Misplaced Pages

Synthetic-aperture radar

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
#800199

109-498: Synthetic-aperture radar ( SAR ) is a form of radar that is used to create two-dimensional images or three-dimensional reconstructions of objects, such as landscapes. SAR uses the motion of the radar antenna over a target region to provide finer spatial resolution than conventional stationary beam-scanning radars. SAR is typically mounted on a moving platform, such as an aircraft or spacecraft, and has its origins in an advanced form of side looking airborne radar (SLAR). The distance

218-466: A fractal surface, such as rocks or soil, and are used by navigation radars. A radar beam follows a linear path in vacuum but follows a somewhat curved path in atmosphere due to variation in the refractive index of air, which is called the radar horizon . Even when the beam is emitted parallel to the ground, the beam rises above the ground as the curvature of the Earth sinks below the horizon. Furthermore,

327-404: A transmitter producing electromagnetic waves in the radio or microwaves domain, a transmitting antenna , a receiving antenna (often the same antenna is used for transmitting and receiving) and a receiver and processor to determine properties of the objects. Radio waves (pulsed or continuous) from the transmitter reflect off the objects and return to the receiver, giving information about

436-424: A transmitter that emits radio waves known as radar signals in predetermined directions. When these signals contact an object they are usually reflected or scattered in many directions, although some of them will be absorbed and penetrate into the target. Radar signals are reflected especially well by materials of considerable electrical conductivity —such as most metals, seawater , and wet ground. This makes

545-407: A 2D sinusoid at a given frequency without distortion while minimizing the variance of the noise of the resulting image. The purpose is to compute the spectral estimate efficiently. Spectral estimate is given as where R is the covariance matrix, and a ω 1 , ω 2 ∗ {\displaystyle a_{\omega _{1},\omega _{2}}^{*}}

654-407: A 360 degree circle, east has azimuth 90°, south 180°, and west 270°. There are exceptions: some navigation systems use south as the reference vector. Any direction can be the reference vector, as long as it is clearly defined. Quite commonly, azimuths or compass bearings are stated in a system in which either north or south can be the zero, and the angle may be measured clockwise or anticlockwise from

763-497: A central point are preserved. Some navigation systems use south as the reference plane. However, any direction can serve as the plane of reference, as long as it is clearly defined for everyone using that system. If, instead of measuring from and along the horizon, the angles are measured from and along the celestial equator , the angles are called right ascension if referenced to the Vernal Equinox, or hour angle if referenced to

872-840: A common noun, losing all capitalization . The modern uses of radar are highly diverse, including air and terrestrial traffic control, radar astronomy , air-defense systems , anti-missile systems , marine radars to locate landmarks and other ships, aircraft anti-collision systems, ocean surveillance systems, outer space surveillance and rendezvous systems, meteorological precipitation monitoring, radar remote sensing , altimetry and flight control systems , guided missile target locating systems, self-driving cars , and ground-penetrating radar for geological observations. Modern high tech radar systems use digital signal processing and machine learning and are capable of extracting useful information from very high noise levels. Other systems which are similar to radar make use of other parts of

981-482: A different dielectric constant or diamagnetic constant from the first, the waves will reflect or scatter from the boundary between the materials. This means that a solid object in air or in a vacuum , or a significant change in atomic density between the object and what is surrounding it, will usually scatter radar (radio) waves from its surface. This is particularly true for electrically conductive materials such as metal and carbon fibre, making radar well-suited to

1090-413: A fixed antenna size and orientation, objects which are further away remain illuminated longer – therefore SAR has the property of creating larger synthetic apertures for more distant objects, which results in a consistent spatial resolution over a range of viewing distances. To create a SAR image, successive pulses of radio waves are transmitted to "illuminate" a target scene, and the echo of each pulse

1199-535: A full radar system, that he called a telemobiloscope . It operated on a 50 cm wavelength and the pulsed radar signal was created via a spark-gap. His system already used the classic antenna setup of horn antenna with parabolic reflector and was presented to German military officials in practical tests in Cologne and Rotterdam harbour but was rejected. In 1915, Robert Watson-Watt used radio technology to provide advance warning of thunderstorms to airmen and during

SECTION 10

#1732858508801

1308-419: A horizontal angle measured clockwise from a north base line or meridian . Azimuth has also been more generally defined as a horizontal angle measured clockwise from any fixed reference plane or easily established base direction line. Today, the reference plane for an azimuth is typically true north , measured as a 0° azimuth, though other angular units ( grad , mil ) can be used. Moving clockwise on

1417-406: A local or observer-centric spherical coordinate system . Mathematically, the relative position vector from an observer ( origin ) to a point of interest is projected perpendicularly onto a reference plane (the horizontal plane ); the angle between the projected vector and a reference vector on the reference plane is called the azimuth. When used as a celestial coordinate , the azimuth

1526-729: A physics instructor at the Imperial Russian Navy school in Kronstadt , developed an apparatus using a coherer tube for detecting distant lightning strikes. The next year, he added a spark-gap transmitter . In 1897, while testing this equipment for communicating between two ships in the Baltic Sea , he took note of an interference beat caused by the passage of a third vessel. In his report, Popov wrote that this phenomenon might be used for detecting objects, but he did nothing more with this observation. The German inventor Christian Hülsmeyer

1635-551: A point ( ω x , ω y {\displaystyle \omega _{x},\omega _{y}} ) is given by: where ϕ ^ E V {\displaystyle {\hat {\phi }}_{EV}} is the amplitude of the image at a point ( ω x , ω y ) {\displaystyle \left(\omega _{x},\omega _{y}\right)} , v i _ {\displaystyle {\underline {v_{i}}}}

1744-550: A point in the SAR image is in alignment to one of the signal subspace eigenvectors which is the peak in image estimate. Thus this method does not accurately represent the scattering intensity at each point, but show the particular points of the image. Backprojection Algorithm has two methods: Time-domain Backprojection and Frequency-domain Backprojection . The time-domain Backprojection has more advantages over frequency-domain and thus,

1853-495: A proposal for further intensive research on radio-echo signals from moving targets to take place at NRL, where Taylor and Young were based at the time. Similarly, in the UK, L. S. Alder took out a secret provisional patent for Naval radar in 1928. W.A.S. Butement and P. E. Pollard developed a breadboard test unit, operating at 50 cm (600 MHz) and using pulsed modulation which gave successful laboratory results. In January 1931,

1962-698: A pulsed system, and the first such elementary apparatus was demonstrated in December 1934 by the American Robert M. Page , working at the Naval Research Laboratory . The following year, the United States Army successfully tested a primitive surface-to-surface radar to aim coastal battery searchlights at night. This design was followed by a pulsed system demonstrated in May 1935 by Rudolf Kühnhold and

2071-442: A rescue. For similar reasons, objects intended to avoid detection will not have inside corners or surfaces and edges perpendicular to likely detection directions, which leads to "odd" looking stealth aircraft . These precautions do not totally eliminate reflection because of diffraction , especially at longer wavelengths. Half wavelength long wires or strips of conducting material, such as chaff , are very reflective but do not direct

2180-662: A system might do, Wilkins recalled the earlier report about aircraft causing radio interference. This revelation led to the Daventry Experiment of 26 February 1935, using a powerful BBC shortwave transmitter as the source and their GPO receiver setup in a field while a bomber flew around the site. When the plane was clearly detected, Hugh Dowding , the Air Member for Supply and Research , was very impressed with their system's potential and funds were immediately provided for further operational development. Watson-Watt's team patented

2289-514: A wide region and direct fighter aircraft towards targets. Marine radars are used to measure the bearing and distance of ships to prevent collision with other ships, to navigate, and to fix their position at sea when within range of shore or other fixed references such as islands, buoys, and lightships. In port or in harbour, vessel traffic service radar systems are used to monitor and regulate ship movements in busy waters. Meteorologists use radar to monitor precipitation and wind. It has become

SECTION 20

#1732858508801

2398-855: A writeup on the apparatus was entered in the Inventions Book maintained by the Royal Engineers. This is the first official record in Great Britain of the technology that was used in coastal defence and was incorporated into Chain Home as Chain Home (low) . Before the Second World War , researchers in the United Kingdom, France , Germany , Italy , Japan , the Netherlands , the Soviet Union , and

2507-555: Is a nonparametric covariance-based method, which uses an adaptive matched-filterbank approach and follows two main steps: The adaptive Capon bandpass filter is designed to minimize the power of the filter output, as well as pass the frequencies ( ω 1 , ω 2 {\displaystyle \omega _{1},\omega _{2}} ) without any attenuation, i.e., to satisfy, for each ( ω 1 , ω 2 {\displaystyle \omega _{1},\omega _{2}} ), where R

2616-550: Is a parameter-free sparse signal reconstruction based algorithm. It achieves super-resolution and is robust to highly correlated signals. The name emphasizes its basis on the asymptotically minimum variance (AMV) criterion. It is a powerful tool for the recovery of both the amplitude and frequency characteristics of multiple highly correlated sources in challenging environment (e.g., limited number of snapshots, low signal-to-noise ratio . Applications include synthetic-aperture radar imaging and various source localization. SAMV method

2725-452: Is a simplification for transmission in a vacuum without interference. The propagation factor accounts for the effects of multipath and shadowing and depends on the details of the environment. In a real-world situation, pathloss effects are also considered. Frequency shift is caused by motion that changes the number of wavelengths between the reflector and the radar. This can degrade or enhance radar performance depending upon how it affects

2834-726: Is also a special case of the FIR filtering approaches. It is seen that although the APES algorithm gives slightly wider spectral peaks than the Capon method, the former yields more accurate overall spectral estimates than the latter and the FFT method. FFT method is fast and simple but have larger sidelobes. Capon has high resolution but high computational complexity. EV also has high resolution and high computational complexity. APES has higher resolution, faster than capon and EV but high computational complexity. MUSIC method

2943-451: Is as follows, where F D {\displaystyle F_{D}} is Doppler frequency, F T {\displaystyle F_{T}} is transmit frequency, V R {\displaystyle V_{R}} is radial velocity, and C {\displaystyle C} is the speed of light: Passive radar is applicable to electronic countermeasures and radio astronomy as follows: Only

3052-454: Is capable of achieving resolution higher than some established parametric methods, e.g., MUSIC , especially with highly correlated signals. Computational complexity of the SAMV method is higher due to its iterative procedure. This subspace decomposition method separates the eigenvectors of the autocovariance matrix into those corresponding to signals and to clutter. The amplitude of the image at

3161-451: Is critical to operation of the EV method. The eigenvalue of the R matrix decides whether its corresponding eigenvector corresponds to the clutter or to the signal subspace. The MUSIC method is considered to be a poor performer in SAR applications. This method uses a constant instead of the clutter subspace. In this method, the denominator is equated to zero when a sinusoidal signal corresponding to

3270-408: Is east or west. The directions are chosen so that the angle, stated between them, is positive, between zero and 90 degrees. If the bearing happens to be exactly in the direction of one of the cardinal points , a different notation, e.g. "due east", is used instead. We are standing at latitude φ 1 {\displaystyle \varphi _{1}} , longitude zero; we want to find

3379-405: Is essentially a realization of the mapping of the mathematical framework through generation of the variants and executing matrix operations. The performance of this implementation may vary from machine to machine, and the objective is to identify on which machine it performs best. The Capon spectral method, also called the minimum-variance method, is a multidimensional array-processing technique. It

Synthetic-aperture radar - Misplaced Pages Continue

3488-421: Is given by Radar Radar is a system that uses radio waves to determine the distance ( ranging ), direction ( azimuth and elevation angles ), and radial velocity of objects relative to the site. It is a radiodetermination method used to detect and track aircraft , ships , spacecraft , guided missiles , motor vehicles , map weather formations , and terrain . A radar system consists of

3597-560: Is intended. Radar relies on its own transmissions rather than light from the Sun or the Moon, or from electromagnetic waves emitted by the target objects themselves, such as infrared radiation (heat). This process of directing artificial radio waves towards objects is called illumination , although radio waves are invisible to the human eye as well as optical cameras. If electromagnetic waves travelling through one material meet another material, having

3706-447: Is more preferred. The time-domain Backprojection forms images or spectrums by matching the data acquired from the radar and as per what it expects to receive. It can be considered as an ideal matched-filter for synthetic-aperture radar. There is no need of having a different motion compensation step due to its quality of handling non-ideal motion/sampling. It can also be used for various imaging geometries. In GEO-SAR, to focus specially on

3815-457: Is not advantageous to capture a waveform for each of both transmission directions for a given pair of antennas, because those waveforms will be identical. When multiple static antennas are used, the total number of unique echo waveforms that can be captured is where N is the number of unique antenna positions. The antenna stays in a fixed position. It may be orthogonal to the flight path, or it may be squinted slightly forward or backward. When

3924-669: Is not generally suitable for SAR imaging, as whitening the clutter eigenvalues destroys the spatial inhomogeneities associated with terrain clutter or other diffuse scattering in SAR imagery. But it offers higher frequency resolution in the resulting power spectral density (PSD) than the fast Fourier transform (FFT)-based methods. The backprojection algorithm is computationally expensive. It is specifically attractive for sensors that are wideband, wide-angle, and/or have long coherent apertures with substantial off-track motion. SAR requires that echo captures be taken at multiple antenna positions. The more captures taken (at different antenna locations)

4033-455: Is received and recorded. The pulses are transmitted and the echoes received using a single beam-forming antenna, with wavelengths of a meter down to several millimeters. As the SAR device on board the aircraft or spacecraft moves, the antenna location relative to the target changes with time. Signal processing of the successive recorded radar echoes allows the combining of the recordings from these multiple antenna positions. This process forms

4142-615: Is the coherency matrix and v i _ H {\displaystyle {\underline {v_{i}}}^{\mathsf {H}}} is the Hermitian of the coherency matrix, 1 λ i {\displaystyle {\frac {1}{\lambda _{i}}}} is the inverse of the eigenvalues of the clutter subspace, W ( ω x , ω y ) {\displaystyle W\left(\omega _{x},\omega _{y}\right)} are vectors defined as where ⊗ denotes

4251-392: Is the covariance matrix , h ω 1 , ω 2 ∗ {\displaystyle h_{\omega _{1},\omega _{2}}^{*}} is the complex conjugate transpose of the impulse response of the FIR filter, a ω 1 , ω 2 {\displaystyle a_{\omega _{1},\omega _{2}}}

4360-421: Is the horizontal direction of a star or other astronomical object in the sky . The star is the point of interest, the reference plane is the local area (e.g. a circular area with a 5 km radius at sea level ) around an observer on Earth's surface , and the reference vector points to true north . The azimuth is the angle between the north vector and the star's vector on the horizontal plane . Azimuth

4469-438: Is the 2D Fourier vector, defined as a ω 1 , ω 2 ≜ a ω 1 ⊗ a ω 2 {\displaystyle a_{\omega _{1},\omega _{2}}\triangleq a_{\omega _{1}}\otimes a_{\omega _{2}}} , ⊗ {\displaystyle \otimes } denotes Kronecker product. Therefore, it passes

Synthetic-aperture radar - Misplaced Pages Continue

4578-452: Is the 2D complex-conjugate transpose of the Fourier vector. The computation of this equation over all frequencies is time-consuming. It is seen that the forward–backward Capon estimator yields better estimation than the forward-only classical capon approach. The main reason behind this is that while the forward–backward Capon uses both the forward and backward data vectors to obtain the estimate of

4687-468: Is the angle measured at our viewpoint by a theodolite whose axis is perpendicular to the surface of the spheroid; geodetic azimuth (or geodesic azimuth ) is the angle between north and the ellipsoidal geodesic (the shortest path on the surface of the spheroid from our viewpoint to Point 2). The difference is usually negligible: less than 0.03 arc second for distances less than 100 km. Normal-section azimuth can be calculated as follows: where f

4796-399: Is the flattening and e the eccentricity for the chosen spheroid (e.g., 1 ⁄ 298.257 223 563 for WGS84 ). If φ 1 = 0 then To calculate the azimuth of the Sun or a star given its declination and hour angle at a specific location, modify the formula for a spherical Earth. Replace φ 2 with declination and longitude difference with hour angle, and change the sign (since

4905-417: Is the range. This yields: This shows that the received power declines as the fourth power of the range, which means that the received power from distant targets is relatively very small. Additional filtering and pulse integration modifies the radar equation slightly for pulse-Doppler radar performance , which can be used to increase detection range and reduce transmit power. The equation above with F = 1

5014-420: Is the reason why the X and Y axis in the above formula are swapped. If the azimuth becomes negative, one can always add 360°. The formula in radians would be slightly easier: Note the swapped ( x , y ) {\displaystyle (x,y)} in contrast to the normal ( y , x ) {\displaystyle (y,x)} atan2 input order. The opposite problem occurs when

5123-512: Is used in majority of the spectral estimation algorithms, and there are many fast algorithms for computing the multidimensional discrete Fourier transform. Computational Kronecker-core array algebra is a popular algorithm used as new variant of FFT algorithms for the processing in multidimensional synthetic-aperture radar (SAR) systems. This algorithm uses a study of theoretical properties of input/output data indexing sets and groups of permutations. A branch of finite multi-dimensional linear algebra

5232-410: Is used to identify similarities and differences among various FFT algorithm variants and to create new variants. Each multidimensional DFT computation is expressed in matrix form. The multidimensional DFT matrix, in turn, is disintegrated into a set of factors, called functional primitives, which are individually identified with an underlying software/hardware computational design. The FFT implementation

5341-403: Is useful in environment monitoring such as oil spills, flooding, urban growth, military surveillance: including strategic policy and tactical assessment. SAR can be implemented as inverse SAR by observing a moving target over a substantial time with a stationary antenna. A synthetic-aperture radar is an imaging radar mounted on a moving platform. SAR is a Doppler technique. It is based on

5450-520: Is usually measured in degrees (°), in the positive range 0° to 360° or in the signed range -180° to +180°. The concept is used in navigation , astronomy , engineering , mapping , mining , and ballistics . The word azimuth is used in all European languages today. It originates from medieval Arabic السموت ( al-sumūt , pronounced as-sumūt ), meaning "the directions" (plural of Arabic السمت al-samt = "the direction"). The Arabic word entered late medieval Latin in an astronomy context and in particular in

5559-455: The Kronecker product of the two vectors. MUSIC detects frequencies in a signal by performing an eigen decomposition on the covariance matrix of a data vector of the samples obtained from the samples of the received signal. When all of the eigenvectors are included in the clutter subspace (model order = 0) the EV method becomes identical to the Capon method. Thus the determination of model order

SECTION 50

#1732858508801

5668-623: The Nyquist frequency , since the returned frequency otherwise cannot be distinguished from shifting of a harmonic frequency above or below, thus requiring: Or when substituting with F D {\displaystyle F_{D}} : As an example, a Doppler weather radar with a pulse rate of 2 kHz and transmit frequency of 1 GHz can reliably measure weather speed up to at most 150 m/s (340 mph), thus cannot reliably determine radial velocity of aircraft moving 1,000 m/s (2,200 mph). In all electromagnetic radiation ,

5777-714: The RAF's Pathfinder . The information provided by radar includes the bearing and range (and therefore position) of the object from the radar scanner. It is thus used in many different fields where the need for such positioning is crucial. The first use of radar was for military purposes: to locate air, ground and sea targets. This evolved in the civilian field into applications for aircraft, ships, and automobiles. In aviation , aircraft can be equipped with radar devices that warn of aircraft or other obstacles in or approaching their path, display weather information, and give accurate altitude readings. The first commercial device fitted to aircraft

5886-526: The celestial meridian . In mathematics, the azimuth angle of a point in cylindrical coordinates or spherical coordinates is the anticlockwise angle between the positive x -axis and the projection of the vector onto the xy - plane . A special case of an azimuth angle is the angle in polar coordinates of the component of the vector in the xy -plane, although this angle is normally measured in radians rather than degrees and denoted by θ rather than φ . For magnetic tape drives , azimuth refers to

5995-440: The electromagnetic spectrum . One example is lidar , which uses predominantly infrared light from lasers rather than radio waves. With the emergence of driverless vehicles, radar is expected to assist the automated platform to monitor its environment, thus preventing unwanted incidents. As early as 1886, German physicist Heinrich Hertz showed that radio waves could be reflected from solid objects. In 1895, Alexander Popov ,

6104-411: The horizontal coordinate system , used in celestial navigation , azimuth is one of the two coordinates . The other is altitude , sometimes called elevation above the horizon. It is also used for satellite dish installation (see also: sat finder ). In modern astronomy azimuth is nearly always measured from the north. In land navigation, azimuth is usually denoted alpha , α , and defined as

6213-407: The reflective surfaces . A corner reflector consists of three flat surfaces meeting like the inside corner of a cube. The structure will reflect waves entering its opening directly back to the source. They are commonly used as radar reflectors to make otherwise difficult-to-detect objects easier to detect. Corner reflectors on boats, for example, make them more detectable to avoid collision or during

6322-408: The synthetic antenna aperture and allows the creation of higher-resolution images than would otherwise be possible with a given physical antenna. SAR is capable of high-resolution remote sensing , independent of flight altitude, and independent of weather, as SAR can select frequencies to avoid weather-caused signal attenuation. SAR has day and night imaging capability as illumination is provided by

6431-527: The "new boy" Arnold Frederic Wilkins to conduct an extensive review of available shortwave units. Wilkins would select a General Post Office model after noting its manual's description of a "fading" effect (the common term for interference at the time) when aircraft flew overhead. By placing a transmitter and receiver on opposite sides of the Potomac River in 1922, U.S. Navy researchers A. Hoyt Taylor and Leo C. Young discovered that ships passing through

6540-413: The 1920s went on to lead the U.K. research establishment to make many advances using radio techniques, including the probing of the ionosphere and the detection of lightning at long distances. Through his lightning experiments, Watson-Watt became an expert on the use of radio direction finding before turning his inquiry to shortwave transmission. Requiring a suitable receiver for such studies, he told

6649-422: The Capon method, but more accurate spectral estimates for amplitude in SAR. In the Capon method, although the spectral peaks are narrower than the APES, the sidelobes are higher than that for the APES. As a result, the estimate for the amplitude is expected to be less accurate for the Capon method than for the APES method. The APES method requires about 1.5 times more computation than the Capon method. SAMV method

SECTION 60

#1732858508801

6758-443: The SAR device travels over a target during the period when the target scene is illuminated creates the large synthetic antenna aperture (the size of the antenna). Typically, the larger the aperture, the higher the image resolution will be, regardless of whether the aperture is physical (a large antenna) or synthetic (a moving antenna) – this allows SAR to create high-resolution images with comparatively small physical antennas. For

6867-421: The SAR image stack are a sampled version of the Fourier transform of reflectivity in elevation direction, but the Fourier transform is irregular. Thus the spectral estimation techniques are used to improve the resolution and reduce speckle compared to the results of conventional Fourier transform SAR imaging techniques. FFT (Fast Fourier Transform i.e., periodogram or matched filter ) is one such method, which

6976-526: The SAR. SAR images have wide applications in remote sensing and mapping of surfaces of the Earth and other planets. Applications of SAR are numerous. Examples include topography, oceanography, glaciology, geology (for example, terrain discrimination and subsurface imaging). SAR can also be used in forestry to determine forest height, biomass, and deforestation. Volcano and earthquake monitoring use differential interferometry . SAR can also be applied for monitoring civil infrastructure stability such as bridges. SAR

7085-770: The United States, independently and in great secrecy, developed technologies that led to the modern version of radar. Australia, Canada, New Zealand, and South Africa followed prewar Great Britain's radar development, Hungary and Sweden generated its radar technology during the war. In France in 1934, following systematic studies on the split-anode magnetron , the research branch of the Compagnie générale de la télégraphie sans fil (CSF) headed by Maurice Ponte with Henri Gutton, Sylvain Berline and M. Hugon, began developing an obstacle-locating radio apparatus, aspects of which were installed on

7194-502: The antenna aperture travels along the flight path, a signal is transmitted at a rate equal to the pulse repetition frequency (PRF). The lower boundary of the PRF is determined by the Doppler bandwidth of the radar. The backscatter of each of these signals is commutatively added on a pixel-by-pixel basis to attain the fine azimuth resolution desired in radar imagery. The spotlight synthetic aperture

7303-489: The antenna — each object will have its own doppler shift. A precise frequency analysis of the radar reflections will thus allow the construction of a detailed image. In order to realise this concept, electromagnetic waves are transmitted sequentially, the echoes are collected and the system electronics digitizes and stores the data for subsequent processing. As transmission and reception occur at different times, they map to different small positions. The well ordered combination of

7412-409: The antenna's field of view. The 3D processing is done in two stages. The azimuth and range direction are focused for the generation of 2D (azimuth-range) high-resolution images, after which a digital elevation model (DEM) is used to measure the phase differences between complex images, which is determined from different look angles to recover the height information. This height information, along with

7521-533: The arrest of Oshchepkov and his subsequent gulag sentence. In total, only 607 Redut stations were produced during the war. The first Russian airborne radar, Gneiss-2 , entered into service in June 1943 on Pe-2 dive bombers. More than 230 Gneiss-2 stations were produced by the end of 1944. The French and Soviet systems, however, featured continuous-wave operation that did not provide the full performance ultimately synonymous with modern radar systems. Full radar evolved as

7630-467: The azimuth from our viewpoint to Point 2 at latitude φ 2 {\displaystyle \varphi _{2}} , longitude L (positive eastward). We can get a fair approximation by assuming the Earth is a sphere, in which case the azimuth α is given by A better approximation assumes the Earth is a slightly-squashed sphere (an oblate spheroid ); azimuth then has at least two very slightly different meanings. Normal-section azimuth

7739-612: The azimuth-range coordinates provided by 2-D SAR focusing, gives the third dimension, which is the elevation. The first step requires only standard processing algorithms, for the second step, additional pre-processing such as image co-registration and phase calibration is used. In addition, multiple baselines can be used to extend 3D imaging to the time dimension . 4D and multi-D SAR imaging allows imaging of complex scenarios, such as urban areas, and has improved performance with respect to classical interferometric techniques such as persistent scatterer interferometry (PSI). SAR algorithms model

7848-475: The beam path caused the received signal to fade in and out. Taylor submitted a report, suggesting that this phenomenon might be used to detect the presence of ships in low visibility, but the Navy did not immediately continue the work. Eight years later, Lawrence A. Hyland at the Naval Research Laboratory (NRL) observed similar fading effects from passing aircraft; this revelation led to a patent application as well as

7957-408: The coordinates ( X 1 , Y 1 ) of one point, the distance D , and the azimuth α to another point ( X 2 , Y 2 ) are known, one can calculate its coordinates: This is typically used in triangulation and azimuth identification (AzID), especially in radar applications. There is a wide variety of azimuthal map projections . They all have the property that directions (the azimuths) from

8066-412: The covariance matrix, the forward-only Capon uses only the forward data vectors to estimate the covariance matrix. The APES (amplitude and phase estimation) method is also a matched-filter-bank method, which assumes that the phase history data is a sum of 2D sinusoids in noise. APES spectral estimator has 2-step filtering interpretation: Empirically, the APES method results in wider spectral peaks than

8175-408: The detection of aircraft and ships. Radar absorbing material , containing resistive and sometimes magnetic substances, is used on military vehicles to reduce radar reflection . This is the radio equivalent of painting something a dark colour so that it cannot be seen by the eye at night. Radar waves scatter in a variety of ways depending on the size (wavelength) of the radio wave and the shape of

8284-421: The detection process. As an example, moving target indication can interact with Doppler to produce signal cancellation at certain radial velocities, which degrades performance. Sea-based radar systems, semi-active radar homing , active radar homing , weather radar , military aircraft, and radar astronomy rely on the Doppler effect to enhance performance. This produces information about target velocity during

8393-411: The detection process. This also allows small objects to be detected in an environment containing much larger nearby slow moving objects. Doppler shift depends upon whether the radar configuration is active or passive. Active radar transmits a signal that is reflected back to the receiver. Passive radar depends upon the object sending a signal to the receiver. The Doppler frequency shift for active radar

8502-606: The device in patent GB593017. Development of radar greatly expanded on 1 September 1936, when Watson-Watt became superintendent of a new establishment under the British Air Ministry , Bawdsey Research Station located in Bawdsey Manor , near Felixstowe, Suffolk. Work there resulted in the design and installation of aircraft detection and tracking stations called " Chain Home " along the East and South coasts of England in time for

8611-538: The electric field is perpendicular to the direction of propagation, and the electric field direction is the polarization of the wave. For a transmitted radar signal, the polarization can be controlled to yield different effects. Radars use horizontal, vertical, linear, and circular polarization to detect different types of reflections. For example, circular polarization is used to minimize the interference caused by rain. Linear polarization returns usually indicate metal surfaces. Random polarization returns usually indicate

8720-473: The entire area in front of it, and then used one of Watson-Watt's own radio direction finders to determine the direction of the returned echoes. This fact meant CH transmitters had to be much more powerful and have better antennas than competing systems but allowed its rapid introduction using existing technologies. A key development was the cavity magnetron in the UK, which allowed the creation of relatively small systems with sub-meter resolution. Britain shared

8829-458: The fact that "radar reflections from discrete objects in a passing radar beam field each [have] a minute Doppler, or speed, shift relative to the antenna". Carl Wiley, working at Goodyear, Arizona, (which later became Goodyear Aerospace, and eventually Lockheed Martin Corporation) in 1951, suggested the principle that — because each object in the radar beam has a slightly different speed relative to

8938-461: The firm GEMA  [ de ] in Germany and then another in June 1935 by an Air Ministry team led by Robert Watson-Watt in Great Britain. In 1935, Watson-Watt was asked to judge recent reports of a German radio-based death ray and turned the request over to Wilkins. Wilkins returned a set of calculations demonstrating the system was basically impossible. When Watson-Watt then asked what such

9047-414: The hour angle is positive westward instead of east). The cartographical azimuth or grid azimuth (in decimal degrees) can be calculated when the coordinates of 2 points are known in a flat plane ( cartographical coordinates ): Remark that the reference axes are swapped relative to the (counterclockwise) mathematical polar coordinate system and that the azimuth is clockwise relative to the north. This

9156-452: The more reliable the target characterization. Multiple captures can be obtained by moving a single antenna to different locations, by placing multiple stationary antennas at different locations, or combinations thereof. The advantage of a single moving antenna is that it can be easily placed in any number of positions to provide any number of monostatic waveforms. For example, an antenna mounted on an airplane takes many captures per second as

9265-623: The objects' locations and speeds. Radar was developed secretly for military use by several countries in the period before and during World War II . A key development was the cavity magnetron in the United Kingdom , which allowed the creation of relatively small systems with sub-meter resolution. The term RADAR was coined in 1940 by the United States Navy as an acronym for "radio detection and ranging". The term radar has since entered English and other languages as an anacronym ,

9374-494: The ocean liner Normandie in 1935. During the same period, Soviet military engineer P.K. Oshchepkov , in collaboration with the Leningrad Electrotechnical Institute , produced an experimental apparatus, RAPID, capable of detecting an aircraft within 3 km of a receiver. The Soviets produced their first mass production radars RUS-1 and RUS-2 Redut in 1939 but further development was slowed following

9483-520: The outbreak of World War II in 1939. This system provided the vital advance information that helped the Royal Air Force win the Battle of Britain ; without it, significant numbers of fighter aircraft, which Great Britain did not have available, would always have needed to be in the air to respond quickly. The radar formed part of the " Dowding system " for collecting reports of enemy aircraft and coordinating

9592-558: The plane travels. The principal advantages of multiple static antennas are that a moving target can be characterized (assuming the capture electronics are fast enough), that no vehicle or motion machinery is necessary, and that antenna positions need not be derived from other, sometimes unreliable, information. (One problem with SAR aboard an airplane is knowing precise antenna positions as the plane travels). For multiple static antennas, all combinations of monostatic and multistatic radar waveform captures are possible. Note, however, that it

9701-706: The primary tool for short-term weather forecasting and watching for severe weather such as thunderstorms , tornadoes , winter storms , precipitation types, etc. Geologists use specialized ground-penetrating radars to map the composition of Earth's crust . Police forces use radar guns to monitor vehicle speeds on the roads. Automotive radars are used for adaptive cruise control and emergency breaking on vehicles by ignoring stationary roadside objects that could cause incorrect brake application and instead measuring moving objects to prevent collision with other vehicles. As part of Intelligent Transport Systems , fixed-position stopped vehicle detection (SVD) radars are mounted on

9810-432: The radial component of the velocity is relevant. When the reflector is moving at right angle to the radar beam, it has no relative velocity. Objects moving parallel to the radar beam produce the maximum Doppler frequency shift. When the transmit frequency ( F T {\displaystyle F_{T}} ) is pulsed, using a pulse repeat frequency of F R {\displaystyle F_{R}} ,

9919-429: The raw data was recorded on film and the postprocessing by matched filter was implemented optically using lenses of conical, cylindrical and spherical shape. The Range-Doppler algorithm is an example of a more recent approach. Synthetic-aperture radar determines the 3D reflectivity from measured SAR data. It is basically a spectrum estimation, because for a specific cell of an image, the complex-value SAR measurements of

10028-409: The received signals builds a virtual aperture that is much longer than the physical antenna width. That is the source of the term "synthetic aperture," giving it the property of an imaging radar. The range direction is perpendicular to the flight track and perpendicular to the azimuth direction, which is also known as the along-track direction because it is in line with the position of the object within

10137-431: The relative moving track, the backprojection algorithm works very well. It uses the concept of Azimuth Processing in the time domain. For the satellite-ground geometry, GEO-SAR plays a significant role. The procedure of this concept is elaborated as follows. Capon and APES can yield more accurate spectral estimates with much lower sidelobes and more narrow spectral peaks than the fast Fourier transform (FFT) method, which

10246-414: The response. Given all required funding and development support, the team produced working radar systems in 1935 and began deployment. By 1936, the first five Chain Home (CH) systems were operational and by 1940 stretched across the entire UK including Northern Ireland. Even by standards of the era, CH was crude; instead of broadcasting and receiving from an aimed antenna, CH broadcast a signal floodlighting

10355-410: The resulting frequency spectrum will contain harmonic frequencies above and below F T {\displaystyle F_{T}} with a distance of F R {\displaystyle F_{R}} . As a result, the Doppler measurement is only non-ambiguous if the Doppler frequency shift is less than half of F R {\displaystyle F_{R}} , called

10464-427: The roadside to detect stranded vehicles, obstructions and debris by inverting the automotive radar approach and ignoring moving objects. Smaller radar systems are used to detect human movement . Examples are breathing pattern detection for sleep monitoring and hand and finger gesture detection for computer interaction. Automatic door opening, light activation and intruder sensing are also common. A radar system has

10573-407: The scattered energy back toward the source. The extent to which an object reflects or scatters radio waves is called its radar cross-section . The power P r returning to the receiving antenna is given by the equation: where In the common case where the transmitter and the receiver are at the same location, R t = R r and the term R t ² R r ² can be replaced by R , where R

10682-451: The scene as a set of point targets that do not interact with each other (the Born approximation ). While the details of various SAR algorithms differ, SAR processing in each case is the application of a matched filter to the raw data, for each pixel in the output image, where the matched filter coefficients are the response from a single isolated point target. In the early days of SAR processing,

10791-431: The signal is attenuated by the medium the beam crosses, and the beam disperses. The maximum range of conventional radar can be limited by a number of factors: Azimuth An azimuth ( / ˈ æ z ə m ə θ / ; from Arabic : اَلسُّمُوت , romanized :  as-sumūt , lit.   'the directions') is the horizontal angle from a cardinal direction , most commonly north , in

10900-491: The target. If the wavelength is much shorter than the target's size, the wave will bounce off in a way similar to the way light is reflected by a mirror . If the wavelength is much longer than the size of the target, the target may not be visible because of poor reflection. Low-frequency radar technology is dependent on resonances for detection, but not identification, of targets. This is described by Rayleigh scattering , an effect that creates Earth's blue sky and red sunsets. When

11009-569: The technology with the U.S. during the 1940 Tizard Mission . In April 1940, Popular Science showed an example of a radar unit using the Watson-Watt patent in an article on air defence. Also, in late 1941 Popular Mechanics had an article in which a U.S. scientist speculated about the British early warning system on the English east coast and came close to what it was and how it worked. Watson-Watt

11118-879: The transmitter. The reflected radar signals captured by the receiving antenna are usually very weak. They can be strengthened by electronic amplifiers . More sophisticated methods of signal processing are also used in order to recover useful radar signals. The weak absorption of radio waves by the medium through which they pass is what enables radar sets to detect objects at relatively long ranges—ranges at which other electromagnetic wavelengths, such as visible light , infrared light , and ultraviolet light , are too strongly attenuated. Weather phenomena, such as fog, clouds, rain, falling snow, and sleet, that block visible light are usually transparent to radio waves. Certain radio frequencies that are absorbed or scattered by water vapour, raindrops, or atmospheric gases (especially oxygen) are avoided when designing radars, except when their detection

11227-487: The two length scales are comparable, there may be resonances . Early radars used very long wavelengths that were larger than the targets and thus received a vague signal, whereas many modern systems use shorter wavelengths (a few centimetres or less) that can image objects as small as a loaf of bread. Short radio waves reflect from curves and corners in a way similar to glint from a rounded piece of glass. The most reflective targets for short wavelengths have 90° angles between

11336-467: The use of radar altimeters possible in certain cases. The radar signals that are reflected back towards the radar receiver are the desirable ones that make radar detection work. If the object is moving either toward or away from the transmitter, there will be a slight change in the frequency of the radio waves due to the Doppler effect . Radar receivers are usually, but not always, in the same location as

11445-662: The use of the Arabic version of the astrolabe astronomy instrument. Its first recorded use in English is in the 1390s in Geoffrey Chaucer 's Treatise on the Astrolabe . The first known record in any Western language is in Spanish in the 1270s in an astronomy book that was largely derived from Arabic sources, the Libros del saber de astronomía commissioned by King Alfonso X of Castile. In

11554-402: The zero. For example, a bearing might be described as "(from) south, (turn) thirty degrees (toward the) east" (the words in brackets are usually omitted), abbreviated "S30°E", which is the bearing 30 degrees in the eastward direction from south, i.e. the bearing 150 degrees clockwise from north. The reference direction, stated first, is always north or south, and the turning direction, stated last,

11663-608: Was a 1938 Bell Lab unit on some United Air Lines aircraft. Aircraft can land in fog at airports equipped with radar-assisted ground-controlled approach systems in which the plane's position is observed on precision approach radar screens by operators who thereby give radio landing instructions to the pilot, maintaining the aircraft on a defined approach path to the runway. Military fighter aircraft are usually fitted with air-to-air targeting radars, to detect and target enemy aircraft. In addition, larger specialized military aircraft carry powerful airborne radars to observe air traffic over

11772-748: Was sent to the U.S. in 1941 to advise on air defense after Japan's attack on Pearl Harbor . Alfred Lee Loomis organized the secret MIT Radiation Laboratory at Massachusetts Institute of Technology , Cambridge, Massachusetts which developed microwave radar technology in the years 1941–45. Later, in 1943, Page greatly improved radar with the monopulse technique that was used for many years in most radar applications. The war precipitated research to find better resolution, more portability, and more features for radar, including small, lightweight sets to equip night fighters ( aircraft interception radar ) and maritime patrol aircraft ( air-to-surface-vessel radar ), and complementary navigation systems like Oboe used by

11881-459: Was the first to use radio waves to detect "the presence of distant metallic objects". In 1904, he demonstrated the feasibility of detecting a ship in dense fog, but not its distance from the transmitter. He obtained a patent for his detection device in April 1904 and later a patent for a related amendment for estimating the distance to the ship. He also obtained a British patent on 23 September 1904 for

#800199