130-497: Tonga Cable System is a submarine fiber-optic cable system connecting Tonga with Fiji , where it connects to other international networks. It is 827 kilometres (514 mi) long and was activated in 2013. It has cable landing points at Sopu, a suburb of Nukuʻalofa in Tonga , and Suva , Fiji. The project was funded by Asian Development Bank and the World Bank . An extension of
260-413: A battery (for example when pressing a telegraph key), the electric charge in the wire induces an opposite charge in the water as it travels along. In 1831, Faraday described this effect in what is now referred to as Faraday's law of induction . As the two charges attract each other, the exciting charge is retarded. The core acts as a capacitor distributed along the length of the cable which, coupled with
390-447: A fiber, sometimes called 'elastic', had significant value to the textile industry because of its excellent elongation and recovery properties. For these purposes, manufactured rubber fiber was made as either an extruded round fiber or rectangular fibers cut into strips from extruded film. Because of its low dye acceptance, feel and appearance, the rubber fiber was either covered by yarn of another fiber or directly woven with other yarns into
520-510: A form of assisted biological coagulation. Little care is taken to exclude twigs, leaves, and even bark from the lumps that are formed, which may also include tree lace. Earth scrap is material that gathers around the base of the tree. It arises from latex overflowing from the cut and running down the bark, from rain flooding a collection cup containing latex, and from spillage from tappers' buckets during collection. It contains soil and other contaminants, and has variable rubber content, depending on
650-449: A gain of +33dBm, however again the amount of power that can be fed into the fiber is limited. In single carrier configurations the dominating limitation is self phase modulation induced by the Kerr effect which limits the amplification to +18 dBm per fiber. In WDM configurations the limitation due to crossphase modulation becomes predominant instead. Optical pre-amplifiers are often used to negate
780-752: A given strain, thereby increasing the elastic force constant and making the rubber harder and less extensible. Raw rubber storage depots and rubber processing can produce malodour that is serious enough to become a source of complaints and protest to those living in the vicinity. Microbial impurities originate during the processing of block rubber. These impurities break down during storage or thermal degradation and produce volatile organic compounds. Examination of these compounds using gas chromatography / mass spectrometry (GC/MS) and gas chromatography (GC) indicates that they contain sulfur, ammonia, alkenes , ketones , esters , hydrogen sulfide , nitrogen, and low-molecular-weight fatty acids (C2–C5). When latex concentrate
910-421: A handful of hours. The first attempt at laying a transatlantic telegraph cable was promoted by Cyrus West Field , who persuaded British industrialists to fund and lay one in 1858. However, the technology of the day was not capable of supporting the project; it was plagued with problems from the outset, and was in operation for only a month. Subsequent attempts in 1865 and 1866 with the world's largest steamship,
1040-683: A machine in 1837 for covering wires with silk or cotton thread that he developed into a wire wrapping capability for submarine cable with a factory in 1857 that became W.T. Henley's Telegraph Works Co., Ltd. The India Rubber, Gutta Percha and Telegraph Works Company , established by the Silver family and giving that name to a section of London , furnished cores to Henley's as well as eventually making and laying finished cable. In 1870 William Hooper established Hooper's Telegraph Works to manufacture his patented vulcanized rubber core, at first to furnish other makers of finished cable, that began to compete with
1170-432: A petroleum refinery or other natural incineration processes, is sometimes used as an additive to rubber to improve its strength, especially in vehicle tires. During vulcanization, rubber's polyisoprene molecules (long chains of isoprene) are heated and cross-linked with molecular bonds to sulfur, forming a 3-D matrix. The optimal percentage of sulfur is approximately 10%. In this form, the polyisoprene molecules orientation
1300-506: A piece of the material was extremely good for rubbing off pencil marks on paper, hence the name "rubber". It slowly made its way around England. In 1764, François Fresnau discovered that turpentine was a rubber solvent . Giovanni Fabbroni is credited with the discovery of naphtha as a rubber solvent in 1779. Charles Goodyear redeveloped vulcanization in 1839, although Mesoamericans had used stabilized rubber for balls and other objects as early as 1600 BC. South America remained
1430-435: A point where it shares properties of both; i.e., if it is heated and cooled, it is degraded but not destroyed. The final properties of a rubber item depend not just on the polymer, but also on modifiers and fillers, such as carbon black , factice , whiting and others. Rubber particles are formed in the cytoplasm of specialized latex-producing cells called laticifers within rubber plants. Rubber particles are surrounded by
SECTION 10
#17328545896091560-428: A public dispute with William Thomson . Whitehouse believed that, with enough voltage, any cable could be driven. Thomson believed that his law of squares showed that retardation could not be overcome by a higher voltage. His recommendation was a larger cable. Because of the excessive voltages recommended by Whitehouse, Cyrus West Field's first transatlantic cable never worked reliably, and eventually short circuited to
1690-415: A pump laser light to be transmitted alongside the data carried by the cable; the pump light and the data are often transmitted in physically separate fibers. The ROPA contains a doped fiber that uses the pump light (often a 1480 nm laser light) to amplify the data signals carried on the rest of the fibers. WDM or wavelength division multiplexing was first implemented in submarine fiber optic cables from
1820-451: A significant amount of rubber. Gloves (medical, household, and industrial) and toy balloons were large consumers of rubber, although the type of rubber used is concentrated latex. Significant tonnage of rubber was used as adhesives in many manufacturing industries and products, although the two most noticeable were the paper and the carpet industries. Rubber was commonly used to make rubber bands and pencil erasers . Rubber produced as
1950-453: A single phospholipid membrane with hydrophobic tails pointed inward. The membrane allows biosynthetic proteins to be sequestered at the surface of the growing rubber particle, which allows new monomeric units to be added from outside the biomembrane, but within the lacticifer. The rubber particle is an enzymatically active entity that contains three layers of material, the rubber particle, a biomembrane and free monomeric units. The biomembrane
2080-408: A single fiber using wavelength division multiplexing (WDM), which allows for multiple optical carrier channels to be transmitted through a single fiber, each carrying its own information. WDM is limited by the optical bandwidth of the amplifiers used to transmit data through the cable and by the spacing between the frequencies of the optical carriers; however this minimum spacing is also limited, with
2210-407: A solid-state optical amplifier , usually an erbium-doped fiber amplifier (EDFA). Each repeater contains separate equipment for each fiber. These comprise signal reforming, error measurement and controls. A solid-state laser dispatches the signal into the next length of fiber. The solid-state laser excites a short length of doped fiber that itself acts as a laser amplifier. As the light passes through
2340-405: A submarine cable can have a major impact in its capacity. SDM is combined with DWDM to improve capacity. The open cable concept allows for the design of a submarine cable independently of the transponders that will be used to transmit data through the cable. SLTE (Submarine Line Terminal Equipment) has transponders and a ROADM ( Reconfigurable optical add-drop multiplexer ) used for handling
2470-475: A typical multi-terabit, transoceanic submarine cable system costs several hundred million dollars to construct. As a result of these cables' cost and usefulness, they are highly valued not only by the corporations building and operating them for profit, but also by national governments. For instance, the Australian government considers its submarine cable systems to be "vital to the national economy". Accordingly,
2600-401: A wire that encircles the tree. This wire incorporates a spring so it can stretch as the tree grows. The latex is led into the cup by a galvanised "spout" knocked into the bark. Rubber tapping normally takes place early in the morning, when the internal pressure of the tree is highest. A good tapper can tap a tree every 20 seconds on a standard half-spiral system, and a common daily "task" size
2730-464: A wire, insulated with tarred hemp and India rubber , in the water of New York Harbor , and telegraphed through it. The following autumn, Wheatstone performed a similar experiment in Swansea Bay . A good insulator to cover the wire and prevent the electric current from leaking into the water was necessary for the success of a long submarine line. India rubber had been tried by Moritz von Jacobi ,
SECTION 20
#17328545896092860-442: Is 25 cm (vertical) bark consumption per year. The latex-containing tubes in the bark ascend in a spiral to the right. For this reason, tapping cuts usually ascend to the left to cut more tubes. The trees drip latex for about four hours, stopping as latex coagulates naturally on the tapping cut, thus blocking the latex tubes in the bark. Tappers usually rest and have a meal after finishing their tapping work and then start collecting
2990-456: Is a stub . You can help Misplaced Pages by expanding it . Submarine communications cable A submarine communications cable is a cable laid on the seabed between land-based stations to carry telecommunication signals across stretches of ocean and sea. The first submarine communications cables were laid beginning in the 1850s and carried telegraphy traffic, establishing the first instant telecommunications links between continents, such as
3120-418: Is a natural polymer of isoprene (polyisoprene), and an elastomer (a stretchy polymer). Polymers are simply chains of molecules that can be linked together. Rubber is one of the few naturally occurring polymers and prized for its high stretch ratio, resilience, and water-proof properties. Other examples of natural polymers include tortoise shell , amber , and animal horn . When harvested, latex rubber takes
3250-415: Is between 450 and 650 trees. Trees are usually tapped on alternate or third days, although many variations in timing, length and number of cuts are used. "Tappers would make a slash in the bark with a small hatchet. These slanting cuts allowed latex to flow from ducts located on the exterior or the inner layer of bark ( cambium ) of the tree. Since the cambium controls the growth of the tree, growth stops if it
3380-491: Is cut. Thus, rubber tapping demanded accuracy, so that the incisions would not be too many given the size of the tree, or too deep, which could stunt its growth or kill it." It is usual to tap a panel at least twice, sometimes three times, during the tree's life. The economic life of the tree depends on how well the tapping is carried out, as the critical factor is bark consumption. A standard in Malaysia for alternate daily tapping
3510-480: Is either not required, the capacity to the country is small enough to be backed up by other means, or having backup is regarded as too expensive. A further redundant-path development over and above the self-healing rings approach is the mesh network whereby fast switching equipment is used to transfer services between network paths with little to no effect on higher-level protocols if a path becomes inoperable. As more paths become available to use between two points, it
3640-552: Is harvested mainly in the form of the latex from the Pará rubber tree ( Hevea brasiliensis ) or others. The latex is a sticky, milky and white colloid drawn off by making incisions in the bark and collecting the fluid in vessels in a process called "tapping". The latex then is refined into the rubber that is ready for commercial processing. In major areas, latex is allowed to coagulate in the collection cup. The coagulated lumps are collected and processed into dry forms for sale. Natural rubber
3770-438: Is held tightly to the rubber core by the high negative charge along the double bonds of the rubber polymer backbone. Free monomeric units and conjugated proteins make up the outer layer. The rubber precursor is isopentenyl pyrophosphate (an allylic compound), which elongates by Mg -dependent condensation by the action of rubber transferase. The monomer adds to the pyrophosphate end of the growing polymer. The process displaces
3900-586: Is less likely that one or two simultaneous failures will prevent end-to-end service. As of 2012, operators had "successfully demonstrated long-term, error-free transmission at 100 Gbps across Atlantic Ocean" routes of up to 6,000 km (3,700 mi), meaning a typical cable can move tens of terabits per second overseas. Speeds improved rapidly in the previous few years, with 40 Gbit/s having been offered on that route only three years earlier in August 2009. Switching and all-by-sea routing commonly increases
4030-595: Is limited, although this has increased over the years; in 2014 unrepeated cables of up to 380 kilometres (240 mi) in length were in service; however these require unpowered repeaters to be positioned every 100 km. The rising demand for these fiber-optic cables outpaced the capacity of providers such as AT&T. Having to shift traffic to satellites resulted in lower-quality signals. To address this issue, AT&T had to improve its cable-laying abilities. It invested $ 100 million in producing two specialized fiber-optic cable laying vessels. These included laboratories in
Tonga Cable System - Misplaced Pages Continue
4160-556: Is low and strain results from small changes of bond lengths and angles: this caused the Challenger disaster , when the American Space Shuttle 's flattened o-rings failed to relax to fill a widening gap. The glass transition is fast and reversible: the force resumes on heating. The parallel chains of stretched rubber are susceptible to crystallization. This takes some time because turns of twisted chains have to move out of
4290-892: Is not cultivated widely in its native continent of South America because of the South American leaf blight , and other natural predators there. Rubber latex is extracted from rubber trees. The economic life of rubber trees in plantations is around 32 years, with up to 7 years being an immature phase and about 25 years of productive phase. The soil requirement is well-drained, weathered soil consisting of laterite , lateritic types, sedimentary types, nonlateritic red or alluvial soils. The climatic conditions for optimum growth of rubber trees are: Many high-yielding clones have been developed for commercial planting. These clones yield more than 2,000 kilograms per hectare (1,800 lb/acre) of dry rubber per year, under ideal conditions. Rubber production has been linked to deforestation. Rubber therefore
4420-582: Is one of seven commodities included in the 2023 EU Regulation on Deforestation-free products (EUDR), which aims to guarantee that the products European Union (EU) citizens consume do not contribute to deforestation or forest degradation worldwide. In places such as Kerala and Sri Lanka, where coconuts are in abundance, the half shell of coconut was used as the latex collection container. Glazed pottery or aluminium or plastic cups became more common in Kerala-India and other countries. The cups are supported by
4550-449: Is produced by smallholders, who collect rubber from trees far from the nearest factory. Many Indonesian smallholders, who farm paddies in remote areas, tap dispersed trees on their way to work in the paddy fields and collect the latex (or the coagulated latex) on their way home. As it is often impossible to preserve the latex sufficiently to get it to a factory that processes latex in time for it to be used to make high quality products, and as
4680-529: Is produced from rubber, sulfuric acid is used for coagulation. This produces malodourous hydrogen sulfide. The industry can mitigate these bad odours with scrubber systems . Rubber is the polymer cis-1,4-polyisoprene – with a molecular weight of 100,000 to 1,000,000 daltons . Typically, a small percentage (up to 5% of dry mass) of other materials, such as proteins , fatty acids , resins , and inorganic materials (salts) are found in natural rubber. Polyisoprene can also be created synthetically, producing what
4810-402: Is sometimes referred to as "synthetic natural rubber", but the synthetic and natural routes are distinct. Some natural rubber sources, such as gutta-percha , are composed of trans-1,4-polyisoprene, a structural isomer that has similar properties. Natural rubber is an elastomer and a thermoplastic . Once the rubber is vulcanized, it is a thermoset . Most rubber in everyday use is vulcanized to
4940-472: Is still random but they become aligned when the rubber is stretched. This sulfur vulcanization makes the rubber stronger and more rigid, but still very elastic. And through the vulcanization process, the sulfur and latex are meant to be totally used up in individual form. Natural rubber latex is shipped from factories in Southeast Asia , South America , and West and Central Africa to destinations around
5070-462: Is the Amazonian rubber tree ( Hevea brasiliensis ), a member of the spurge family , Euphorbiaceae . Once native to Brazil, the species is now pan-tropical. This species is preferred because it grows well under cultivation. A properly managed tree responds to wounding by producing more latex for several years. Congo rubber , formerly a major source of rubber, which motivated the atrocities in
5200-670: Is too small to be commercially viable. Some have been used as scientific instruments to measure earthquake waves and other geomagnetic events. In 1942, Siemens Brothers of New Charlton , London, in conjunction with the United Kingdom National Physical Laboratory , adapted submarine communications cable technology to create the world's first submarine oil pipeline in Operation Pluto during World War II . Active fiber-optic cables may be useful in detecting seismic events which alter cable polarization. In
5330-474: Is used extensively in many applications and products, either alone or in combination with other materials. In most of its useful forms, it has a large stretch ratio and high resilience and also is buoyant and water-proof. Industrial demand for rubber-like materials began to outstrip natural rubber supplies by the end of the 19th century, leading to the synthesis of synthetic rubber in 1909 by chemical means. The major commercial source of natural rubber latex
Tonga Cable System - Misplaced Pages Continue
5460-541: The Australian Communications and Media Authority (ACMA) has created protection zones that restrict activities that could potentially damage cables linking Australia to the rest of the world. The ACMA also regulates all projects to install new submarine cables. Submarine cables are important to the modern military as well as private enterprise. The US military , for example, uses the submarine cable network for data transfer from conflict zones to command staff in
5590-712: The Crimean War various forms of telegraphy played a major role; this was a first. At the start of the campaign there was a telegraph link at Bucharest connected to London. In the winter of 1854 the French extended the telegraph link to the Black Sea coast. In April 1855 the British laid an underwater cable from Varna to the Crimean peninsula so that news of the Crimean War could reach London in
5720-583: The Fraunhofer Institute for Molecular Biology and Applied Ecology (IME) in Germany developed a cultivar of the Kazakh dandelion ( Taraxacum kok-saghyz ) that is suitable for commercial production of natural rubber. In collaboration with Continental Tires , IME began a pilot facility. Many other plants produce forms of latex rich in isoprene polymers, though not all produce usable forms of polymer as easily as
5850-496: The Mullins effect and the Payne effect and is often modeled as hyperelastic . Rubber strain crystallizes . Because there are weakened allylic C-H bonds in each repeat unit , natural rubber is susceptible to vulcanisation as well as being sensitive to ozone cracking . The two main solvents for rubber are turpentine and naphtha (petroleum). Because rubber does not dissolve easily,
5980-668: The North Pacific Cable system was the first regenerative system (i.e., with repeaters ) to completely cross the Pacific from the US mainland to Japan. The US portion of NPC was manufactured in Portland, Oregon, from 1989 to 1991 at STC Submarine Systems, and later Alcatel Submarine Networks . The system was laid by Cable & Wireless Marine on the CS Cable Venture . Transatlantic cables of
6110-732: The Prussian electrical engineer , as far back as the early 19th century. Another insulating gum which could be melted by heat and readily applied to wire made its appearance in 1842. Gutta-percha , the adhesive juice of the Palaquium gutta tree, was introduced to Europe by William Montgomerie , a Scottish surgeon in the service of the British East India Company . Twenty years earlier, Montgomerie had seen whips made of gutta-percha in Singapore , and he believed that it would be useful in
6240-697: The Putumayo genocide . Between the 1880s–1913 Julio César Arana and his company that would become the Peruvian Amazon Company controlled the Putumayo river. W.E. Hardenburg, Benjamin Saldaña Rocca and Roger Casement were influential figures in exposing these atrocities. Roger Casement was also prominent in revealing the Congo atrocities to the world. Days before entering Iquitos by boat Casement wrote "'Caoutchouc
6370-520: The Rhine between Deutz and Cologne . In 1849, Charles Vincent Walker , electrician to the South Eastern Railway , submerged 3 km (2 mi) of wire coated with gutta-percha off the coast from Folkestone , which was tested successfully. In August 1850, having earlier obtained a concession from the French government, John Watkins Brett 's English Channel Submarine Telegraph Company laid
6500-736: The SS Great Eastern , used a more advanced technology and produced the first successful transatlantic cable. Great Eastern later went on to lay the first cable reaching to India from Aden, Yemen, in 1870. From the 1850s until 1911, British submarine cable systems dominated the most important market, the North Atlantic Ocean . The British had both supply side and demand side advantages. In terms of supply, Britain had entrepreneurs willing to put forth enormous amounts of capital necessary to build, lay and maintain these cables. In terms of demand, Britain's vast colonial empire led to business for
6630-557: The cytosol . In plants, isoprene pyrophosphate can also be obtained from the 1-deox-D-xyulose-5-phosphate/2-C-methyl-D-erythritol-4-phosphate pathway within plasmids. The relative ratio of the farnesyl pyrophosphate initiator unit and isoprenyl pyrophosphate elongation monomer determines the rate of new particle synthesis versus elongation of existing particles. Though rubber is known to be produced by only one enzyme, extracts of latex host numerous small molecular weight proteins with unknown function. The proteins possibly serve as cofactors, as
SECTION 50
#17328545896096760-461: The steel wire armouring gave pests a route to eat their way in. Damaged armouring, which was not uncommon, also provided an entrance. Cases of sharks biting cables and attacks by sawfish have been recorded. In one case in 1873, a whale damaged the Persian Gulf Cable between Karachi and Gwadar . The whale was apparently attempting to use the cable to clean off barnacles at a point where
6890-443: The 1980s, fiber-optic cables were developed. The first transatlantic telephone cable to use optical fiber was TAT-8 , which went into operation in 1988. A fiber-optic cable comprises multiple pairs of fibers. Each pair has one fiber in each direction. TAT-8 had two operational pairs and one backup pair. Except for very short lines, fiber-optic submarine cables include repeaters at regular intervals. Modern optical fiber repeaters use
7020-422: The 1990s to the 2000s, followed by DWDM or dense wavelength division mulltiplexing around 2007. Each fiber can carry 30 wavelengths at a time. SDM or spatial division multiplexing submarine cables have at least 12 fiber pairs which is an increase from the maximum of 8 pairs found in conventional submarine cables, and submarine cables with up to 24 fiber pairs have been deployed. The type of modulation employed in
7150-509: The 19th century consisted of an outer layer of iron and later steel wire, wrapping India rubber, wrapping gutta-percha , which surrounded a multi-stranded copper wire at the core. The portions closest to each shore landing had additional protective armour wires. Gutta-percha, a natural polymer similar to rubber, had nearly ideal properties for insulating submarine cables, with the exception of a rather high dielectric constant which made cable capacitance high. William Thomas Henley had developed
7280-649: The Congo Free State for more information on the rubber trade in the Congo Free State in the late 1800s and early 1900s.) The rubber boom in the Amazon also similarly affected indigenous populations to varying degrees. Correrias, or slave raids were frequent in Colombia, Peru and Bolivia where many were either captured or killed. The most well known case of atrocities generated from rubber extraction in South America came from
7410-534: The Congo Free State , came from vines in the genus Landolphia ( L. kirkii , L. heudelotis , and L. owariensis ). Dandelion milk contains latex. The latex exhibits the same quality as the natural rubber from rubber trees . In the wild types of dandelion, latex content is low and varies greatly. In Nazi Germany , research projects tried to use dandelions as a base for rubber production, but failed. In 2013, by inhibiting one key enzyme and using modern cultivation methods and optimization techniques, scientists in
7540-562: The Pará. Some of them require more elaborate processing to produce anything like usable rubber, and most are more difficult to tap. Some produce other desirable materials, for example gutta-percha ( Palaquium gutta ) and chicle from Manilkara species. Others that have been commercially exploited, or at least showed promise as rubber sources, include the rubber fig ( Ficus elastica ), Panama rubber tree ( Castilla elastica ), various spurges ( Euphorbia spp.), lettuce ( Lactuca species),
7670-608: The US mainland to Hawaii in 1902 and Guam to the Philippines in 1903. Canada, Australia, New Zealand and Fiji were also linked in 1902 with the trans-Pacific segment of the All Red Line . Japan was connected into the system in 1906. Service beyond Midway Atoll was abandoned in 1941 due to World War II, but the remainder stayed in operation until 1951 when the FCC gave permission to cease operations. The first trans-Pacific telephone cable
7800-516: The United States. Interruption of the cable network during intense operations could have direct consequences for the military on the ground. Almost all fiber-optic cables from TAT-8 in 1988 until approximately 1997 were constructed by consortia of operators. For example, TAT-8 counted 35 participants including most major international carriers at the time such as AT&T Corporation . Two privately financed, non-consortium cables were constructed in
7930-409: The amount of contaminants. Earth scrap is collected by field workers two or three times a year and may be cleaned in a scrap-washer to recover the rubber, or sold to a contractor who cleans it and recovers the rubber. It is of low quality. Latex coagulates in the cups if kept for long and must be collected before this happens. The collected latex, "field latex", is transferred into coagulation tanks for
SECTION 60
#17328545896098060-466: The cable companies from news agencies, trading and shipping companies, and the British government. Many of Britain's colonies had significant populations of European settlers, making news about them of interest to the general public in the home country. British officials believed that depending on telegraph lines that passed through non-British territory posed a security risk, as lines could be cut and messages could be interrupted during wartime. They sought
8190-456: The cable descended over a steep drop. The unfortunate whale got its tail entangled in loops of cable and drowned. The cable repair ship Amber Witch was only able to winch up the cable with difficulty, weighed down as it was with the dead whale's body. Early long-distance submarine telegraph cables exhibited formidable electrical problems. Unlike modern cables, the technology of the 19th century did not allow for in-line repeater amplifiers in
8320-531: The cable to Haʻapai and Vavaʻu was commissioned in April 2018. On 20 January 2019, the cable broke and disrupted Internet services to Tonga. Satellite communications were used as a backup. Three years later, the 2022 Hunga Tonga–Hunga Ha'apai eruption disrupted it again. A specialist repair ship from SubCom could take days to get to the fault site, as it was deployed from Port Moresby in Papua New Guinea. It
8450-442: The cable, which permitted design of the equipment for accurate telegraphy. The effects of atmospheric electricity and the geomagnetic field on submarine cables also motivated many of the early polar expeditions . Thomson had produced a mathematical analysis of propagation of electrical signals into telegraph cables based on their capacitance and resistance, but since long submarine cables operated at slow rates, he did not include
8580-510: The cable. Large voltages were used to attempt to overcome the electrical resistance of their tremendous length but the cables' distributed capacitance and inductance combined to distort the telegraph pulses in the line, reducing the cable's bandwidth , severely limiting the data rate for telegraph operation to 10–12 words per minute . As early as 1816, Francis Ronalds had observed that electric signals were slowed in passing through an insulated wire or core laid underground, and outlined
8710-535: The cables in maintaining administrative communications with governors throughout its empire, as well as in engaging other nations diplomatically and communicating with its military units in wartime. The geographic location of British territory was also an advantage as it included both Ireland on the east side of the Atlantic Ocean and Newfoundland in North America on the west side, making for the shortest route across
8840-401: The cause to be induction, using the analogy of a long Leyden jar . The same effect was noticed by Latimer Clark (1853) on cores immersed in water, and particularly on the lengthy cable between England and The Hague. Michael Faraday showed that the effect was caused by capacitance between the wire and the earth (or water) surrounding it. Faraday had noticed that when a wire is charged from
8970-608: The creation of a worldwide network within the empire, which became known as the All Red Line , and conversely prepared strategies to quickly interrupt enemy communications. Britain's very first action after declaring war on Germany in World War I was to have the cable ship Alert (not the CS Telconia as frequently reported) cut the five cables linking Germany with France, Spain and the Azores, and through them, North America. Thereafter,
9100-440: The current at 10,000VDC is up to 1,650mA. Hence the total amount of power sent into the cable is often up to 16.5 kW. The optic fiber used in undersea cables is chosen for its exceptional clarity, permitting runs of more than 100 kilometres (62 mi) between repeaters to minimize the number of amplifiers and the distortion they cause. Unrepeated cables are cheaper than repeated cables and their maximum transmission distance
9230-434: The current generation with one end providing a positive voltage and the other a negative voltage. A virtual earth point exists roughly halfway along the cable under normal operation. The amplifiers or repeaters derive their power from the potential difference across them. The voltage passed down the cable is often anywhere from 3000 to 15,000VDC at a current of up to 1,100mA, with the current increasing with decreasing voltage;
9360-402: The data traffic that is crossing oceans is carried by undersea cables. The reliability of submarine cables is high, especially when (as noted above) multiple paths are available in the event of a cable break. Also, the total carrying capacity of submarine cables is in the terabits per second, while satellites typically offer only 1,000 megabits per second and display higher latency . However,
9490-504: The deep-sea sections which comprise the majority of the run, although larger and heavier cables are used for shallow-water sections near shore. After William Cooke and Charles Wheatstone had introduced their working telegraph in 1839, the idea of a submarine line across the Atlantic Ocean began to be thought of as a possible triumph of the future. Samuel Morse proclaimed his faith in it as early as 1840, and in 1842, he submerged
9620-412: The development of submarine branching units (SBUs), more than one destination could be served by a single cable system. Modern cable systems now usually have their fibers arranged in a self-healing ring to increase their redundancy, with the submarine sections following different paths on the ocean floor . One reason for this development was that the capacity of cable systems had become so large that it
9750-438: The distance and thus the round trip latency by more than 50%. For example, the round trip delay (RTD) or latency of the fastest transatlantic connections is under 60 ms, close to the theoretical optimum for an all-sea route. While in theory, a great circle route (GCP) between London and New York City is only 5,600 km (3,500 mi), this requires several land masses ( Ireland , Newfoundland , Prince Edward Island and
9880-407: The dry rubber produced. Latex that drips onto the ground, "earth scrap", is also collected periodically for processing of low-grade product. Cup lump is the coagulated material found in the collection cup when the tapper next visits the tree to tap it again. It arises from latex clinging to the walls of the cup after the latex was last poured into the bucket, and from late-dripping latex exuded before
10010-400: The effects of inductance. By the 1890s, Oliver Heaviside had produced the modern general form of the telegrapher's equations , which included the effects of inductance and which were essential to extending the theory of transmission lines to the higher frequencies required for high-speed data and voice. While laying a transatlantic telephone cable was seriously considered from the 1920s,
10140-636: The fabric. Rubber yarns were used in foundation garments. While rubber is still used in textile manufacturing, its low tenacity limits its use in lightweight garments because latex lacks resistance to oxidizing agents and is damaged by aging, sunlight, oil and perspiration. The textile industry turned to neoprene (polymer of chloroprene ), a type of synthetic rubber, as well as another more commonly used elastomer fiber, spandex (also known as elastane), because of their superiority to rubber in both strength and durability. Rubber exhibits unique physical and chemical properties. Rubber's stress–strain behavior exhibits
10270-415: The fabrication of surgical apparatus. Michael Faraday and Wheatstone soon discovered the merits of gutta-percha as an insulator, and in 1845, the latter suggested that it should be employed to cover the wire which was proposed to be laid from Dover to Calais . In 1847 William Siemens , then an officer in the army of Prussia, laid the first successful underwater cable using gutta percha insulation, across
10400-444: The fiber, it is amplified. This system also permits wavelength-division multiplexing , which dramatically increases the capacity of the fiber. EDFA amplifiers were first used in submarine cables in 1995. Repeaters are powered by a constant direct current passed down the conductor near the centre of the cable, so all repeaters in a cable are in series. Power feed equipment is installed at the terminal stations. Typically both ends share
10530-946: The first transatlantic telegraph cable which became operational on 16 August 1858. Submarine cables first connected all the world's continents (except Antarctica ) when Java was connected to Darwin, Northern Territory , Australia, in 1871 in anticipation of the completion of the Australian Overland Telegraph Line in 1872 connecting to Adelaide, South Australia and thence to the rest of Australia. Subsequent generations of cables carried telephone traffic, then data communications traffic. These early cables used copper wires in their cores, but modern cables use optical fiber technology to carry digital data , which includes telephone, Internet and private data traffic. Modern cables are typically about 25 mm (1 in) in diameter and weigh around 1.4 tonnes per kilometre (2.5 short tons per mile; 2.2 long tons per mile) for
10660-533: The first line across the English Channel , using the converted tugboat Goliath . It was simply a copper wire coated with gutta-percha , without any other protection, and was not successful. However, the experiment served to secure renewal of the concession, and in September 1851, a protected core, or true, cable was laid by the reconstituted Submarine Telegraph Company from a government hulk , Blazer , which
10790-477: The first technique for tapping trees for latex without causing serious harm to the tree. Because of his fervent promotion of this crop, he is popularly remembered by the nickname "Mad Ridley". Before World War II significant uses included door and window profiles, hoses, belts, gaskets, matting , flooring, and dampeners (antivibration mounts) for the automotive industry. The use of rubber in car tires (initially solid rather than pneumatic) in particular consumed
10920-544: The form of latex, an opaque, white, milky suspension of rubber particles in water. It is then transformed through industrial processes to the solid form widely seen in manufactured goods. Natural rubber is reactive and vulnerable to oxidization, but it can be stabilized through a heating process called vulcanization. Vulcanization is a process by which the rubber is heated and sulfur , peroxide , or bisphenol are added to improve resistance and elasticity and to prevent it from oxidizing. Carbon black , which can be derived from
11050-415: The gutta-percha cores. The company later expanded into complete cable manufacture and cable laying, including the building of the first cable ship specifically designed to lay transatlantic cables. Gutta-percha and rubber were not replaced as a cable insulation until polyethylene was introduced in the 1930s. Even then, the material was only available to the military and the first submarine cable using it
11180-459: The higher-grade, technically specified block rubbers such as SVR 3L or SVR CV or used to produce Ribbed Smoke Sheet grades. Naturally coagulated rubber (cup lump) is used in the manufacture of TSR10 and TSR20 grade rubbers. Processing for these grades is a size reduction and cleaning process to remove contamination and prepare the material for the final stage of drying. The dried material is then baled and palletized for storage and shipment. Rubber
11310-431: The international market spot price of a seemingly more profitable crop (for example palm oil ) surges in relation to rubber. For instance, during the 2020 and 2021 international COVID-19 pandemic , demand for rubber gloves surged, leading to a spike in rubber prices of about 30%. In addition to the pandemic, demand exceeded supply in part because long term plantations had been torn out and replaced with other crops over
11440-452: The isthmus connecting New Brunswick to Nova Scotia ) to be traversed, as well as the extremely tidal Bay of Fundy and a land route along Massachusetts ' north shore from Gloucester to Boston and through fairly built up areas to Manhattan itself. In theory, using this partial land route could result in round trip times below 40 ms (which is the speed of light minimum time), and not counting switching. Along routes with less land in
11570-431: The late 1990s, which preceded a massive, speculative rush to construct privately financed cables that peaked in more than $ 22 billion worth of investment between 1999 and 2001. This was followed by the bankruptcy and reorganization of cable operators such as Global Crossing , 360networks , FLAG , Worldcom , and Asia Global Crossing. Tata Communications ' Global Network (TGN) is the only wholly owned fiber network circling
11700-520: The latex sap. Charles Marie de La Condamine is credited with introducing samples of rubber to the Académie Royale des Sciences of France in 1736. In 1751, he presented a paper by François Fresneau to the Académie (published in 1755) that described many of rubber's properties. This has been referred to as the first scientific paper on rubber. In England, Joseph Priestley , in 1770, observed that
11830-402: The latex would anyway have coagulated by the time it reached the factory, the smallholder will coagulate it by any means available, in any container available. Some smallholders use small containers, buckets etc., but often the latex is coagulated in holes in the ground, which are usually lined with plastic sheeting. Acidic materials and fermented fruit juices are used to coagulate the latex –
11960-434: The latex-carrying vessels of the tree become blocked. It is of higher purity and of greater value than the other three types. 'Cup lumps' can also be used to describe a completely different type of coagulate that has collected in smallholder plantations over a period of 1–2 weeks. After tapping all of the trees, the tapper will return to each tree and stir in some type of acid, which allows the newly harvested latex to mix with
12090-416: The latex. There is growing concern for the future supply of rubber due to various factors, including plant disease, climate change, and the volatile market price of rubber. Producers of natural rubber are mostly small family-held plantations, often serving large industrial aggregators. High volatility in the price of rubber affects rubber plantation investment, and farmers may remove their rubber trees if
12220-684: The link from Dover to Ostend in Belgium, by the Submarine Telegraph Company. Meanwhile, the Electric & International Telegraph Company completed two cables across the North Sea , from Orford Ness to Scheveningen , the Netherlands. These cables were laid by Monarch , a paddle steamer which later became the first vessel with permanent cable-laying equipment. In 1858, the steamship Elba
12350-443: The liquid "field latex" at about midday. The four types of field coagula are "cuplump", "treelace", "smallholders' lump", and "earth scrap". Each has significantly different properties. Some trees continue to drip after the collection leading to a small amount of "cup lump" that is collected at the next tapping. The latex that coagulates on the cut is also collected as "tree lace". Tree lace and cup lump together account for 10%–20% of
12480-528: The main source of latex rubber used during much of the 19th century. The rubber trade was heavily controlled by business interests but no laws expressly prohibited the export of seeds or plants. In 1876, Henry Wickham smuggled 70,000 Amazonian rubber tree seeds from Brazil and delivered them to Kew Gardens , England. Only 2,400 of these germinated. Seedlings were then sent to India , British Ceylon ( Sri Lanka ), Dutch East Indies ( Indonesia ), Singapore , and British Malaya . Malaya (now Peninsular Malaysia )
12610-678: The mammoth globe-spanning Eastern Telegraph Company , owned by John Pender . A spin-off from Eastern Telegraph Company was a second sister company, the Eastern Extension, China and Australasia Telegraph Company, commonly known simply as "the Extension." In 1872, Australia was linked by cable to Bombay via Singapore and China and in 1876, the cable linked the British Empire from London to New Zealand. The first trans-Pacific cables providing telegraph service were completed in 1902 and 1903, linking
12740-399: The material is finely divided by shredding prior to its immersion. An ammonia solution can be used to prevent the coagulation of raw latex. Rubber begins to melt at approximately 180 °C (356 °F). On a microscopic scale, relaxed rubber is a disorganized cluster of erratically changing wrinkled chains. In stretched rubber, the chains are almost linear. The restoring force is due to
12870-549: The minimum spacing often being 50 GHz (0.4 nm). The use of WDM can reduce the maximum length of the cable although this can be overcome by designing equipment with this in mind. Optical post amplifiers, used to increase the strength of the signal generated by the optical transmitter often use a diode-pumped erbium-doped fiber laser. The diode is often a high power 980 or 1480 nm laser diode. This setup allows for an amplification of up to +24dBm in an affordable manner. Using an erbium-ytterbium doped fiber instead allows for
13000-474: The ocean when Whitehouse increased the voltage beyond the cable design limit. Thomson designed a complex electric-field generator that minimized current by resonating the cable, and a sensitive light-beam mirror galvanometer for detecting the faint telegraph signals. Thomson became wealthy on the royalties of these, and several related inventions. Thomson was elevated to Lord Kelvin for his contributions in this area, chiefly an accurate mathematical model of
13130-444: The ocean, which reduced costs significantly. A few facts put this dominance of the industry in perspective. In 1896, there were 30 cable-laying ships in the world, 24 of which were owned by British companies. In 1892, British companies owned and operated two-thirds of the world's cables and by 1923, their share was still 42.7 percent. During World War I , Britain's telegraph communications were almost completely uninterrupted, while it
13260-418: The only way Germany could communicate was by wireless, and that meant that Room 40 could listen in. The submarine cables were an economic benefit to trading companies, because owners of ships could communicate with captains when they reached their destination and give directions as to where to go next to pick up cargo based on reported pricing and supply information. The British government had obvious uses for
13390-435: The other pumping them at 1450 nm. Launching a pump frequency (pump laser light) at a power of just one watt leads to an increase in reach of 45 km or a 6-fold increase in capacity. Another way to increase the reach of a cable is by using unpowered repeaters called remote optical pre-amplifiers (ROPAs); these still make a cable count as unrepeatered since the repeaters do not require electrical power but they do require
13520-478: The planet. Natural rubber Rubber , also called India rubber , latex , Amazonian rubber , caucho , or caoutchouc , as initially produced, consists of polymers of the organic compound isoprene , with minor impurities of other organic compounds. Thailand , Malaysia , Indonesia , and Cambodia are four of the leading rubber producers. Types of polyisoprene that are used as natural rubbers are classified as elastomers . Currently, rubber
13650-561: The plantation expanded to Karnataka , Tamil Nadu and the Andaman and Nicobar Islands of India. Today, India is the world's 3rd largest producer and 4th largest consumer of rubber. In Singapore and Malaya, commercial production was heavily promoted by Sir Henry Nicholas Ridley , who served as the first Scientific Director of the Singapore Botanic Gardens from 1888 to 1911. He distributed rubber seeds to many planters and developed
13780-589: The preparation of dry rubber or transferred into air-tight containers with sieving for ammoniation. Ammoniation, invented by patent lawyer and vice-president of the United States Rubber Company Ernest Hopkinson around 1920, preserves the latex in a colloidal state for longer periods of time. Latex is generally processed into either latex concentrate for manufacture of dipped goods or coagulated under controlled, clean conditions using formic acid. The coagulated latex can then be processed into
13910-400: The preponderance of wrinkled conformations over more linear ones. For the quantitative treatment see ideal chain , for more examples see entropic force . Cooling below the glass transition temperature permits local conformational changes but a reordering is practically impossible because of the larger energy barrier for the concerted movement of longer chains. "Frozen" rubber's elasticity
14040-422: The previously coagulated material. The rubber/acid mixture is what gives rubber plantations, markets, and factories a strong odor. Tree lace is the coagulum strip that the tapper peels off the previous cut before making a new cut. It usually has higher copper and manganese contents than cup lump. Both copper and manganese are pro-oxidants and can damage the physical properties of the dry rubber. Smallholders' lump
14170-419: The related Scorzonera tau-saghyz , various Taraxacum species, including common dandelion ( Taraxacum officinale ) and Kazakh dandelion, and, perhaps most importantly for its hypoallergenic properties, guayule ( Parthenium argentatum ). The term gum rubber is sometimes applied to the tree-obtained version of natural rubber in order to distinguish it from the synthetic version. The first use of rubber
14300-477: The resistance and inductance of the cable, limits the speed at which a signal travels through the conductor of the cable. Early cable designs failed to analyse these effects correctly. Famously, E.O.W. Whitehouse had dismissed the problems and insisted that a transatlantic cable was feasible. When he subsequently became chief electrician of the Atlantic Telegraph Company , he became involved in
14430-537: The ships for splicing cable and testing its electrical properties. Such field monitoring is important because the glass of fiber-optic cable is less malleable than the copper cable that had been formerly used. The ships are equipped with thrusters that increase maneuverability. This capability is important because fiber-optic cable must be laid straight from the stern, which was another factor that copper-cable-laying ships did not have to contend with. Originally, submarine cables were simple point-to-point connections. With
14560-562: The signals in the cable via software control. The ROADM is used to improve the reliability of the cable by allowing it to operate even if it has faults. This equipment is located inside a cable landing station (CLS). C-OTDR (Coherent Optical Time Domain Reflectometry) is used in submarine cables to detect the location of cable faults. The wet plant of a submarine cable comprises the cable itself, branching units, repeaters and possibly OADMs ( Optical add-drop multiplexers ). Currently 99% of
14690-564: The synthetic rate decreases with complete removal. More than 28 million tons of rubber were produced in 2017, of which approximately 47% was natural. Since the bulk is synthetic, which is derived from petroleum, the price of natural rubber is determined, to a large extent, by the prevailing global price of crude oil. Asia was the main source of natural rubber, accounting for about 90% of output in 2021. The three largest producers, Thailand , Indonesia, and Malaysia, together account for around 72% of all natural rubber production. Natural rubber
14820-601: The technology required for economically feasible telecommunications was not developed until the 1940s. A first attempt to lay a " pupinized " telephone cable—one with loading coils added at regular intervals—failed in the early 1930s due to the Great Depression . TAT-1 (Transatlantic No. 1) was the first transatlantic telephone cable system. Between 1955 and 1956, cable was laid between Gallanach Bay, near Oban , Scotland and Clarenville, Newfoundland and Labrador , in Canada. It
14950-435: The terminal high-energy pyrophosphate. The reaction produces a cis polymer. The initiation step is catalyzed by prenyltransferase , which converts three monomers of isopentenyl pyrophosphate into farnesyl pyrophosphate . The farnesyl pyrophosphate can bind to rubber transferase to elongate a new rubber polymer. The required isopentenyl pyrophosphate is obtained from the mevalonate pathway, which derives from acetyl-CoA in
15080-441: The thermal noise of the receiver. Pumping the pre-amplifier with a 980 nm laser leads to a noise of at most 3.5 dB, with a noise of 5 dB usually obtained with a 1480 nm laser. The noise has to be filtered using optical filters. Raman amplification can be used to extend the reach or the capacity of an unrepeatered cable, by launching 2 frequencies into a single fiber; one carrying data signals at 1550 nm, and
15210-453: The way of the growing crystallites . Crystallization has occurred, for example, when, after days, an inflated toy balloon is found withered at a relatively large remaining volume. Where it is touched, it shrinks because the temperature of the hand is enough to melt the crystals. Vulcanization of rubber creates di- and polysulfide bonds between chains, which limits the degrees of freedom and results in chains that tighten more quickly for
15340-517: The way, round trip times can approach speed of light minimums in the long term. The type of optical fiber used in unrepeated and very long cables is often PCSF (pure silica core) due to its low loss of 0.172 dB per kilometer when carrying a 1550 nm wavelength laser light. The large chromatic dispersion of PCSF means that its use requires transmission and receiving equipment designed with this in mind; this property can also be used to reduce interference when transmitting multiple channels through
15470-442: The world. As the cost of natural rubber has risen significantly and rubber products are dense, the shipping methods offering the lowest cost per unit weight are preferred. Depending on destination, warehouse availability, and transportation conditions, some methods are preferred by certain buyers. In international trade, latex rubber is mostly shipped in 20-foot ocean containers. Inside the container, smaller containers are used to store
15600-634: Was able to quickly cut Germany's cables worldwide. Throughout the 1860s and 1870s, British cable expanded eastward, into the Mediterranean Sea and the Indian Ocean. An 1863 cable to Bombay (now Mumbai ), India, provided a crucial link to Saudi Arabia . In 1870, Bombay was linked to London via submarine cable in a combined operation by four cable companies, at the behest of the British Government. In 1872, these four companies were combined to form
15730-652: Was by the indigenous cultures of Mesoamerica . The earliest archeological evidence of the use of natural latex from the Hevea tree comes from the Olmec culture, in which rubber was first used for making balls for the Mesoamerican ballgame . Rubber was later used by the Maya and Aztec cultures: in addition to making balls, Aztecs used rubber for other purposes, such as making containers and to make textiles waterproof by impregnating them with
15860-436: Was expected to take at least two weeks to repair the system, assuming no new eruption affected the zone. Repair of the cable to Nukuʻalofa, of which 55 kilometres had disappeared, presumed buried by an underwater avalanche, was completed on 21 February, with testing and recommissioning expected within 24 hours. The extension from Nukuʻalofa to Haʻapai and Vavaʻu remained damaged. This article related to telecommunications
15990-736: Was first called 'india rubber,' because it came from the Indies, and the earliest European use of it was to rub out or erase. It is now called India rubber because it rubs out or erases the Indians." In India , commercial cultivation was introduced by British planters, although the experimental efforts to grow rubber on a commercial scale were initiated as early as 1873 at the Calcutta Botanical Garden . The first commercial Hevea plantations were established at Thattekadu in Kerala in 1902. In later years
16120-548: Was inaugurated on September 25, 1956, initially carrying 36 telephone channels. In the 1960s, transoceanic cables were coaxial cables that transmitted frequency-multiplexed voiceband signals . A high-voltage direct current on the inner conductor powered repeaters (two-way amplifiers placed at intervals along the cable). The first-generation repeaters remain among the most reliable vacuum tube amplifiers ever designed. Later ones were transistorized. Many of these cables are still usable, but have been abandoned because their capacity
16250-772: Was laid from Hawaii to Japan in 1964, with an extension from Guam to The Philippines. Also in 1964, the Commonwealth Pacific Cable System (COMPAC), with 80 telephone channel capacity, opened for traffic from Sydney to Vancouver, and in 1967, the South East Asia Commonwealth (SEACOM) system, with 160 telephone channel capacity, opened for traffic. This system used microwave radio from Sydney to Cairns (Queensland), cable running from Cairns to Madang ( Papua New Guinea ), Guam , Hong Kong , Kota Kinabalu (capital of Sabah , Malaysia), Singapore , then overland by microwave radio to Kuala Lumpur . In 1991,
16380-712: Was later to become the biggest producer of rubber. In the early 1900s, the Congo Free State in Africa was also a significant source of natural rubber latex, mostly gathered by forced labor . King Leopold II's colonial state brutally enforced production quotas due to the high price of natural rubber at the time. Tactics to enforce the rubber quotas included removing the hands of victims to prove they had been killed. Soldiers often came back from raids with baskets full of chopped-off hands. Villages that resisted were razed to encourage better compliance locally. (See Atrocities in
16510-654: Was not laid until 1945 during World War II across the English Channel . In the 1920s, the American military experimented with rubber-insulated cables as an alternative to gutta-percha, since American interests controlled significant supplies of rubber but did not have easy access to gutta-percha manufacturers. The 1926 development by John T. Blake of deproteinized rubber improved the impermeability of cables to water. Many early cables suffered from attack by sea life. The insulation could be eaten, for instance, by species of Teredo (shipworm) and Xylophaga . Hemp laid between
16640-425: Was not possible to completely back up a cable system with satellite capacity, so it became necessary to provide sufficient terrestrial backup capability. Not all telecommunications organizations wish to take advantage of this capability, so modern cable systems may have dual landing points in some countries (where back-up capability is required) and only single landing points in other countries where back-up capability
16770-552: Was towed across the Channel. In 1853, more successful cables were laid, linking Great Britain with Ireland , Belgium , and the Netherlands , and crossing The Belts in Denmark . The British & Irish Magnetic Telegraph Company completed the first successful Irish link on May 23 between Portpatrick and Donaghadee using the collier William Hutt . The same ship was used for
16900-471: Was used to lay a telegraph cable from Jersey to Guernsey , on to Alderney and then to Weymouth , the cable being completed successfully in September of that year. Problems soon developed with eleven breaks occurring by 1860 due to storms, tidal and sand movements, and wear on rocks. A report to the Institution of Civil Engineers in 1860 set out the problems to assist in future cable-laying operations. In
#608391