126-549: The Magellan spacecraft was a 1,035-kilogram (2,282 lb) robotic space probe launched by NASA on May 4, 1989. Its mission objectives were to map the surface of Venus by using synthetic-aperture radar and to measure the planetary gravitational field . The Magellan probe was the first interplanetary mission to be launched from the Space Shuttle , the first one to use the Inertial Upper Stage booster, and
252-479: A Northern-swath , a region designated as 90 degrees north latitude to 54 degrees south latitude, and a Southern-swath , designated as 76 degrees north latitude to 68 degrees south latitude. However, due to periapsis being 10 degrees north of the equatorial line, imaging the South Pole region was unlikely. The primary mission began on September 15, 1990, with the intention to provide a "left-looking" map of 70% of
378-580: A 58-centimeter (23 in) sphere which weighed 83.6 kilograms (184 lb). Explorer 1 carried sensors which confirmed the existence of the Van Allen belts, a major scientific discovery at the time, while Sputnik 1 carried no scientific sensors. On 17 March 1958, the US orbited its second satellite, Vanguard 1 , which was about the size of a grapefruit, and which remains in a 670-by-3,850-kilometre (360 by 2,080 nmi) orbit as of 2016 . The first attempted lunar probe
504-522: A considerable amount of time, is to follow a trajectory on the Interplanetary Transport Network . A space telescope or space observatory is a telescope in outer space used to observe astronomical objects. Space telescopes avoid the filtering and distortion of electromagnetic radiation which they observe, and avoid light pollution which ground-based observatories encounter. They are divided into two types: satellites which map
630-415: A degree comparable to the visible-light photographic mapping of other planets. Magellan 's global radar map currently remains as the most detailed Venus map in existence, although the upcoming NASA VERITAS and Roskosmos Venera-D probes will carry a radar that can achieve a much higher resolution compared to the radar used by Magellan . Both probes are expected to launch in 2029. The Magellan project
756-549: A descent through that atmosphere towards an intended/targeted region of scientific value, and a safe landing that guarantees the integrity of the instrumentation on the craft is preserved. While the robotic spacecraft is going through those parts, it must also be capable of estimating its position compared to the surface in order to ensure reliable control of itself and its ability to maneuver well. The robotic spacecraft must also efficiently perform hazard assessment and trajectory adjustments in real time to avoid hazards. To achieve this,
882-402: A ground station. The attitude control algorithms are written and implemented based on requirement for a particular attitude maneuver. Asides the implementation of passive attitude control such as the gravity-gradient stabilization , most spacecraft make use of active control which exhibits a typical attitude control loop. The design of the control algorithm depends on the actuator to be used for
1008-622: A liquid-fueled, Centaur G upper-stage booster, carried in the cargo bay of the Space Shuttle. However, the entire Centaur G program was canceled after the Challenger disaster, and the Magellan probe had to be modified to be attached to the less-powerful Inertial Upper Stage . The next best opportunity for launching occurred in October 1989. Further complicating the launch however, was the launching of
1134-440: A long-duration mission by producing control moments without fuel expenditure. For example, Mariner 10 adjusted its attitude using its solar cells and antennas as small solar sails. In orbit, a spacecraft with one axis much longer than the other two will spontaneously orient so that its long axis points at the planet's center of mass. This system has the virtue of needing no active control system or expenditure of fuel. The effect
1260-404: A method known as synthetic aperture , where a large antenna is imitated by processing the information gathered by ground computers. The Magellan high-gain parabolic antenna , oriented 28°–78° to the right or left of nadir , emitted thousands of microwave pulses per second that passed through the clouds and to the surface of Venus, illuminating a swath of land. The Radar System then recorded
1386-491: A minimum of three reaction wheels must be used, with additional units providing single failure protection. See Euler angles . These are rotors spun at constant speed, mounted on gimbals to provide attitude control. Although a CMG provides control about the two axes orthogonal to the gyro spin axis, triaxial control still requires two units. A CMG is a bit more expensive in terms of cost and mass, because gimbals and their drive motors must be provided. The maximum torque (but not
SECTION 10
#17328558682351512-426: A phenomenon known as Gimbal lock . A rotation matrix, on the other hand, provides a full description of the attitude at the expense of requiring nine values instead of three. The use of a rotation matrix can lead to increased computational expense and they can be more difficult to work with. Quaternions offer a decent compromise in that they do not suffer from gimbal lock and only require four values to fully describe
1638-433: A positively charged atom. The positively charged ions are guided to pass through positively charged grids that contains thousands of precise aligned holes are running at high voltages. Then, the aligned positively charged ions accelerates through a negative charged accelerator grid that further increases the speed of the ions up to 40 kilometres per second (90,000 mph). The momentum of these positively charged ions provides
1764-611: A pre-programmed list of operations that will be executed unless otherwise instructed. A robotic spacecraft for scientific measurements is often called a space probe or space observatory . Many space missions are more suited to telerobotic rather than crewed operation, due to lower cost and risk factors. In addition, some planetary destinations such as Venus or the vicinity of Jupiter are too hostile for human survival, given current technology. Outer planets such as Saturn , Uranus , and Neptune are too distant to reach with current crewed spaceflight technology, so telerobotic probes are
1890-540: A thrust of ~89 kN (20,000 lbf) shortly after firing; therefore, even a 0.5% SRM alignment error could generate side forces of 445 N (100 lbf). Final conservative estimates of worst-case side forces resulted in the need for eight 445 N thrusters, two in each quadrant, located out on booms at the maximum radius that the Space Shuttle Orbiter Payload Bay would accommodate (4.4-m or 14.5-ft diameter). The actual propulsion system design consisted of
2016-423: A total of 24 monopropellant hydrazine thrusters fed from a single 71cm (28 in) diameter titanium tank. The tank contained 133 kg (293 lb) of purified hydrazine. The design also included a pyrotechnically-isolated external high pressure tank with additional helium that could be connected to the main tank prior to the critical Venus orbit insertion burn to ensure maximum thrust from the 445 N thrusters during
2142-441: A variety of reasons. It is often needed so that the spacecraft high-gain antenna may be accurately pointed to Earth for communications, so that onboard experiments may accomplish precise pointing for accurate collection and subsequent interpretation of data, so that the heating and cooling effects of sunlight and shadow may be used intelligently for thermal control, and also for guidance: short propulsive maneuvers must be executed in
2268-511: Is a device that senses the direction to the Sun . This can be as simple as some solar cells and shades, or as complex as a steerable telescope , depending on mission requirements. An Earth sensor is a device that senses the direction to Earth . It is usually an infrared camera ; nowadays the main method to detect attitude is the star tracker , but Earth sensors are still integrated in satellites for their low cost and reliability. A star tracker
2394-498: Is aerodynamic stabilization. This is achieved using a drag gradient, as demonstrated on the Get Away Special Passive Attitude Control Satellite (GASPACS) technology demonstration. In low Earth orbit, the force due to drag is many orders of magnitude more dominant than the force imparted due to gravity gradients. When a satellite is utilizing aerodynamic passive attitude control, air molecules from
2520-426: Is an optical device that measures the position(s) of star (s) using photocell (s) or a camera. It uses magnitude of brightness and spectral type to identify and then calculate the relative position of stars around it. A magnetometer is a device that senses magnetic field strength and, when used in a three-axis triad, magnetic field direction. As a spacecraft navigational aid, sensed field strength and direction
2646-502: Is based on the measurement of the rate of change of body-fixed magnetometer signals. where m {\displaystyle m} is the commanded magnetic dipole moment of the magnetic torquer and K {\displaystyle K} is the proportional gain and B ˙ {\displaystyle {\dot {B}}} is the rate of change of the Earth's magnetic field. Spacecraft attitude determination
SECTION 20
#17328558682352772-440: Is caused by a tidal force . The upper end of the vehicle feels less gravitational pull than the lower end. This provides a restoring torque whenever the long axis is not co-linear with the direction of gravity. Unless some means of damping is provided, the spacecraft will oscillate about the local vertical. Sometimes tethers are used to connect two parts of a satellite, to increase the stabilizing torque. A problem with such tethers
2898-401: Is compared to a map of Earth's magnetic field stored in the memory of an on-board or ground-based guidance computer. If spacecraft position is known then attitude can be inferred. Attitude cannot be measured directly by any single measurement, and so must be calculated (or estimated ) from a set of measurements (often using different sensors). This can be done either statically (calculating
3024-441: Is increased fuel consumption or it is a physical hazard such as a poor landing spot in a crater or cliff side that would make landing very not ideal (hazard assessment). In planetary exploration missions involving robotic spacecraft, there are three key parts in the processes of landing on the surface of the planet to ensure a safe and successful landing. This process includes an entry into the planetary gravity field and atmosphere,
3150-406: Is most common reacts to an error signal (deviation) based on attitude as follows where T c {\displaystyle T_{c}} is the control torque, e {\displaystyle e} is the attitude deviation signal, and K p , K i , K d {\displaystyle K_{\text{p}},K_{\text{i}},K_{\text{d}}} are
3276-457: Is not one universally used propulsion system: monopropellant, bipropellant, ion propulsion, etc. Each propulsion system generates thrust in slightly different ways with each system having its own advantages and disadvantages. But, most spacecraft propulsion today is based on rocket engines. The general idea behind rocket engines is that when an oxidizer meets the fuel source, there is explosive release of energy and heat at high speeds, which propels
3402-483: Is placed in space. (For some applications such as in robotics and computer vision, it is customary to combine position and attitude together into a single description known as Pose .) Attitude can be described using a variety of methods; however, the most common are Rotation matrices , Quaternions , and Euler angles . While Euler angles are oftentimes the most straightforward representation to visualize, they can cause problems for highly-maneuverable systems because of
3528-418: Is that meteoroids as small as a grain of sand can part them. Coils or (on very small satellites) permanent magnets exert a moment against the local magnetic field. This method works only where there is a magnetic field against which to react. One classic field "coil" is actually in the form of a conductive tether in a planetary magnetic field. Such a conductive tether can also generate electrical power, at
3654-402: Is the process of controlling the orientation of a spacecraft (vehicle or satellite) with respect to an inertial frame of reference or another entity such as the celestial sphere , certain fields, and nearby objects, etc. Controlling vehicle attitude requires actuators to apply the torques needed to orient the vehicle to a desired attitude, and algorithms to command the actuators based on
3780-617: Is the process of determining the orientation of a spacecraft (vehicle or satellite). It is a pre-requisite for spacecraft attitude control. A variety of sensors are utilized for relative and absolute attitude determination. Many sensors generate outputs that reflect the rate of change in attitude. These require a known initial attitude, or external information to use them to determine attitude. Many of this class of sensor have some noise, leading to inaccuracies if not corrected by absolute attitude sensors. Gyroscopes are devices that sense rotation in three-dimensional space without reliance on
3906-419: Is the same as that of monopropellant propulsion system: very dangerous to manufacture, store, and transport. An ion propulsion system is a type of engine that generates thrust by the means of electron bombardment or the acceleration of ions. By shooting high-energy electrons to a propellant atom (neutrally charge), it removes electrons from the propellant atom and this results in the propellant atom becoming
Magellan (spacecraft) - Misplaced Pages Continue
4032-403: Is thought have hit the surface by 20:00:00 UTC. Communication with the Magellan spacecraft was lost early Wednesday morning, following an aggressive series of five Orbit Trim Maneuvers (OTMs) on Tuesday, October 11, which took the orbit down into the upper atmosphere of Venus. The Termination experiment (extension of September "Windmill" experiment) design was expected to result in final loss of
4158-426: Is unique because it requires no ignition system, the two liquids would spontaneously combust as soon as they come into contact with each other and produces the propulsion to push the spacecraft forward. The main benefit for having this technology is because that these kinds of liquids have relatively high density, which allows the volume of the propellent tank to be small, therefore increasing space efficacy. The downside
4284-552: The Sun similar to the Earth's orbit. To reach another planet, the simplest practical method is a Hohmann transfer orbit . More complex techniques, such as gravitational slingshots , can be more fuel-efficient, though they may require the probe to spend more time in transit. Some high Delta-V missions (such as those with high inclination changes ) can only be performed, within the limits of modern propulsion, using gravitational slingshots. A technique using very little propulsion, but requiring
4410-645: The Deep Space Network , the spacecraft was able to simultaneously receive commands at 1.2 kilobits /second in the S-band and transmit data at 268.8 kilobits/second in the X-band . Magellan was powered by two square solar arrays , each measuring 2.5 meters across. Together, the arrays supplied 1,200 watts of power at the beginning of the mission. However, over the course of the mission the solar arrays gradually degraded due to frequent, extreme temperature changes. To power
4536-598: The Galileo mission to Jupiter, one that included a fly-by of Venus. Intended for launch in 1986, the pressures to ensure a launch for Galileo in 1989, mixed with a short launch-window necessitating a mid-October launch, resulted in replanning the Magellan mission. Wary of rapid shuttle launches, the decision was made to launch Magellan in May, and into an orbit that would require one year, three months, before encountering Venus. On August 10, 1990, Magellan encountered Venus and began
4662-777: The International Space Station (ISS), and the Tiangong space station . Currently, the ISS relies on three types of cargo spacecraft: the Russian Progress , along with the American Cargo Dragon 2 , and Cygnus . China's Tiangong space station is solely supplied by the Tianzhou . The American Dream Chaser and Japanese HTV-X are under development for future use with the ISS. The European Automated Transfer Vehicle
4788-587: The National Aeronautics and Space Administration from KSC Launch Complex 39B at the Kennedy Space Center in Florida, aboard Space Shuttle Atlantis during mission STS-30 . Once in orbit, the Magellan and its attached Inertial Upper Stage booster were deployed from Atlantis and launched on May 5, 1989 01:06:00 UTC, sending the spacecraft into a Type IV heliocentric orbit where it would circle
4914-530: The Sun 1.5 times, before reaching Venus 15 months later on August 10, 1990. Originally, the Magellan had been scheduled for launch in 1988 with a trajectory lasting six months. However, due to the Space Shuttle Challenger disaster in 1986, several missions, including Galileo and Magellan , were deferred until shuttle flights resumed in September 1988. Magellan was planned to be launched with
5040-470: The United States Air Force considers a vehicle to consist of the mission payload and the bus (or platform). The bus provides physical structure, thermal control, electrical power, attitude control and telemetry, tracking and commanding. JPL divides the "flight system" of a spacecraft into subsystems. These include: The physical backbone structure, which This is sometimes referred to as
5166-447: The telecommunications subsystem include radio antennas, transmitters and receivers. These may be used to communicate with ground stations on Earth, or with other spacecraft. The supply of electric power on spacecraft generally come from photovoltaic (solar) cells or from a radioisotope thermoelectric generator . Other components of the subsystem include batteries for storing power and distribution circuitry that connects components to
Magellan (spacecraft) - Misplaced Pages Continue
5292-414: The "Windmill experiment". During the experiment, the spacecraft was oriented with the solar arrays broadly perpendicular to the orbital path, where they could act as paddles as they impacted molecules of the upper-Venusian atmosphere. Countering this force, the thrusters fired to keep the spacecraft from spinning. This provided data on the basic oxygen gas-surface interaction. This was useful for understanding
5418-507: The 3.7-meter parabolic, high-gain antenna and a small fan-beam antenna , located just to the side. – In the Synthetic Aperture Radar mode, the instrument transmitted several thousand long-wave, 12.6-centimeter microwave pulses every second through the high-gain antenna, while measuring the doppler shift of each hitting the surface. – In Altimetry mode, the instrument interleaved pulses with SAR, and operating similarly with
5544-473: The Deputy Project Scientist; research assistants Tim Parker, Dr. Jeff Plaut , and Annette deCharon; and Project Science Aide, Gregory Michaels. Other Magellan scientists were involved with the mission's science including principal investigators and three visiting Soviet scientists. On September 9, 1994, a press release outlined the termination of the Magellan mission. Due to the degradation of
5670-465: The Earth was restored and the tapes were played back. Thick and opaque, the atmosphere of Venus required a method beyond optical survey, to map the surface of the planet. The resolution of conventional radar depends entirely on the size of the antenna, which is greatly restricted by costs, physical constraints by launch vehicles and the complexity of maneuvering a large apparatus to provide high resolution data. Magellan addressed this problem by using
5796-437: The Earth's upper atmosphere strike the satellite in such a way that the center of pressure remains behind the center of mass, similar to how the feathers on an arrow stabilize the arrow. GASPACS utilized a 1 m inflatable 'AeroBoom', which extended behind the satellite, creating a stabilizing torque along the satellite's velocity vector. Control algorithms are computer programs that receive data from vehicle sensors and derive
5922-640: The Moon two years later. The first interstellar probe was Voyager 1 , launched 5 September 1977. It entered interstellar space on 25 August 2012, followed by its twin Voyager 2 on 5 November 2018. Nine other countries have successfully launched satellites using their own launch vehicles: France (1965), Japan and China (1970), the United Kingdom (1971), India (1980), Israel (1988), Iran (2009), North Korea (2012), and South Korea (2022). In spacecraft design,
6048-406: The Moon; travel through interplanetary space; flyby, orbit, or land on other planetary bodies; or enter interstellar space. Space probes send collected data to Earth. Space probes can be orbiters, landers, and rovers. Space probes can also gather materials from its target and return it to Earth. Once a probe has left the vicinity of Earth, its trajectory will likely take it along an orbit around
6174-470: The NASA headquarters. For JPL, Douglas Griffith served as the Magellan project manager and R. Stephen Saunders served as the lead project scientist. Hughes Aircraft Company 's Space and Communications Group designed and built the spacecraft's synthetic aperture radar. To save costs, most of the Magellan probe was made up of flight spare parts and reused design elements from other spacecraft: The main body of
6300-458: The PID controller parameters. A simple implementation of this can be the application of the proportional control for nadir pointing making use of either momentum or reaction wheels as actuators. Based on the change in momentum of the wheels, the control law can be defined in 3-axes x, y, z as This control algorithm also affects momentum dumping. Another important and common control algorithm involves
6426-543: The Radar Data Processing Subsystem (RDPS), a collection of ground computers operated by JPL. In addition to the radar data, Magellan collected several other types of scientific measurements. These included detailed measurements of the Venus gravitational field, measurements of the atmospheric density, and radio occultation data on the atmospheric profile. Magellan was launched on May 4, 1989, at 18:46:59 UTC by
SECTION 50
#17328558682356552-449: The SRM a much easier task. In a typical spin mode, any unwanted forces related to SRM or nozzle mis-alignments are cancelled out. In the case of Magellan , the spacecraft design did not lend itself to spinning, so the resulting propulsion system design had to accommodate the challenging control issues with the large Star 48B SRM. The Star 48B, containing 2,014 kg of solid propellant, developed
6678-554: The SRM firing. Other hardware regarding orientation of the spacecraft consists of a set of gyroscopes and a star scanner . For communications, the spacecraft included a lightweight graphite/aluminum, 3.7-meter high-gain antenna left over from the Voyager Program and a medium-gain antenna spare from the Mariner 9 mission. A low-gain antenna attached to the high-gain antenna was also included for contingencies. When communicating with
6804-566: The Soviet Venera 4 was the first atmospheric probe to study Venus. Mariner 4 's 1965 Mars flyby snapped the first images of its cratered surface, which the Soviets responded to a few months later with images from on its surface from Luna 9 . In 1967, America's Surveyor 3 gathered information about the Moon's surface that would prove crucial to the Apollo 11 mission that landed humans on
6930-472: The Sun so they can provide electrical power to the spacecraft. Cassini ' s main engine nozzles were steerable. Knowing where to point a solar panel, or scan platform, or a nozzle — that is, how to articulate it — requires knowledge of the spacecraft's attitude. Because a single subsystem keeps track of the spacecraft's attitude, the Sun's location, and Earth's location, it can compute the proper direction to point
7056-477: The Venusian surface at a minimum resolution of 1-kilometer/ pixel . During cycle 1, the altitude of the spacecraft varied from 2000-kilometers at the north pole, to 290-kilometers near periapsis. Upon completion during May 15, 1991, having made 1,792 orbits, Magellan had mapped approximately 83.7% of the surface with a resolution between 101 and 250-meters/pixel. Beginning immediately after the end of cycle 1, cycle 2
7182-634: The aeronautical field, such as: This class of sensors sense the position or orientation of fields, objects or other phenomena outside the spacecraft. A horizon sensor is an optical instrument that detects light from the 'limb' of Earth's atmosphere, i.e., at the horizon. Thermal infrared sensing is often used, which senses the comparative warmth of the atmosphere, compared to the much colder cosmic background . This sensor provides orientation with respect to Earth about two orthogonal axes. It tends to be less precise than sensors based on stellar observation. Sometimes referred to as an Earth sensor. Similar to
7308-471: The altimetric antenna, recording information regarding the elevation of the surface on Venus. – In Radiometry mode, the high-gain antenna was used to record microwave radiothermal emissions from Venus. This data was used to characterize the surface temperature. The data was collected at 750 kilobits/second to the tape recorder and later transmitted to Earth (10Bit per second*365*4*24*60=21Mbit (maximum) = 85Foto (maximum) ) to be processed into usable images, by
7434-448: The angular rate is not estimated directly, but rather the measured angular rate from the gyro is used directly to propagate the rotational dynamics forward in time. This is valid for most applications as gyros are typically far more precise than one's knowledge of disturbance torques acting on the system (which is required for precise estimation of the angular rate). For some sensors and applications (such as spacecraft using magnetometers)
7560-458: The appendages. It logically falls to the same subsystem – the Attitude and Articulation Control Subsystem (AACS), then, to manage both attitude and articulation. The name AACS may even be carried over to a spacecraft even if it has no appendages to articulate. Attitude is part of the description of how an object is placed in the space it occupies. Attitude and position fully describe how an object
7686-448: The appropriate commands to the actuators to rotate the vehicle to the desired attitude. The algorithms range from very simple, e.g. proportional control , to complex nonlinear estimators or many in-between types, depending on mission requirements. Typically, the attitude control algorithms are part of the software running on the computer hardware, which receives commands from the ground and formats vehicle data telemetry for transmission to
SECTION 60
#17328558682357812-651: The attitude using only the measurements currently available), or through the use of a statistical filter (most commonly, the Kalman filter ) that statistically combine previous attitude estimates with current sensor measurements to obtain an optimal estimate of the current attitude. Static attitude estimation methods are solutions to Wahba's problem . Many solutions have been proposed, notably Davenport's q-method, QUEST, TRIAD, and singular value decomposition . Crassidis, John L., and John L. Junkins.. Chapman and Hall/CRC, 2004. Kalman filtering can be used to sequentially estimate
7938-540: The attitude, as well as the angular rate. Because attitude dynamics (combination of rigid body dynamics and attitude kinematics) are non-linear, a linear Kalman filter is not sufficient. Because attitude dynamics is not very non-linear, the Extended Kalman filter is usually sufficient (however Crassidis and Markely demonstrated that the Unscented Kalman filter could be used, and can provide benefits in cases where
8064-413: The attitude. Attitude control can be obtained by several mechanisms, including: Vernier thrusters are the most common actuators, as they may be used for station keeping as well. Thrusters must be organized as a system to provide stabilization about all three axes, and at least two thrusters are generally used in each axis to provide torque as a couple in order to prevent imparting a translation to
8190-418: The brightness of each pulse as it reflected back off the side surfaces of rocks, cliffs, volcanoes and other geologic features, as a form of backscatter . To increase the imaging resolution, Magellan recorded a series of data bursts for a particular location during multiple instances called, "looks". Each "look" slightly overlapped the previous, returning slightly different information for the same location, as
8316-450: The combustion of the fuel can only occur due to a presence of a catalyst . This is quite advantageous due to making the rocket engine lighter and cheaper, easy to control, and more reliable. But, the downfall is that the chemical is very dangerous to manufacture, store, and transport. A bipropellant propulsion system is a rocket engine that uses a liquid propellant. This means both the oxidizer and fuel line are in liquid states. This system
8442-412: The command and data subsystem (CDS). The CDS was able to store commands for up to three days, and also to autonomously control the spacecraft if problems were to arise while mission operators were not in contact with the spacecraft. For storing the commands and recorded data, the spacecraft also included two multitrack digital tape recorders , able to store up to 225 megabytes of data until contact with
8568-453: The command and data subsystem. It is often responsible for: This system is mainly responsible for the correct spacecraft's orientation in space (attitude) despite external disturbance-gravity gradient effects, magnetic-field torques, solar radiation and aerodynamic drag; in addition it may be required to reposition movable parts, such as antennas and solar arrays. Integrated sensing incorporates an image transformation algorithm to interpret
8694-574: The concept of detumbling, which is attenuating the angular momentum of the spacecraft. The need to detumble the spacecraft arises from the uncontrollable state after release from the launch vehicle. Most spacecraft in low Earth orbit (LEO) makes use of magnetic detumbling concept which utilizes the effect of the Earth's magnetic field . The control algorithm is called the B-Dot controller and relies on magnetic coils or torque rods as control actuators. The control law
8820-548: The current attitude and specification of a desired attitude. Before and during attitude control can be performed, spacecraft attitude determination must be performed, which requires sensors for absolute or relative measurement. The broader integrated field that studies the combination of sensors, actuators and algorithms is called guidance, navigation and control , which also involves non-attitude concepts, such as position determination and navigation . A spacecraft's attitude must typically be stabilized and controlled for
8946-483: The cycle on May 23, 1993; a loss of data at the beginning of the cycle necessitated an additional 10 days of gravitational study. At the end of the fourth cycle in May 1993, the orbit of Magellan was circularized using a technique known as aerobraking . The circularized orbit allowed a much higher resolution of gravimetric data to be acquired when cycle 5 began on August 3, 1993. The spacecraft performed 2,855 orbits and provided high-resolution gravimetric data for 94% of
9072-428: The direction opposite to that required to re-orient the vehicle. Because momentum wheels make up a small fraction of the spacecraft's mass and are computer controlled, they give precise control. Momentum wheels are generally suspended on magnetic bearings to avoid bearing friction and breakdown problems. Spacecraft Reaction wheels often use mechanical ball bearings. To maintain orientation in three dimensional space
9198-713: The entire sky ( astronomical survey ), and satellites which focus on selected astronomical objects or parts of the sky and beyond. Space telescopes are distinct from Earth imaging satellites , which point toward Earth for satellite imaging , applied for weather analysis , espionage , and other types of information gathering . Cargo or resupply spacecraft are robotic vehicles designed to transport supplies, such as food, propellant, and equipment, to space stations. This distinguishes them from space probes, which are primarily focused on scientific exploration. Automated cargo spacecraft have been servicing space stations since 1978, supporting missions like Salyut 6 , Salyut 7 , Mir ,
9324-561: The expense of orbital decay . Conversely, by inducing a counter-current, using solar cell power, the orbit may be raised. Due to massive variability in Earth's magnetic field from an ideal radial field, control laws based on torques coupling to this field will be highly non-linear. Moreover, only two-axis control is available at any given time meaning that a vehicle reorient may be necessary to null all rates. Three main types of passive attitude control exist for satellites. The first one uses gravity gradient, and it leads to four stable states with
9450-455: The fall of 1951. The first artificial satellite , Sputnik 1 , was put into a 215-by-939-kilometer (116 by 507 nmi) Earth orbit by the USSR on 4 October 1957. On 3 November 1957, the USSR orbited Sputnik 2 . Weighing 113 kilograms (249 lb), Sputnik 2 carried the first animal into orbit, the dog Laika . Since the satellite was not designed to detach from its launch vehicle 's upper stage,
9576-492: The first spacecraft to test aerobraking as a method for circularizing its orbit. Magellan was the fifth successful NASA mission to Venus, and it ended an eleven-year gap in U.S. interplanetary probe launches. Beginning in the late 1970s, scientists advocated for a radar mapping mission to Venus. They first sought to construct a spacecraft named the Venus Orbiting Imaging Radar (VOIR), but it became clear that
9702-598: The ground. Increased autonomy is important for distant probes where the light travel time prevents rapid decision and control from Earth. Newer probes such as Cassini–Huygens and the Mars Exploration Rovers are highly autonomous and use on-board computers to operate independently for extended periods of time. A space probe is a robotic spacecraft that does not orbit Earth, but instead, explores further into outer space. Space probes have different sets of scientific instruments onboard. A space probe may approach
9828-492: The high-gain antenna toward Earth where the Deep Space Network began recording a constant stream of telemetry. This constant signal allowed the DSN to collect information on the gravitational field of Venus by monitoring the velocity of the spacecraft. Areas of higher gravitation would slightly increase the velocity of the spacecraft, registering as a Doppler shift in the signal. The space craft completed 1,878 orbits until completion of
9954-465: The imagery of the surface of Venus was seen due to the long, narrow swathes acquired by the spacecraft. Significant guests during the mission's operation included Margaret Thatcher . After the initial investigation stage Magellan's full data set was released for public consumption. The Magellan Project Science Team consisted of Dr. R. Stephen Saunders, the Project Scientist; Dr. Ellen Stofan ,
10080-521: The immediate imagery land data, perform a real-time detection and avoidance of terrain hazards that may impede safe landing, and increase the accuracy of landing at a desired site of interest using landmark localization techniques. Integrated sensing completes these tasks by relying on pre-recorded information and cameras to understand its location and determine its position and whether it is correct or needs to make any corrections (localization). The cameras are also used to detect any possible hazards whether it
10206-546: The impact of upper-atmospheric forces which aided in designing future Earth-orbiting satellites, and methods for aerobraking during future planetary spacecraft missions. Magellan created the first (and currently the best) near-photographic quality, high resolution radar mapping of the planet's surface features. Prior Venus missions had created low resolution radar globes of general, continent-sized formations. Magellan , however, finally allowed detailed imaging and analysis of craters, hills, ridges, and other geologic formations, to
10332-481: The initial estimate is poor). Multiple methods have been proposed, however the Multiplicative Extended Kalman Filter (MEKF) is by far the most common approach. This approach utilizes the multiplicative formulation of the error quaternion, which allows for the unity constraint on the quaternion to be better handled. It is also common to use a technique known as dynamic model replacement, where
10458-453: The long axis (axis with smallest moment of inertia) pointing towards Earth. As this system has four stable states, if the satellite has a preferred orientation, e.g. a camera pointed at the planet, some way to flip the satellite and its tether end-for-end is needed. The second passive system orients the satellite along Earth's magnetic field thanks to a magnet. These purely passive attitude control systems have limited pointing accuracy, because
10584-566: The maximum angular momentum change) exerted by a CMG is greater than for a momentum wheel, making it better suited to large spacecraft. A major drawback is the additional complexity, which increases the number of failure points. For this reason, the International Space Station uses a set of four CMGs to provide dual failure tolerance. Small solar sails (devices that produce thrust as a reaction force induced by reflecting incident light) may be used to make small attitude control and velocity adjustments. This application can save large amounts of fuel on
10710-572: The mission would be beyond the budget constraints during the ensuing years. The VOIR mission was canceled in 1982. A simplified radar mission proposal was recommended by the Solar System Exploration Committee, and this one was submitted and accepted as the Venus Radar Mapper program in 1983. The proposal included a limited focus and a single primary scientific instrument. In 1985, the mission was renamed Magellan , in honor of
10836-427: The most powerful form of propulsion there is. For a propulsion system to work, there is usually an oxidizer line and a fuel line. This way, the spacecraft propulsion is controlled. But in a monopropellant propulsion, there is no need for an oxidizer line and only requires the fuel line. This works due to the oxidizer being chemically bonded into the fuel molecule itself. But for the propulsion system to be controlled,
10962-408: The observation of external objects. Classically, a gyroscope consists of a spinning mass, but there are also " ring laser gyros " utilizing coherent light reflected around a closed path. Another type of "gyro" is a hemispherical resonator gyro where a crystal cup shaped like a wine glass can be driven into oscillation just as a wine glass "sings" as a finger is rubbed around its rim. The orientation of
11088-402: The only way to explore them. Telerobotics also allows exploration of regions that are vulnerable to contamination by Earth micro-organisms since spacecraft can be sterilized. Humans can not be sterilized in the same way as a spaceship, as they coexist with numerous micro-organisms, and these micro-organisms are also hard to contain within a spaceship or spacesuit. The first uncrewed space mission
11214-547: The opposing direction if a new orientation is to be held. Thruster systems have been used on most crewed space vehicles, including Vostok , Mercury , Gemini , Apollo , Soyuz , and the Space Shuttle . To minimize the fuel limitation on mission duration, auxiliary attitude control systems may be used to reduce vehicle rotation to lower levels, such as small ion thrusters that accelerate ionized gases electrically to extreme velocities, using power from solar cells. Momentum wheels are electric motor driven rotors made to spin in
11340-475: The orbital insertion maneuver which placed the spacecraft into a three-hour, nine minute, elliptical orbit that brought the spacecraft 295-kilometers from the surface at about 10 degrees North during the periapsis and out to 7762-kilometers during apoapsis . During each orbit, the space probe captured radar data while the spacecraft was closest to the surface, and then transmitted it back to Earth as it moved away from Venus. This maneuver required extensive use of
11466-450: The oscillation is fixed in inertial space, so measuring the orientation of the oscillation relative to the spacecraft can be used to sense the motion of the spacecraft with respect to inertial space. Motion reference units are a kind of inertial measurement unit with single- or multi-axis motion sensors. They utilize MEMS gyroscopes . Some multi-axis MRUs are capable of measuring roll, pitch, yaw and heave . They have applications outside
11592-489: The planet, before the end of the cycle on August 29, 1994. Aerobraking had long been sought as a method for slowing the orbit of interplanetary spacecraft. Previous suggestions included the need for aeroshells that proved too complicated and expensive for most missions. Testing a new approach to the method, a plan was devised to drop the orbit of Magellan into the outermost region of the Venusian atmosphere . Slight friction on
11718-482: The power output from the solar arrays and onboard components, and having completed all objectives successfully, the mission was to end in mid-October. The termination sequence began in late August 1994, with a series of orbital trim maneuvers which lowered the spacecraft into the outermost layers of the Venusian atmosphere to allow the Windmill experiment to begin on September 6, 1994. The experiment lasted for two weeks and
11844-408: The power sources. Spacecraft are often protected from temperature fluctuations with insulation. Some spacecraft use mirrors and sunshades for additional protection from solar heating. They also often need shielding from micrometeoroids and orbital debris. Spacecraft propulsion is a method that allows a spacecraft to travel through space by generating thrust to push it forward. However, there
11970-421: The reaction wheels to rotate the spacecraft as it imaged the surface for 37-minutes and as it pointed toward Earth for two hours. The primary mission intended for the spacecraft to return images of at least 70 percent of the surface during one Venusian day, which lasts 243 Earth days as the planet slowly spins. To avoid overly-redundant data at the highest and lowest latitudes, the Magellan probe alternated between
12096-868: The right direction. Attitude control of spacecraft is maintained using one of two principal approaches: There are advantages and disadvantages to both spin stabilization and three-axis stabilization. Spin-stabilized craft provide a continuous sweeping motion that is desirable for fields and particles instruments, as well as some optical scanning instruments, but they may require complicated systems to de-spin antennas or optical instruments that must be pointed at targets for science observations or communications with Earth. Three-axis controlled craft can point optical instruments and antennas without having to de-spin them, but they may have to carry out special rotating maneuvers to best utilize their fields and particle instruments. If thrusters are used for routine stabilization, optical observations such as imaging must be designed knowing that
12222-536: The robotic spacecraft requires accurate knowledge of where the spacecraft is located relative to the surface (localization), what may pose as hazards from the terrain (hazard assessment), and where the spacecraft should presently be headed (hazard avoidance). Without the capability for operations for localization, hazard assessment, and avoidance, the robotic spacecraft becomes unsafe and can easily enter dangerous situations such as surface collisions, undesirable fuel consumption levels, and/or unsafe maneuvers. Components in
12348-412: The sensible drag on the spacecraft was very evident. The solar panel temperatures rose to 126 deg. C. and the attitude control system fired all available Y-axis thrusters to counteract the torques. However, attitude control was maintained to the end. The main bus voltage dropped to 24.7 volts after five orbits, and it was predicted that attitude control would be lost if the power dropped below 24 volts. It
12474-558: The sixteenth-century Portuguese explorer Ferdinand Magellan , known for his exploration, mapping, and circumnavigation of the Earth. The objectives of the mission included: The spacecraft was designed and built by the Martin Marietta Company, and the Jet Propulsion Laboratory (JPL) managed the mission for NASA. Elizabeth Beyer served as the program manager and Joseph Boyce served as the lead program scientist for
12600-408: The solar arrays to 126 ° C . On October 13, 1994 at 10:05:00 UTC, communication was lost when the spacecraft entered radio occultation behind Venus. The team continued to listen for another signal from the spacecraft until 18:00:00 UTC, when the mission was determined to have concluded. Although much of Magellan was expected to vaporize due to atmospheric stresses, some amount of wreckage
12726-533: The space stations Salyut 7 and Mir , and the International Space Station module Zarya , were capable of remote guided station-keeping and docking maneuvers with both resupply craft and new modules. Uncrewed resupply spacecraft are increasingly used for crewed space stations . The first robotic spacecraft was launched by the Soviet Union (USSR) on 22 July 1951, a suborbital flight carrying two dogs Dezik and Tsygan. Four other such flights were made through
12852-439: The spacecraft due to a negative power margin. This was not a problem since spacecraft power would have been too low to sustain operations in the next few weeks due to continuing solar cell loss. Thus, a final controlled experiment was designed to maximize mission return. This final, low altitude was necessary to study the effects of a carbon dioxide atmosphere. The final OTM took the periapsis to 139.7 km (86.8 mi) where
12978-408: The spacecraft forward. This happens due to one basic principle known as Newton's Third Law . According to Newton, "to every action there is an equal and opposite reaction." As the energy and heat is being released from the back of the spacecraft, gas particles are being pushed around to allow the spacecraft to propel forward. The main reason behind the usage of rocket engine today is because rockets are
13104-719: The spacecraft is always slowly rocking back and forth, and not always exactly predictably. Reaction wheels provide a much steadier spacecraft from which to make observations, but they add mass to the spacecraft, they have a limited mechanical lifetime, and they require frequent momentum desaturation maneuvers, which can perturb navigation solutions because of accelerations imparted by the use of thrusters. Many spacecraft have components that require articulation. Voyager and Galileo , for example, were designed with scan platforms for pointing optical instruments at their targets largely independently of spacecraft orientation. Many spacecraft, such as Mars orbiters, have solar panels that must track
13230-414: The spacecraft is robotic. Robotic spacecraft use telemetry to radio back to Earth acquired data and vehicle status information. Although generally referred to as "remotely controlled" or "telerobotic", the earliest orbital spacecraft – such as Sputnik 1 and Explorer 1 – did not receive control signals from Earth. Soon after these first spacecraft, command systems were developed to allow remote control from
13356-455: The spacecraft moved in orbit. After transmitting the data back to Earth, Doppler modeling was used to take the overlapping "looks" and combine them into a continuous, high resolution image of the surface. The Radar System functioned in three modes: synthetic aperture radar (SAR), altimetry (ALT), and radiometry (RAD). The instrument cycled through the three modes while observing the surface geology, topography, and temperature of Venus using
13482-404: The spacecraft slowed the velocity over a period, slightly longer than two months, bringing the spacecraft into an approximately circular orbit with periapse altitude at 180 km and apoapse altitude at 540 km, down from an apoapse altitude at 8467 km. The method has since been used extensively on later interplanetary missions. The sixth and final orbiting cycle was another extension to
13608-506: The spacecraft while occulted from the Sun, twin 30 amp-hour, 26-cell, nickel-cadmium batteries were included. The batteries recharged as the spacecraft received direct sunlight. The computing system on the spacecraft was partially modified equipment from the Galileo . There were two ATAC-16 computers forming one redundant system, located in the attitude-control subsystem, and four RCA 1802 microprocessors, as two redundant systems, to control
13734-450: The spacecraft will oscillate around energy minima. This drawback is overcome by adding damper, which can be hysteretic materials or a viscous damper. The viscous damper is a small can or tank of fluid mounted in the spacecraft, possibly with internal baffles to increase internal friction. Friction within the damper will gradually convert oscillation energy into heat dissipated within the viscous damper. A third form of passive attitude control
13860-673: The spacecraft, a spare one from the Voyager missions, was a 10-sided aluminum bus , containing the computers, data recorders, and other subsystems. The spacecraft measured 6.4 meters tall and 4.6 meters in diameter. Overall, the spacecraft weighed 3,445 kilograms. The spacecraft's attitude control (orientation) was designed to be three-axis stabilized, including during the firing of the Star 48B solid rocket motor (SRM) used to place it into orbit around Venus. Prior to Magellan , all spacecraft SRM firings had involved spinning spacecraft, which made control of
13986-508: The specific attitude maneuver although using a simple proportional–integral–derivative controller ( PID controller ) satisfies most control needs. The appropriate commands to the actuators are obtained based on error signals described as the difference between the measured and desired attitude. The error signals are commonly measured as euler angles (Φ, θ, Ψ), however an alternative to this could be described in terms of direction cosine matrix or error quaternions . The PID controller which
14112-417: The surface that would later allow the ground team to construct, clear, three-dimensional renderings of the surface. Approximately 21.3% of the surface was imaged in stereo by the end of the cycle on September 13, 1992, increasing the overall coverage of the surface to 98%. Upon completing cycle 3, Magellan ceased imaging the surface. Instead, beginning mid-September 1992, the Magellan maintained pointing of
14238-423: The thrust to propel the spacecraft forward. The advantage of having this kind of propulsion is that it is incredibly efficient in maintaining constant velocity, which is needed for deep-space travel. However, the amount of thrust produced is extremely low and that it needs a lot of electrical power to operate. Mechanical components often need to be moved for deployment after launch or prior to landing. In addition to
14364-477: The total mass in orbit was 508.3 kilograms (1,121 lb). In a close race with the Soviets , the United States launched its first artificial satellite, Explorer 1 , into a 357-by-2,543-kilometre (193 by 1,373 nmi) orbit on 31 January 1958. Explorer I was an 205-centimetre (80.75 in) long by 15.2-centimetre (6.00 in) diameter cylinder weighing 14.0 kilograms (30.8 lb), compared to Sputnik 1,
14490-415: The two previous gravimetric studies. Toward the end of the cycle, a final experiment was conducted, known as the "Windmill" experiment to provide data on the composition of the upper atmosphere of Venus. Magellan performed 1,783 orbits before the end of the cycle on October 13, 1994, when the spacecraft entered the atmosphere and disintegrated. In September 1994, the orbit of Magellan was lowered to begin
14616-531: The use of motors, many one-time movements are controlled by pyrotechnic devices. Robotic spacecraft are specifically designed system for a specific hostile environment. Due to their specification for a particular environment, it varies greatly in complexity and capabilities. While an uncrewed spacecraft is a spacecraft without personnel or crew and is operated by automatic (proceeds with an action without human intervention) or remote control (with human intervention). The term 'uncrewed spacecraft' does not imply that
14742-419: The vehicle. Their limitations are fuel usage, engine wear, and cycles of the control valves. The fuel efficiency of an attitude control system is determined by its specific impulse (proportional to exhaust velocity) and the smallest torque impulse it can provide (which determines how often the thrusters must fire to provide precise control). Thrusters must be fired in one direction to start rotation, and again in
14868-460: The way that a terrestrial gyrocompass uses a pendulum to sense local gravity and force its gyro into alignment with Earth's spin vector, and therefore point north, an orbital gyrocompass uses a horizon sensor to sense the direction to Earth's center, and a gyro to sense rotation about an axis normal to the orbit plane. Thus, the horizon sensor provides pitch and roll measurements, and the gyro provides yaw. See Tait-Bryan angles . A Sun sensor
14994-437: Was Sputnik , launched October 4, 1957 to orbit the Earth. Nearly all satellites , landers and rovers are robotic spacecraft. Not every uncrewed spacecraft is a robotic spacecraft; for example, a reflector ball is a non-robotic uncrewed spacecraft. Space missions where other animals but no humans are on-board are called uncrewed missions. Many habitable spacecraft also have varying levels of robotic features. For example,
15120-511: Was decided to enhance the Windmill experiment by changing the panel angles for the remaining orbits. This was also a preplanned experiment option. At this point, the spacecraft was expected to survive only two orbits. Robotic spacecraft Uncrewed spacecraft or robotic spacecraft are spacecraft without people on board. Uncrewed spacecraft may have varying levels of autonomy from human input, such as remote control , or remote guidance. They may also be autonomous , in which they have
15246-426: Was followed by subsequent orbital trim maneuvers, further lowering the altitude of the spacecraft for the final termination phase. On October 11, 1994, moving at a velocity of 7 kilometers/second, the final orbital trim maneuver was performed, placing the spacecraft 139.7 kilometers above the surface, well within the atmosphere. At this altitude the spacecraft encountered sufficient ram pressure to raise temperatures on
15372-506: Was intended to provide data for the existing gaps in the map collected during first cycle, including a large portion of the southern hemisphere. To do this, Magellan had to be reoriented, changing the gathering method to "right-looking". Upon completion during mid-January 1992, cycle 2 provided data for 54.5% of the surface, and combined with the previous cycle, a map containing 96% of the surface could be constructed. Immediately after cycle 2, cycle 3 began collecting data for stereo imagery on
15498-517: Was previously used between 2008 and 2015. Solar System → Local Interstellar Cloud → Local Bubble → Gould Belt → Orion Arm → Milky Way → Milky Way subgroup → Local Group → Local Sheet → Virgo Supercluster → Laniakea Supercluster → Local Hole → Observable universe → Universe Each arrow ( → ) may be read as "within" or "part of". Spacecraft attitude control Spacecraft attitude control
15624-536: Was set up so that the initial images and data from the Magellan probe were only for use and study by a team of principal investigators from a variety of universities and institutions, and by the Magellan Project Science Team . These scientists were responsible for validating the data, contributing input for spacecraft acquisition of data, and interpreting the data results for their release to the public. Data
15750-456: Was shared with three visiting Soviet scientists ( Alexander Basilevsky , Effaim Akim and Alexander Zacharov), a first, and sensitive issue, for NASA at the time considering the Cold War was just coming to a close. The Magellan Project Science room became notorious for its hanging of long thermal print strips of image data (FBIDRs) along the walls of a spacious room. This was the first form in which
15876-495: Was the Luna E-1 No.1 , launched on 23 September 1958. The goal of a lunar probe repeatedly failed until 4 January 1959 when Luna 1 orbited around the Moon and then the Sun. The success of these early missions began a race between the US and the USSR to outdo each other with increasingly ambitious probes. Mariner 2 was the first probe to study another planet, revealing Venus' extremely hot temperature to scientists in 1962, while
#234765