350-430: The registers. For example, it does not auto-increment. RISC-V manages memory systems that are shared between CPUs or threads by ensuring a thread of execution always sees its memory operations in the programmed order. But between threads and I/O devices, RISC-V is simplified: it doesn't guarantee the order of memory operations, except by specific instructions, such as fence . A fence instruction guarantees that
10465-571: The results of predecessor operations are visible to successor operations of other threads or I/O devices. fence can guarantee the order of combinations of both memory and memory-mapped I/O operations. E.g. it can separate memory read and write operations, without affecting I/O operations. Or, if a system can operate I/O devices in parallel with memory, fence doesn't force them to wait for each other. One CPU with one thread may decode fence as nop . Some RISC CPUs (such as MIPS , PowerPC , DLX , and Berkeley's RISC-I) place 16 bits of offset in
10580-417: The same order as given in the instruction stream. Some Intel CPUs ( Xeon Foster MP , some Pentium 4 , and some Nehalem and later Intel Core processors) and AMD CPUs (starting from Zen ) are also capable of simultaneous multithreading with two threads per core ( Xeon Phi has four threads per core). Some Intel CPUs support transactional memory ( TSX ). When introduced, in the mid-1990s, this method
10695-441: The same simplified segmentation as long mode. The x86 architecture is a variable instruction length, primarily " CISC " design with emphasis on backward compatibility . The instruction set is not typical CISC, however, but basically an extended version of the simple eight-bit 8008 and 8080 architectures. Byte-addressing is enabled and words are stored in memory with little-endian byte order. Memory access to unaligned addresses
10810-424: The same way using "S" for prefix. Extensions specific to hypervisor level are named using "H" for prefix. Machine level extensions are prefixed with the three letters "Zxm". Supervisor, hypervisor and machine level instruction set extensions are named after less privileged extensions. RISC-V developers may create their own non-standard instruction set extensions. These follow the "Z" naming convention, but with "X" as
10925-528: The same. The first letter following the "Z" by convention indicates the most closely related alphabetical extension category, IMAFDQLCBJTPVN . Thus the Zam extension for misaligned atomics relates to the "A" standard extension. Unlike single character extensions, Z extensions must be separated by underscores, grouped by category and then alphabetically within each category. For example, Zicsr_Zifencei_Zam . Extensions specific to supervisor privilege level are named in
11040-506: The separated privileged instruction set permits research in operating system support without redesigning compilers. RISC-V's open intellectual property paradigm allows derivative designs to be published, reused, and modified. The term RISC dates from about 1980. Before then, there was some knowledge (see John Cocke ) that simpler computers can be effective, but the design principles were not widely described. Simple, effective computers have always been of academic interest, and resulted in
11155-470: The shorthand, "G". A small 32-bit computer for an embedded system might be RV32EC . A large 64-bit computer might be RV64GC ; i.e., RV64IMAFDCZicsr_Zifencei . With the growth in the number of extensions, the standard now provides for extensions to be named by a single "Z" followed by an alphabetical name and an optional version number. For example, Zifencei names the instruction-fetch extension. Zifencei2 and Zifencei2p0 name version 2.0 of
11270-603: The sign bit of immediate values to speed up sign extension . The instruction set is designed for a wide range of uses. The base instruction set has a fixed length of 32-bit naturally aligned instructions, and the ISA supports variable length extensions where each instruction can be any number of 16-bit parcels in length. Extensions support small embedded systems , personal computers , supercomputers with vector processors, and warehouse-scale parallel computers . The instruction set specification defines 32-bit and 64-bit address space variants. The specification includes
11385-454: The stack. Much work has therefore been invested in making such accesses as fast as register accesses—i.e., a one cycle instruction throughput, in most circumstances where the accessed data is available in the top-level cache. A dedicated floating-point processor with 80-bit internal registers, the 8087 , was developed for the original 8086 . This microprocessor subsequently developed into the extended 80387 , and later processors incorporated
11500-533: The supervisor extension, S, an RVGC instruction set, which includes one of the RV base instruction sets, the G collection of extensions (which includes "I", meaning that the base is non-embedded), and the C extension, defines all instructions needed to conveniently support a general purpose operating system . To name the combinations of functions that may be implemented, a nomenclature is defined to specify them in Chapter 27 of
11615-414: The typical CISC architectures makes it complicated, but still feasible, to build a superscalar implementation of a CISC programming model directly ; the in-order superscalar original Pentium and the out-of-order superscalar Cyrix 6x86 are well-known examples of this. The frequent memory accesses for operands of a typical CISC machine may limit the instruction-level parallelism that can be extracted from
11730-464: The ubiquitous x86 (see below) as well as new designs for microcontrollers for embedded systems , and similar uses. The superscalar complexity in the case of modern x86 was solved by converting instructions into one or more micro-operations and dynamically issuing those micro-operations, i.e. indirect and dynamic superscalar execution; the Pentium Pro and AMD K5 are early examples of this. It allows
11845-512: The user-space ISA and version 1.11 of the privileged ISA are frozen , permitting software and hardware development to proceed. The user-space ISA, now renamed the Unprivileged ISA, was updated, ratified and frozen as version 20191213. An external debug specification is available as a draft, version 0.13.2. CPU design requires design expertise in several specialties: electronic digital logic , compilers , and operating systems . To cover
11960-515: The various terms used in this platform specification. The platform policy also provides the needed detail regarding the scope, coverage, naming, versioning, structure, life cycle and compatibility claims for the platform specification. RISC-V has 32 integer registers (or 16 in the embedded variant), and when the floating-point extension is implemented, an additional 32 floating-point registers. Except for memory access instructions, instructions address only registers . The first integer register
12075-490: The x86 naming scheme now legally cleared, other x86 vendors had to choose different names for their x86-compatible products, and initially some chose to continue with variations of the numbering scheme: IBM partnered with Cyrix to produce the 5x86 and then the very efficient 6x86 (M1) and 6x86 MX ( MII ) lines of Cyrix designs, which were the first x86 microprocessors implementing register renaming to enable speculative execution . AMD meanwhile designed and manufactured
12190-476: The years, almost consistently with full backward compatibility . The architecture family has been implemented in processors from Intel, Cyrix , AMD , VIA Technologies and many other companies; there are also open implementations, such as the Zet SoC platform (currently inactive). Nevertheless, of those, only Intel, AMD, VIA Technologies, and DM&P Electronics hold x86 architectural licenses, and from these, only
12305-458: Was a tightly pipelined simple machine originally intended to be used as an internal microcode kernel, or engine, in CISC designs, but also became the processor that introduced the RISC idea to a somewhat larger audience. Simplicity and regularity also in the visible instruction set would make it easier to implement overlapping processor stages ( pipelining ) at the machine code level (i.e. the level seen by compilers). However, pipelining at that level
12420-607: Was added to the Linux 5.17 kernel, in 2022, along with its toolchain . In July 2023, RISC-V, in its 64-bit variant called riscv64, was included as an official architecture of Linux distribution Debian , in its unstable version. The goal of this project was "to have Debian ready to install and run on systems implementing a variant of the RISC-V ISA." Some RISC-V International members, such as SiFive , Andes Technology , Synopsys , Alibaba's Damo Academy , Raspberry Pi , and Akeana, are offering or have announced commercial systems on
12535-403: Was already used in some high-performance CISC "supercomputers" in order to reduce the instruction cycle time (despite the complications of implementing within the limited component count and wiring complexity feasible at the time). Internal microcode execution in CISC processors, on the other hand, could be more or less pipelined depending on the particular design, and therefore more or less akin to
12650-530: Was also affected by a few minor compatibility problems, the Nx586 lacked a floating-point unit (FPU) and (the then crucial) pin-compatibility, while the K5 had somewhat disappointing performance when it was (eventually) introduced. Customer ignorance of alternatives to the Pentium series further contributed to these designs being comparatively unsuccessful, despite the fact that the K5 had very good Pentium compatibility and
12765-402: Was begun with a goal to make a practical ISA that was open-sourced, usable academically, and deployable in any hardware or software design without royalties. Also, justifying rationales for each design decision of the project are explained, at least in broad terms. The RISC-V authors are academics who have substantial experience in computer design, and the RISC-V ISA is a direct development from
12880-406: Was done via ordinary (non duplicated) internal buses, or even the external bus, it would demand extra cycles every time, and thus be quite inefficient. Even in balanced high-performance designs, highly encoded and (relatively) high-level instructions could be complicated to decode and execute efficiently within a limited transistor budget. Such architectures therefore required a great deal of work on
12995-403: Was originally referred to as the i386 architecture (like its first implementation) but Intel later dubbed it IA-32 when introducing its (unrelated) IA-64 architecture. In 1999–2003, AMD extended this 32-bit architecture to 64 bits and referred to it as x86-64 in early documents and later as AMD64 . Intel soon adopted AMD's architectural extensions under the name IA-32e, later using
13110-436: Was sometimes referred to as a "RISC core" or as "RISC translation", partly for marketing reasons, but also because these micro-operations share some properties with certain types of RISC instructions. However, traditional microcode (used since the 1950s) also inherently shares many of the same properties; the new method differs mainly in that the translation to micro-operations now occurs asynchronously. Not having to synchronize
13225-473: Was thereby described as an iAPX 86 system. There were also terms iRMX (for operating systems), iSBC (for single-board computers), and iSBX (for multimodule boards based on the 8086-architecture), all together under the heading Microsystem 80 . However, this naming scheme was quite temporary, lasting for a few years during the early 1980s. Although the 8086 was primarily developed for embedded systems and small multi-user or single-user computers, largely as
#725274