A reusable launch vehicle has parts that can be recovered and reflown, while carrying payloads from the surface to outer space . Rocket stages are the most common launch vehicle parts aimed for reuse. Smaller parts such as rocket engines and boosters can also be reused, though reusable spacecraft may be launched on top of an expendable launch vehicle. Reusable launch vehicles do not need to make these parts for each launch, therefore reducing its launch cost significantly. However, these benefits are diminished by the cost of recovery and refurbishment.
140-605: STS-90 was a 1998 Space Shuttle mission flown by the Space Shuttle Columbia . The 16-day mission marked the last flight of the European Space Agency 's Spacelab laboratory module, which had first flown on Columbia on STS-9 , and was also the last daytime landing for Columbia . Neurolab was a Spacelab module mission focusing on the effects of microgravity on the nervous system. The goals of Neurolab were to study basic research questions and to increase
280-993: A spaceplane to a runway landing, usually to the Shuttle Landing Facility at KSC, Florida, or to Rogers Dry Lake in Edwards Air Force Base , California. If the landing occurred at Edwards, the orbiter was flown back to the KSC atop the Shuttle Carrier Aircraft (SCA), a specially modified Boeing 747 designed to carry the shuttle above it. The first orbiter, Enterprise , was built in 1976 and used in Approach and Landing Tests (ALT), but had no orbital capability. Four fully operational orbiters were initially built: Columbia , Challenger , Discovery , and Atlantis . Of these, two were lost in mission accidents: Challenger in 1986 and Columbia in 2003 , with
420-487: A NASA engineer who had worked to design the Mercury capsule, patented a design for a two-stage fully recoverable system with a straight-winged orbiter mounted on a larger straight-winged booster. The Air Force Flight Dynamics Laboratory argued that a straight-wing design would not be able to withstand the high thermal and aerodynamic stresses during reentry, and would not provide the required cross-range capability. Additionally,
560-497: A crewed spaceflight engineer on both STS-51-C and STS-51-J to serve as a military representative for a National Reconnaissance Office payload. A Space Shuttle crew typically had seven astronauts, with STS-61-A flying with eight. The crew compartment comprised three decks and was the pressurized, habitable area on all Space Shuttle missions. The flight deck consisted of two seats for the commander and pilot, as well as an additional two to four seats for crew members. The mid-deck
700-514: A fully reusable successor to the Saturn V rocket, having the capacity of transporting up to 450–910 t (990,000–2,000,000 lb) to orbit. See also Sea Dragon , and Douglas SASSTO . The BAC Mustard was studied starting in 1964. It would have comprised three identical spaceplanes strapped together and arranged in two stages. During ascent the two outer spaceplanes, which formed the first stage, would detach and glide back individually to earth. It
840-459: A future reusable shuttle: Class I would have a reusable orbiter mounted on expendable boosters, Class II would use multiple expendable rocket engines and a single propellant tank (stage-and-a-half), and Class III would have both a reusable orbiter and a reusable booster. In September 1969, the Space Task Group, under the leadership of U.S. Vice President Spiro Agnew , issued a report calling for
980-576: A glider. Its three-part fuselage provided support for the crew compartment, cargo bay, flight surfaces, and engines. The rear of the orbiter contained the Space Shuttle Main Engines (SSME), which provided thrust during launch, as well as the Orbital Maneuvering System (OMS), which allowed the orbiter to achieve, alter, and exit its orbit once in space. Its double- delta wings were 18 m (60 ft) long, and were swept 81° at
1120-477: A mobile platform for astronauts conducting an EVA. The RMS was built by the Canadian company Spar Aerospace and was controlled by an astronaut inside the orbiter's flight deck using their windows and closed-circuit television. The RMS allowed for six degrees of freedom and had six joints located at three points along the arm. The original RMS could deploy or retrieve payloads up to 29,000 kg (65,000 lb), which
1260-775: A part of its launch system. More contemporarily the Falcon 9 launch system has carried reusable vehicles such as the Dragon 2 and X-37 , transporting two reusable vehicles at the same time. Contemporary reusable orbital vehicles include the X-37, the Dream Chaser , the Dragon 2, the Indian RLV-TD and the upcoming European Space Rider (successor to the IXV ). As with launch vehicles, all pure spacecraft during
1400-528: A partial-pressure version of the high-altitude pressure suits with a helmet. In 1994, the LES was replaced by the full-pressure Advanced Crew Escape Suit (ACES), which improved the safety of the astronauts in an emergency situation. Columbia originally had modified SR-71 zero-zero ejection seats installed for the ALT and first four missions, but these were disabled after STS-4 and removed after STS-9 . The flight deck
1540-517: A partially reusable system would be the most cost-effective solution. The head of the NASA Office of Manned Space Flight, George Mueller , announced the plan for a reusable shuttle on August 10, 1968. NASA issued a request for proposal (RFP) for designs of the Integral Launch and Reentry Vehicle (ILRV) on October 30, 1968. Rather than award a contract based upon initial proposals, NASA announced
SECTION 10
#17328523352841680-541: A phased approach for the Space Shuttle contracting and development; Phase A was a request for studies completed by competing aerospace companies, Phase B was a competition between two contractors for a specific contract, Phase C involved designing the details of the spacecraft components, and Phase D was the production of the spacecraft. In December 1968, NASA created the Space Shuttle Task Group to determine
1820-481: A port-side hatch that the crew used for entry and exit while on Earth. The airlock is a structure installed to allow movement between two spaces with different gas components, conditions, or pressures. Continuing on the mid-deck structure, each orbiter was originally installed with an internal airlock in the mid-deck. The internal airlock was installed as an external airlock in the payload bay on Discovery , Atlantis , and Endeavour to improve docking with Mir and
1960-665: A result of an O-ring failing at low temperature, the SRBs were redesigned to provide a constant seal regardless of the ambient temperature. The Space Shuttle's operations were supported by vehicles and infrastructure that facilitated its transportation, construction, and crew access. The crawler-transporters carried the MLP and the Space Shuttle from the VAB to the launch site. The Shuttle Carrier Aircraft (SCA) were two modified Boeing 747s that could carry an orbiter on its back. The original SCA (N905NA)
2100-422: A rocket which is planned to be reusable. As of October 2024 , Starship is the only launch vehicle intended to be fully reusable that has been fully built and tested. The most recent test flight was on October 13, 2024, in which the vehicle completed a suborbital launch and landed both stages for the second time. The Super Heavy booster was caught successfully by the "chopstick system" on Orbital Pad A for
2240-661: A second orbiter. Later that month, Rockwell began converting STA-099 to OV-099, later named Challenger . On January 29, 1979, NASA ordered two additional orbiters, OV-103 and OV-104, which were named Discovery and Atlantis . Construction of OV-105, later named Endeavour , began in February 1982, but NASA decided to limit the Space Shuttle fleet to four orbiters in 1983. After the loss of Challenger , NASA resumed production of Endeavour in September 1987. After it arrived at Edwards AFB, Enterprise underwent flight testing with
2380-645: A separate central processing unit (CPU) and input/output processor (IOP), and non-volatile solid-state memory . From 1991 to 1993, the orbiter vehicles were upgraded to the AP-101S, which improved the memory and processing capabilities, and reduced the volume and weight of the computers by combining the CPU and IOP into a single unit. Four of the GPCs were loaded with the Primary Avionics Software System (PASS), which
2520-410: A speech. After STS-4, NASA declared its Space Transportation System (STS) operational. The Space Shuttle was the first operational orbital spacecraft designed for reuse . Each Space Shuttle orbiter was designed for a projected lifespan of 100 launches or ten years of operational life, although this was later extended. At launch, it consisted of the orbiter , which contained the crew and payload,
2660-761: A total of 135 missions from 1981 to 2011. They launched from the Kennedy Space Center (KSC) in Florida . Operational missions launched numerous satellites , interplanetary probes , and the Hubble Space Telescope (HST), conducted science experiments in orbit, participated in the Shuttle- Mir program with Russia, and participated in the construction and servicing of the International Space Station (ISS). The Space Shuttle fleet's total mission time
2800-505: A total of 14 astronauts killed. A fifth operational (and sixth in total) orbiter, Endeavour , was built in 1991 to replace Challenger . The three surviving operational vehicles were retired from service following Atlantis ' s final flight on July 21, 2011. The U.S. relied on the Russian Soyuz spacecraft to transport astronauts to the ISS from the last Shuttle flight until the launch of
2940-428: A two-part drag parachute system to slow the orbiter after landing. The orbiter used retractable landing gear with a nose landing gear and two main landing gear, each containing two tires. The main landing gear contained two brake assemblies each, and the nose landing gear contained an electro-hydraulic steering mechanism. The Space Shuttle crew varied per mission. They underwent rigorous testing and training to meet
SECTION 20
#17328523352843080-683: Is a retired, partially reusable low Earth orbital spacecraft system operated from 1981 to 2011 by the U.S. National Aeronautics and Space Administration (NASA) as part of the Space Shuttle program . Its official program name was Space Transportation System (STS), taken from the 1969 plan led by U.S. Vice President Spiro Agnew for a system of reusable spacecraft where it was the only item funded for development. The first ( STS-1 ) of four orbital test flights occurred in 1981, leading to operational flights ( STS-5 ) beginning in 1982. Five complete Space Shuttle orbiter vehicles were built and flown on
3220-423: Is an in-air-capture tow back system, advocated by a company called EMBENTION with its FALCon project. Vehicles that land horizontally on a runway require wings and undercarriage. These typically consume about 9-12% of the landing vehicle mass, which either reduces the payload or increases the size of the vehicle. Concepts such as lifting bodies offer some reduction in wing mass, as does the delta wing shape of
3360-480: Is assumed that the bulk density of the first stage (without propellant) is less than the bulk density of air. Upon returning from flight, such a first stage remains floating in the air (without touching the surface of the Earth). This will ensure that the first stage is retained for reuse. Increasing the size of the first stage increases aerodynamic losses. This results in a slight decrease in payload. This reduction in payload
3500-607: Is compensated for by the reuse of the first stage. Reusable stages weigh more than equivalent expendable stages . This is unavoidable due to the supplementary systems, landing gear and/or surplus propellant needed to land a stage. The actual mass penalty depends on the vehicle and the return mode chosen. After the launcher lands, it may need to be refurbished to prepare it for its next flight. This process may be lengthy and expensive. The launcher may not be able to be recertified as human-rated after refurbishment, although SpaceX has flown reused Falcon 9 boosters for human missions. There
3640-452: Is cooled by 1,080 interior lines carrying liquid hydrogen and is thermally protected by insulative and ablative material. The RS-25 engines had several improvements to enhance reliability and power. During the development program, Rocketdyne determined that the engine was capable of safe reliable operation at 104% of the originally specified thrust. To keep the engine thrust values consistent with previous documentation and software, NASA kept
3780-430: Is eventually a limit on how many times a launcher can be refurbished before it has to be retired, but how often a launcher can be reused differs significantly between the various launch system designs. With the development of rocket propulsion in the first half of the twentieth century, space travel became a technical possibility. Early ideas of a single-stage reusable spaceplane proved unrealistic and although even
3920-733: Is thought of as the first stage of the launch vehicle. An example of this configuration is the Orbital Sciences Pegasus . For suborbital flight the SpaceShipTwo uses for liftoff a carrier plane, its mothership the Scaled Composites White Knight Two . Rocket Lab is working on Neutron , and the European Space Agency is working on Themis . Both vehicles are planned to recover the first stage. So far, most launch systems achieve orbital insertion with at least partially expended multistaged rockets , particularly with
4060-533: Is to be caught by arms after performing most of the typical steps of a retrograde landing. Blue Origin 's New Shepard suborbital rocket also lands vertically back at the launch site. Retrograde landing typically requires about 10% of the total first stage propellant, reducing the payload that can be carried due to the rocket equation . There is also the concept of a launch vehicle with an inflatable, reusable first stage. The shape of this structure will be supported by excess internal pressure (using light gases). It
4200-451: Is working on a two-stage-to-orbit system. SpaceX is testing Starship , which has been in development since 2016 and has made an initial test flight in April 2023 and 5 more flights as of November 2024. Blue Origin , with Project Jarvis , began development work by early 2021, but has announced no date for testing and have not discussed the project publicly. Stoke Space is also developing
4340-508: The Columbia disaster . Beginning with STS-114 , the orbiter vehicles were equipped with the wing leading edge impact detection system to alert the crew to any potential damage. The entire underside of the orbiter vehicle, as well as the other hottest surfaces, were protected with tiles of high-temperature reusable surface insulation, made of borosilicate glass -coated silica fibers that trapped heat in air pockets and redirected it out. Areas on
STS-90 - Misplaced Pages Continue
4480-749: The Crew Dragon Demo-2 mission in May 2020. In the late 1930s, the German government launched the " Amerikabomber " project, and Eugen Sanger 's idea, together with mathematician Irene Bredt , was a winged rocket called the Silbervogel (German for "silver bird"). During the 1950s, the United States Air Force proposed using a reusable piloted glider to perform military operations such as reconnaissance, satellite attack, and air-to-ground weapons employment. In
4620-544: The Falcon 9 and the New Shepard employ retrograde burns for re-entry, and landing. Reusable systems can come in single or multiple ( two or three ) stages to orbit configurations. For some or all stages the following landing system types can be employed. These are landing systems that employ parachutes and bolstered hard landings, like in a splashdown at sea or a touchdown at land. The latter may require an engine burn just before landing as parachutes alone cannot slow
4760-558: The ISS , along with the Orbiter Docking System . The airlock module can be fitted in the mid-bay, or connected to it but in the payload bay. With an internal cylindrical volume of 1.60 metres (5 feet 3 inches) diameter and 2.11 metres (6 feet 11 inches) in length, it can hold two suited astronauts. It has two D-shaped hatchways 1.02 m (40 in) long (diameter), and 0.91 m (36 in) wide. The orbiter
4900-592: The Martin Marietta X-24B . The program tested aerodynamic characteristics that would later be incorporated in design of the Space Shuttle, including unpowered landing from a high altitude and speed. On September 24, 1966, as the Apollo space program neared its design completion, NASA and the Air Force released a joint study concluding that a new vehicle was required to satisfy their respective future demands and that
5040-543: The Shuttle Carrier Aircraft , a Boeing 747 that had been modified to carry the orbiter. In February 1977, Enterprise began the Approach and Landing Tests (ALT) and underwent captive flights, where it remained attached to the Shuttle Carrier Aircraft for the duration of the flight. On August 12, 1977, Enterprise conducted its first glide test, where it detached from the Shuttle Carrier Aircraft and landed at Edwards AFB. After four additional flights, Enterprise
5180-685: The Space Launch System are considered to be retrofitted with such heat shields to salvage the expensive engines, possibly reducing the costs of launches significantly. Heat shields allow an orbiting spacecraft to land safely without expending very much fuel. They need not take the form of inflatable heat shields, they may simply take the form of heat-resistant tiles that prevent heat conduction . Heat shields are also proposed for use in combination with retrograde thrust to allow for full reusability as seen in Starship . Reusable launch system stages such as
5320-465: The Space Shuttle . Systems like the McDonnell Douglas DC-X (Delta Clipper) and those by SpaceX are examples of a retrograde system. The boosters of Falcon 9 and Falcon Heavy land using one of their nine engines. The Falcon 9 rocket is the first orbital rocket to vertically land its first stage on the ground. The first stage of Starship is planned to land vertically, while the second
5460-550: The Space Shuttle orbiter that acted as an orbital insertion stage, but it did not reuse the External Tank that fed the RS-25 engines. This is an example of a reusable launch system which reuses specific components of rockets. ULA’s Vulcan Centaur was originally designed to reuse the first stage engines, while the tank is expended. The engines would splashdown on an inflatable aeroshell , then be recovered. On 23 February 2024, one of
5600-619: The Tracking and Data Relay Satellite System and the Spacecraft Tracking and Data Acquisition Network ground stations to communicate with the orbiter throughout its orbit. Additionally, the orbiter deployed a high-bandwidth K u band radio out of the cargo bay, which could also be utilized as a rendezvous radar. The orbiter was also equipped with two UHF radios for communications with air traffic control and astronauts conducting EVA. The Space Shuttle's fly-by-wire control system
5740-529: The external tank (ET), and the two solid rocket boosters (SRBs). Responsibility for the Space Shuttle components was spread among multiple NASA field centers. The KSC was responsible for launch, landing, and turnaround operations for equatorial orbits (the only orbit profile actually used in the program). The U.S. Air Force at the Vandenberg Air Force Base was responsible for launch, landing, and turnaround operations for polar orbits (though this
STS-90 - Misplaced Pages Continue
5880-484: The qualification requirements for their roles. The crew was divided into three categories: Pilots, Mission Specialists, and Payload Specialists. Pilots were further divided into two roles: Space Shuttle Commanders and Space Shuttle Pilots. The test flights only had two members each, the commander and pilot, who were both qualified pilots that could fly and land the orbiter. The on-orbit operations, such as experiments, payload deployment, and EVAs, were conducted primarily by
6020-536: The 2000s and 2010s lead to a resurgence of their development, such as in SpaceShipOne , New Shepard , Electron , Falcon 9 , and Falcon Heavy . Many launch vehicles are now expected to debut with reusability in the 2020s, such as Starship , New Glenn , Neutron , Soyuz-7 , Ariane Next , Long March , Terran R , and the Dawn Mk-II Aurora. The impact of reusability in launch vehicles has been foundational in
6160-445: The 2195 aluminum-lithium alloy, which was 40% stronger and 10% less dense than its predecessor, 2219 aluminum-lithium alloy. The SLWT weighed 3,400 kg (7,500 lb) less than the LWT, which allowed the Space Shuttle to deliver heavy elements to ISS's high inclination orbit. The Solid Rocket Boosters (SRB) provided 71.4% of the Space Shuttle's thrust during liftoff and ascent, and were
6300-452: The Air Force required a larger payload capacity than Faget's design allowed. In January 1971, NASA and Air Force leadership decided that a reusable delta-wing orbiter mounted on an expendable propellant tank would be the optimal design for the Space Shuttle. After they established the need for a reusable, heavy-lift spacecraft, NASA and the Air Force determined the design requirements of their respective services. The Air Force expected to use
6440-780: The ESA-developed Spacelab module although Spacelab pallets would continue to be used on the International Space Station . Research conducted as planned, with the exception of the Mammalian Development Team, which had to reprioritize science activities because of the unexpected high mortality rate of neonatal rats on board. Other payloads included the Shuttle Vibration Forces experiment, the Bioreactor Demonstration System-04, and three Get-Away Special (GAS) canister investigations. STS-90
6580-518: The ET. The SRBs were jettisoned before the vehicle reached orbit, while the main engines continued to operate, and the ET was jettisoned after main engine cutoff and just before orbit insertion , which used the orbiter's two Orbital Maneuvering System (OMS) engines. At the conclusion of the mission, the orbiter fired its OMS to deorbit and reenter the atmosphere . The orbiter was protected during reentry by its thermal protection system tiles, and it glided as
6720-669: The IMU, INS, and TACAN systems, which first flew on STS-118 in August 2007. While in orbit, the crew primarily communicated using one of four S band radios, which provided both voice and data communications. Two of the S ;band radios were phase modulation transceivers , and could transmit and receive information. The other two S band radios were frequency modulation transmitters and were used to transmit data to NASA. As S band radios can operate only within their line of sight , NASA used
6860-466: The IMUs while in orbit. The star trackers are deployed while in orbit, and can automatically or manually align on a star. In 1991, NASA began upgrading the inertial measurement units with an inertial navigation system (INS), which provided more accurate location information. In 1993, NASA flew a GPS receiver for the first time aboard STS-51 . In 1997, Honeywell began developing an integrated GPS/INS to replace
7000-474: The KSC. The Space Shuttle was prepared for launch primarily in the VAB at the KSC. The SRBs were assembled and attached to the external tank on the MLP. The orbiter vehicle was prepared at the Orbiter Processing Facility (OPF) and transferred to the VAB, where a crane was used to rotate it to the vertical orientation and mate it to the external tank. Once the entire stack was assembled, the MLP
7140-476: The RS-25 experienced multiple nozzle failures, as well as broken turbine blades. Despite the problems during testing, NASA ordered the nine RS-25 engines needed for its three orbiters under construction in May 1978. NASA experienced significant delays in the development of the Space Shuttle's thermal protection system . Previous NASA spacecraft had used ablative heat shields, but those could not be reused. NASA chose to use ceramic tiles for thermal protection, as
SECTION 50
#17328523352847280-505: The SRBs provided structural support for the orbiter vehicle and ET, as they were the only system that was connected to the mobile launcher platform (MLP). At the time of launch, the SRBs were armed at T−5 minutes, and could only be electrically ignited once the RS-25 engines had ignited and were without issue. They each provided 12,500 kN (2,800,000 lbf) of thrust, which was later improved to 13,300 kN (3,000,000 lbf) beginning on STS-8 . After expending their fuel,
7420-558: The SRBs were jettisoned approximately two minutes after launch at an altitude of approximately 46 km (150,000 ft). Following separation, they deployed drogue and main parachutes, landed in the ocean, and were recovered by the crews aboard the ships MV Freedom Star and MV Liberty Star . Once they were returned to Cape Canaveral, they were cleaned and disassembled. The rocket motor, igniter, and nozzle were then shipped to Thiokol to be refurbished and reused on subsequent flights. The SRBs underwent several redesigns throughout
7560-598: The Shuttle technology, to be demonstrated under the X-33 and X-34 programs, which were both cancelled in the early 2000s due to rising costs and technical issues. The Ansari X Prize contest was intended to develop private suborbital reusable vehicles. Many private companies competed, with the winner, Scaled Composites , reaching the Kármán line twice in a two-week period with their reusable SpaceShipOne . In 2012, SpaceX started
7700-399: The Space Shuttle through ascent, orbit, and reentry, but could not support an entire mission. The five GPCs were separated in three separate bays within the mid-deck to provide redundancy in the event of a cooling fan failure. After achieving orbit, the crew would switch some of the GPCs functions from guidance, navigation, and control (GNC) to systems management (SM) and payload (PL) to support
7840-519: The Space Shuttle to launch large satellites, and required it to be capable of lifting 29,000 kg (65,000 lb) to an eastward LEO or 18,000 kg (40,000 lb) into a polar orbit . The satellite designs also required that the Space Shuttle have a 4.6 by 18 m (15 by 60 ft) payload bay. NASA evaluated the F-1 and J-2 engines from the Saturn rockets , and determined that they were insufficient for
7980-578: The Spacelab module through a 2.7 or 5.8 m (8.72 or 18.88 ft) tunnel that connected to the airlock. The Spacelab equipment was primarily stored in pallets, which provided storage for both experiments as well as computer and power equipment. Spacelab hardware was flown on 28 missions through 1999 and studied subjects including astronomy, microgravity, radar, and life sciences. Spacelab hardware also supported missions such as Hubble Space Telescope (HST) servicing and space station resupply. The Spacelab module
8120-567: The aft seating location, and also controlled the data on the HUD. In 1998, Atlantis was upgraded with the Multifunction Electronic Display System (MEDS), which was a glass cockpit upgrade to the flight instruments that replaced the eight MCDS display units with 11 multifunction colored digital screens. MEDS was flown for the first time in May 2000 on STS-101 , and the other orbiter vehicles were upgraded to it. The aft section of
8260-404: The aircraft. Other than that a range of non-rocket liftoff systems have been proposed and explored over time as reusable systems for liftoff, from balloons to space elevators . Existing examples are systems which employ winged horizontal jet-engine powered liftoff. Such aircraft can air launch expendable rockets and can because of that be considered partially reusable systems if the aircraft
8400-401: The associated propellant tanks. The AJ10 engines used monomethylhydrazine (MMH) oxidized by dinitrogen tetroxide (N 2 O 4 ). The pods carried a maximum of 2,140 kg (4,718 lb) of MMH and 3,526 kg (7,773 lb) of N 2 O 4 . The OMS engines were used after main engine cut-off (MECO) for orbital insertion. Throughout the flight, they were used for orbit changes, as well as
8540-559: The atmosphere and navigate through it, so they are often equipped with heat shields , grid fins , and other flight control surfaces . By modifying their shape, spaceplanes can leverage aviation mechanics to aid in its recovery, such as gliding or lift . In the atmosphere, parachutes or retrorockets may also be needed to slow it down further. Reusable parts may also need specialized recovery facilities such as runways or autonomous spaceport drone ships . Some concepts rely on ground infrastructures such as mass drivers to accelerate
SECTION 60
#17328523352848680-549: The built-in hold at T−9 minutes, the countdown was automatically controlled by the Ground Launch Sequencer (GLS) at the LCC, which stopped the countdown if it sensed a critical problem with any of the Space Shuttle's onboard systems. At T−3 minutes 45 seconds, the engines began conducting gimbal tests, which were concluded at T−2 minutes 15 seconds. The ground Launch Processing System handed off
8820-461: The bulk of the ET, and was 29 m (96.7 ft) tall. The orbiter vehicle was attached to the ET at two umbilical plates, which contained five propellant and two electrical umbilicals, and forward and aft structural attachments. The exterior of the ET was covered in orange spray-on foam to allow it to survive the heat of ascent. The ET provided propellant to the Space Shuttle Main Engines from liftoff until main engine cutoff. The ET separated from
8960-540: The contract to build the orbiter to North American Rockwell. In August 1973, the external tank contract to Martin Marietta , and in November the solid-rocket booster contract to Morton Thiokol . On June 4, 1974, Rockwell began construction on the first orbiter, OV-101, dubbed Constitution, later to be renamed Enterprise . Enterprise was designed as a test vehicle, and did not include engines or heat shielding. Construction
9100-477: The control to the orbiter vehicle's GPCs at T−31 seconds. At T−16 seconds, the GPCs armed the SRBs, the sound suppression system (SPS) began to drench the MLP and SRB trenches with 1,100,000 L (300,000 U.S. gal) of water to protect the orbiter vehicle from damage by acoustical energy and rocket exhaust reflected from the flame trench and MLP during lift-off. At T−10 seconds, hydrogen igniters were activated under each engine bell to quell
9240-527: The craft down enough to prevent injury to astronauts. This can be seen in the Soyuz capsule. Though such systems have been in use since the beginning of astronautics to recover space vehicles, only later have the vehicles been reused. E.g.: Single or main stages, as well as fly-back boosters can employ a horizontal landing system. These vehicles land on earth much like a plane does, but they usually do not use propellant during landing. Examples are: A variant
9380-595: The crew members themselves. Cooperative effort of NASA, several domestic partners and the space agencies of Canada (CSA), France (CNES) and Germany (DLR), as well as the European Space Agency (ESA) and the National Space Development Agency of Japan (NASDA). Most experiments conducted in pressurized Spacelab long module located in Columbia' s payload bay. This was the 16th and last scheduled flight of
9520-421: The deorbit burn prior to reentry. Each OMS engine produced 27,080 N (6,087 lbf) of thrust, and the entire system could provide 305 m/s (1,000 ft/s) of velocity change . The orbiter was protected from heat during reentry by the thermal protection system (TPS), a thermal soaking protective layer around the orbiter. In contrast with previous US spacecraft, which had used ablative heat shields,
9660-507: The development of a space shuttle to bring people and cargo to low Earth orbit (LEO), as well as a space tug for transfers between orbits and the Moon, and a reusable nuclear upper stage for deep space travel. After the release of the Space Shuttle Task Group report, many aerospace engineers favored the Class III, fully reusable design because of perceived savings in hardware costs. Max Faget ,
9800-430: The early decades of human capacity to achieve spaceflight were designed to be single-use items. This was true both for satellites and space probes intended to be left in space for a long time, as well as any object designed to return to Earth such as human-carrying space capsules or the sample return canisters of space matter collection missions like Stardust (1999–2006) or Hayabusa (2005–2010). Exceptions to
9940-437: The ease of refurbishing them for reuse after they landed in the ocean. In January 1972, President Richard Nixon approved the Shuttle, and NASA decided on its final design in March. The development of the Space Shuttle Main Engine (SSME) remained the responsibility of Rocketdyne, and the contract was issued in July 1971, and updated SSME specifications were submitted to Rocketdyne in that April. That August, NASA awarded
10080-527: The effects of aerodynamic and thermal stresses during launch and reentry. The beginning of the development of the RS-25 Space Shuttle Main Engine was delayed for nine months while Pratt & Whitney challenged the contract that had been issued to Rocketdyne. The first engine was completed in March 1975, after issues with developing the first throttleable, reusable engine. During engine testing,
10220-499: The engines during powered flight and fly the orbiter during unpowered flight. Both seats also had rudder controls, to allow rudder movement in flight and nose-wheel steering on the ground. The orbiter vehicles were originally installed with the Multifunction CRT Display System (MCDS) to display and control flight information. The MCDS displayed the flight information at the commander and pilot seats, as well as at
10360-488: The far more promising Skylon design, which remains in development. From the late 1990s to the 2000s, the European Space Agency studied the recovery of the Ariane 5 solid rocket boosters. The last recovery attempt took place in 2009. The commercial ventures, Rocketplane Kistler and Rotary Rocket , attempted to build reusable privately developed rockets before going bankrupt. NASA proposed reusable concepts to replace
10500-592: The feasibility of reusable boosters. This became the basis for the aerospaceplane , a fully reusable spacecraft that was never developed beyond the initial design phase in 1962–1963. Beginning in the early 1950s, NASA and the Air Force collaborated on developing lifting bodies to test aircraft that primarily generated lift from their fuselages instead of wings, and tested the NASA M2-F1 , Northrop M2-F2 , Northrop M2-F3 , Northrop HL-10 , Martin Marietta X-24A , and
10640-649: The final decision to scrub a launch was announced. In addition to the weather at the launch site, conditions had to be acceptable at one of the Transatlantic Abort Landing sites and the SRB recovery area. The mission crew and the Launch Control Center (LCC) personnel completed systems checks throughout the countdown. Two built-in holds at T−20 minutes and T−9 minutes provided scheduled breaks to address any issues and additional preparation. After
10780-518: The first four Shuttle missions, astronauts wore modified U.S. Air Force high-altitude full-pressure suits, which included a full-pressure helmet during ascent and descent. From the fifth flight, STS-5 , until the loss of Challenger , the crew wore one-piece light blue nomex flight suits and partial-pressure helmets. After the Challenger disaster, the crew members wore the Launch Entry Suit (LES),
10920-431: The first practical rocket vehicles ( V-2 ) could reach the fringes of space, reusable technology was too heavy. In addition, many early rockets were developed to deliver weapons, making reuse impossible by design. The problem of mass efficiency was overcome by using multiple expendable stages in a vertical launch multistage rocket . USAF and NACA had been studying orbital reusable spaceplanes since 1958, e.g. Dyna-Soar , but
11060-468: The first reusable stages did not fly until the advent of the US Space Shuttle in 1981. Perhaps the first reusable launch vehicles were the ones conceptualized and studied by Wernher von Braun from 1948 until 1956. The Von Braun Ferry Rocket underwent two revisions: once in 1952 and again in 1956. They would have landed using parachutes. The General Dynamics Nexus was proposed in the 1960s as
11200-426: The first time NASA performed a crewed first-flight of a spacecraft. On April 12, 1981, the Space Shuttle launched for the first time, and was piloted by John Young and Robert Crippen . During the two-day mission, Young and Crippen tested equipment on board the shuttle, and found several of the ceramic tiles had fallen off the top side of the Columbia . NASA coordinated with the Air Force to use satellites to image
11340-522: The first time. The Ship completed its second successful reentry and returned for a controlled splashdown in the Indian Ocean. The test marked the second instance that could be considered meeting all requirements to be fully reusable. Partial reusable launch systems, in the form of multiple stage to orbit systems have been so far the only reusable configurations in use. The historic Space Shuttle reused its Solid Rocket Boosters , its RS-25 engines and
11480-624: The flight deck contained windows looking into the payload bay, as well as an RHC to control the Remote Manipulator System during cargo operations. Additionally, the aft flight deck had monitors for a closed-circuit television to view the cargo bay. The mid-deck contained the crew equipment storage, sleeping area, galley, medical equipment, and hygiene stations for the crew. The crew used modular lockers to store equipment that could be scaled depending on their needs, as well as permanently installed floor compartments. The mid-deck contained
11620-491: The forward separation motors and the parachute systems that were used during recovery. The rocket nozzles could gimbal up to 8° to allow for in-flight adjustments. The rocket motors were each filled with a total 500,000 kg (1,106,640 lb) of solid rocket propellant ( APCP + PBAN ), and joined in the Vehicle Assembly Building (VAB) at KSC. In addition to providing thrust during the first stage of launch,
11760-651: The general rule for space vehicles were the US Gemini SC-2 , the Soviet Union spacecraft Vozvraschaemyi Apparat (VA) , the US Space Shuttle orbiter (mid-1970s-2011, with 135 flights between 1981 and 2011) and the Soviet Buran (1980-1988, with just one uncrewed test flight in 1988). Both of these spaceships were also an integral part of the launch system (providing launch acceleration) as well as operating as medium-duration spaceships in space . This began to change in
11900-532: The ground, in order to retrieve and reuse the vehicle. As of 2021 , SpaceX is building and testing the Starship spaceship to be capable of surviving multiple hypersonic reentries through the atmosphere so that they become truly reusable long-duration spaceships; no Starship operational flights have yet occurred. With possible inflatable heat shields , as developed by the US (Low Earth Orbit Flight Test Inflatable Decelerator - LOFTID) and China, single-use rockets like
12040-402: The inner leading edge and 45° at the outer leading edge. Each wing had an inboard and outboard elevon to provide flight control during reentry, along with a flap located between the wings, below the engines to control pitch . The orbiter's vertical stabilizer was swept backwards at 45° and contained a rudder that could split to act as a speed brake . The vertical stabilizer also contained
12180-504: The largest solid-propellant motors ever flown. Each SRB was 45 m (149.2 ft) tall and 3.7 m (12.2 ft) wide, weighed 68,000 kg (150,000 lb), and had a steel exterior approximately 13 mm (.5 in) thick. The SRB's subcomponents were the solid-propellant motor, nose cone, and rocket nozzle. The solid-propellant motor comprised the majority of the SRB's structure. Its casing consisted of 11 steel sections which made up its four main segments. The nose cone housed
12320-561: The late 1950s, the Air Force began developing the partially reusable X-20 Dyna-Soar . The Air Force collaborated with NASA on the Dyna-Soar and began training six pilots in June 1961. The rising costs of development and the prioritization of Project Gemini led to the cancellation of the Dyna-Soar program in December 1963. In addition to the Dyna-Soar, the Air Force had conducted a study in 1957 to test
12460-486: The launch pad, the Space Shuttle was used to verify the proper positioning of the launch complex hardware. Enterprise was taken back to California in August 1979, and later served in the development of the SLC-6 at Vandenberg AFB in 1984. On November 24, 1980, Columbia was mated with its external tank and solid-rocket boosters, and was moved to LC-39 on December 29. The first Space Shuttle mission, STS-1 , would be
12600-432: The launch vehicle beforehand. Since at least in the early 20th century, single-stage-to-orbit reusable launch vehicles have existed in science fiction . In the 1970s, the first reusable launch vehicle, the Space Shuttle , was developed. However, in the 1990s, due to the program's failure to meet expectations, reusable launch vehicle concepts were reduced to prototype testing. The rise of private spaceflight companies in
12740-554: The mid-2010s. In the 2010s, the space transport cargo capsule from one of the suppliers resupplying the International Space Station was designed for reuse, and after 2017, NASA began to allow the reuse of the SpaceX Dragon cargo spacecraft on these NASA-contracted transport routes. This was the beginning of design and operation of a reusable space vehicle . The Boeing Starliner capsules also reduce their fall speed with parachutes and deploy an airbag shortly before touchdown on
12880-437: The mission specialists who were specifically trained for their intended missions and systems. Early in the Space Shuttle program, NASA flew with payload specialists, who were typically systems specialists who worked for the company paying for the payload's deployment or operations. The final payload specialist, Gregory B. Jarvis , flew on STS-51-L , and future non-pilots were designated as mission specialists. An astronaut flew as
13020-404: The mission. Mission Management Team considered, but decided against, extending the mission one day because the science community indicated an extended flight was not necessary and weather conditions were expected to deteriorate after planned landing on Sunday, 3 May. STS-90 Mission Specialist Kathryn Hire was Kennedy Space Center's first employee to be chosen as an astronaut candidate. STS-90
13160-476: The nine Merlin engines a powering a Falcon 9 launched for the 22nd time, making it the most reused liquid fuel engine used in an operational manner, having already surpassed Space Shuttle Main Engine number 2019's record of 19 flights. As of 2024, Falcon 9 and Falcon Heavy are the only orbital rockets to reuse their boosters, although multiple other systems are in development. All aircraft-launched rockets reuse
13300-434: The operational mission. The Space Shuttle was not launched if its flight would run from December to January, as its flight software would have required the orbiter vehicle's computers to be reset at the year change. In 2007, NASA engineers devised a solution so Space Shuttle flights could cross the year-end boundary. Space Shuttle missions typically brought a portable general support computer (PGSC) that could integrate with
13440-424: The optimal design for a reusable spacecraft, and issued study contracts to General Dynamics , Lockheed , McDonnell Douglas , and North American Rockwell . In July 1969, the Space Shuttle Task Group issued a report that determined the Shuttle would support short-duration crewed missions and space station, as well as the capabilities to launch, service, and retrieve satellites. The report also created three classes of
13580-436: The orange foam itself was sufficiently protected, and the ET was no longer covered in latex paint beginning on STS-3. A light-weight tank (LWT) was first flown on STS-6, which reduced tank weight by 4,700 kg (10,300 lb). The LWT's weight was reduced by removing components from the hydrogen tank and reducing the thickness of some skin panels. In 1998, a super light-weight ET (SLWT) first flew on STS-91 . The SLWT used
13720-437: The orbiter vehicle 18 seconds after engine cutoff and could be triggered automatically or manually. At the time of separation, the orbiter vehicle retracted its umbilical plates, and the umbilical cords were sealed to prevent excess propellant from venting into the orbiter vehicle. After the bolts attached at the structural attachments were sheared, the ET separated from the orbiter vehicle. At the time of separation, gaseous oxygen
13860-467: The orbiter vehicle and would be removed and replaced in between flights. The RS-25 is a staged-combustion cycle cryogenic engine that used liquid oxygen and hydrogen and had a higher chamber pressure than any previous liquid-fueled rocket. The original main combustion chamber operated at a maximum pressure of 226.5 bar (3,285 psi). The engine nozzle is 287 cm (113 in) tall and has an interior diameter of 229 cm (90.3 in). The nozzle
14000-500: The orbiter vehicle's computers and communication suite, as well as monitor scientific and payload data. Early missions brought the Grid Compass , one of the first laptop computers, as the PGSC, but later missions brought Apple and Intel laptops. The payload bay comprised most of the orbiter vehicle's fuselage , and provided the cargo-carrying space for the Space Shuttle's payloads. It
14140-535: The orbiter vehicle's heat, and were opened upon reaching orbit for heat rejection. The orbiter could be used in conjunction with a variety of add-on components depending on the mission. This included orbital laboratories, boosters for launching payloads farther into space, the Remote Manipulator System (RMS), and optionally the EDO pallet to extend the mission duration. To limit the fuel consumption while
14280-512: The orbiter was docked at the ISS, the Station-to-Shuttle Power Transfer System (SSPTS) was developed to convert and transfer station power to the orbiter. The SSPTS was first used on STS-118, and was installed on Discovery and Endeavour . The Remote Manipulator System (RMS), also known as Canadarm, was a mechanical arm attached to the cargo bay. It could be used to grasp and manipulate payloads, as well as serve as
14420-544: The originally specified thrust at 100%, but had the RS-25 operate at higher thrust. RS-25 upgrade versions were denoted as Block I and Block II. 109% thrust level was achieved with the Block II engines in 2001, which reduced the chamber pressure to 207.5 bars (3,010 psi), as it had a larger throat area. The normal maximum throttle was 104 percent, with 106% or 109% used for mission aborts. The Orbital Maneuvering System (OMS) consisted of two aft-mounted AJ10-190 engines and
14560-405: The program's lifetime. STS-6 and STS-7 used SRBs 2,300 kg (5,000 lb) lighter due to walls that were 0.10 mm (.004 in) thinner, but were determined to be too thin to fly safely. Subsequent flights until STS-26 used cases that were 0.076 mm (.003 in) thinner than the standard-weight cases, which reduced 1,800 kg (4,000 lb). After the Challenger disaster as
14700-400: The propellant for the Space Shuttle Main Engines, and connected the orbiter vehicle with the solid rocket boosters. The ET was 47 m (153.8 ft) tall and 8.4 m (27.6 ft) in diameter, and contained separate tanks for liquid oxygen and liquid hydrogen. The liquid oxygen tank was housed in the nose of the ET, and was 15 m (49.3 ft) tall. The liquid hydrogen tank comprised
14840-508: The requirements of the Space Shuttle; in July 1971, it issued a contract to Rocketdyne to begin development on the RS-25 engine. NASA reviewed 29 potential designs for the Space Shuttle and determined that a design with two side boosters should be used, and the boosters should be reusable to reduce costs. NASA and the Air Force elected to use solid-propellant boosters because of the lower costs and
14980-682: The reusability of the orbiter required a multi-use heat shield. During reentry, the TPS experienced temperatures up to 1,600 °C (3,000 °F), but had to keep the orbiter vehicle's aluminum skin temperature below 180 °C (350 °F). The TPS primarily consisted of four types of tiles. The nose cone and leading edges of the wings experienced temperatures above 1,300 °C (2,300 °F), and were protected by reinforced carbon-carbon tiles (RCC). Thicker RCC tiles were developed and installed in 1998 to prevent damage from micrometeoroid and orbital debris , and were further improved after RCC damage caused in
15120-404: The second and third stages. Only the Space Shuttle has achieved a reuse of the orbital insertion stage, by using the engines and fuel tank of its orbiter . The Buran spaceplane and Starship spacecraft are two other reusable spacecraft that were designed to be able to act as orbital insertion stages and have been produced, however the former only made one uncrewed test flight before the project
15260-529: The shuttle could then be constructed of lightweight aluminum , and the tiles could be individually replaced as needed. Construction began on Columbia on March 27, 1975, and it was delivered to the KSC on March 25, 1979. At the time of its arrival at the KSC, Columbia still had 6,000 of its 30,000 tiles remaining to be installed. However, many of the tiles that had been originally installed had to be replaced, requiring two years of installation before Columbia could fly. On January 5, 1979, NASA commissioned
15400-435: The space agencies of Canada, France, Germany, and Japan, and the European Space Agency . Neurolab's 26 experiments targeted one of the most complex and least understood parts of the human body – the nervous system. Primary goals were to conduct basic research in neurosciences and expand understanding of how the nervous system develops and functions in space. Test subjects were rats, mice, crickets, snails, two kinds of fish and
15540-623: The space flight industry. So much so that in 2024, the Cape Canaveral Space Force Station initiated a 50 year forward looking plan for the Cape that involved major infrastructure upgrades (including to Port Canaveral ) to support a higher anticipated launch cadence and landing sites for the new generation of vehicles. Reusable launch systems may be either fully or partially reusable. Several companies are currently developing fully reusable launch vehicles as of March 2024. Each of them
15680-507: The stagnant gas inside the cones before ignition. Failure to burn these gases could trip the onboard sensors and create the possibility of an overpressure and explosion of the vehicle during the firing phase. The hydrogen tank's prevalves were opened at T−9.5 seconds in preparation for engine start. Reusable launch system Reusable launch vehicles may contain additional avionics and propellant , making them heavier than their expendable counterparts. Reused parts may need to enter
15820-418: The underside of Columbia , and determined there was no damage. Columbia reentered the atmosphere and landed at Edwards AFB on April 14. NASA conducted three additional test flights with Columbia in 1981 and 1982. On July 4, 1982, STS-4 , flown by Ken Mattingly and Henry Hartsfield , landed on a concrete runway at Edwards AFB. President Ronald Reagan and his wife Nancy met the crew, and delivered
15960-419: The understanding of the mechanisms responsible for neurological and behavioral changes in space. Specifically, experiments would study the adaptation of the vestibular system and space adaptation syndrome, the adaptation of the central nervous system and the pathways which control the ability to sense location in the absence of gravity, and the effect of microgravity on a developing nervous system. The science lead
16100-467: The upper parts of the orbiter vehicle were coated in tiles of white low-temperature reusable surface insulation with similar composition, which provided protection for temperatures below 650 °C (1,200 °F). The payload bay doors and parts of the upper wing surfaces were coated in reusable Nomex felt surface insulation or in beta cloth , as the temperature there remained below 370 °C (700 °F). The Space Shuttle external tank (ET) carried
16240-585: Was Mary Anne Frey . The mission was a joint venture of six space agencies and seven U.S. research agencies. Investigator teams from nine countries would conduct 31 studies in the microgravity environment of space. Other agencies participating in the mission included six institutes of the National Institutes of Health , the National Science Foundation , and the Office of Naval Research , as well as
16380-512: Was 1,323 days. Space Shuttle components include the Orbiter Vehicle (OV) with three clustered Rocketdyne RS-25 main engines, a pair of recoverable solid rocket boosters (SRBs), and the expendable external tank (ET) containing liquid hydrogen and liquid oxygen . The Space Shuttle was launched vertically , like a conventional rocket, with the two SRBs operating in parallel with the orbiter's three main engines , which were fueled from
16520-462: Was 18 m (60 ft) long and 4.6 m (15 ft) wide, and could accommodate cylindrical payloads up to 4.6 m (15 ft) in diameter. Two payload bay doors hinged on either side of the bay, and provided a relatively airtight seal to protect payloads from heating during launch and reentry. Payloads were secured in the payload bay to the attachment points on the longerons . The payload bay doors served an additional function as radiators for
16660-490: Was Space Shuttle-specific software that provided control through all phases of flight. During ascent, maneuvering, reentry, and landing, the four PASS GPCs functioned identically to produce quadruple redundancy and would error check their results. In case of a software error that would cause erroneous reports from the four PASS GPCs, a fifth GPC ran the Backup Flight System, which used a different program and could control
16800-618: Was a modified airport jet bridge that was used to assist astronauts to egress from the orbiter after landing, where they would undergo their post-mission medical checkups. The Astrovan transported astronauts from the crew quarters in the Operations and Checkout Building to the launch pad on launch day. The NASA Railroad comprised three locomotives that transported SRB segments from the Florida East Coast Railway in Titusville to
16940-461: Was canceled after the last study of the design in 1967 due to a lack of funds for development. NASA started the Space Shuttle design process in 1968, with the vision of creating a fully reusable spaceplane using a crewed fly-back booster . This concept proved expensive and complex, therefore the design was scaled back to reusable solid rocket boosters and an expendable external tank . Space Shuttle Columbia launched and landed 27 times and
17080-662: Was canceled in 1993. In the late 1980s a fully reusable version of the Energia rocket, the Energia II, was proposed. Its boosters and core would have had the capability of landing separately on a runway. In the 1990s the McDonnell Douglas Delta Clipper VTOL SSTO proposal progressed to the testing phase. The DC-X prototype demonstrated rapid turnaround time and automatic computer control. In mid-1990s, British research evolved an earlier HOTOL design into
17220-431: Was cancelled, and the latter is not yet operational, having completed four orbital test flights , as of June 2024, which achieved all of its mission objectives at the fourth flight. Launch systems can be combined with reusable spaceplanes or capsules. The Space Shuttle orbiter , SpaceShipTwo , Dawn Mk-II Aurora, and the under-development Indian RLV-TD are examples for a reusable space vehicle (a spaceplane ) as well as
17360-462: Was carried for 5.6 km (3.5 mi) to Launch Complex 39 by one of the crawler-transporters . After the Space Shuttle arrived at one of the two launchpads, it would connect to the Fixed and Rotation Service Structures, which provided servicing capabilities, payload insertion, and crew transportation. The crew was transported to the launch pad at T−3 hours and entered the orbiter vehicle, which
17500-565: Was closed at T−2 hours. Liquid oxygen and hydrogen were loaded into the external tank via umbilicals that attached to the orbiter vehicle, which began at T−5 hours 35 minutes. At T−3 hours 45 minutes, the hydrogen fast-fill was complete, followed 15 minutes later by the oxygen tank fill. Both tanks were slowly filled up until the launch as the oxygen and hydrogen evaporated. The launch commit criteria considered precipitation, temperatures, cloud cover, lightning forecast, wind, and humidity. The Space Shuttle
17640-660: Was completed on September 17, 1976, and Enterprise was moved to the Edwards Air Force Base to begin testing. Rockwell constructed the Main Propulsion Test Article (MPTA)-098 , which was a structural truss mounted to the ET with three RS-25 engines attached. It was tested at the National Space Technology Laboratory (NSTL) to ensure that the engines could safely run through the launch profile. Rockwell conducted mechanical and thermal stress tests on Structural Test Article (STA)-099 to determine
17780-535: Was entirely reliant on its main computer, the Data Processing System (DPS). The DPS controlled the flight controls and thrusters on the orbiter, as well as the ET and SRBs during launch. The DPS consisted of five general-purpose computers (GPC), two magnetic tape mass memory units (MMUs), and the associated sensors to monitor the Space Shuttle components. The original GPC used was the IBM AP-101B , which used
17920-657: Was equipped with an avionics system to provide information and control during atmospheric flight. Its avionics suite contained three microwave scanning beam landing systems , three gyroscopes , three TACANs , three accelerometers , two radar altimeters , two barometric altimeters , three attitude indicators , two Mach indicators , and two Mode C transponders . During reentry, the crew deployed two air data probes once they were traveling slower than Mach 5. The orbiter had three inertial measuring units (IMU) that it used for guidance and navigation during all phases of flight. The orbiter contains two star trackers to align
18060-634: Was first flown in 1975, and was used for the ALT and ferrying the orbiter from Edwards AFB to the KSC on all missions prior to 1991. A second SCA (N911NA) was acquired in 1988, and was first used to transport Endeavour from the factory to the KSC. Following the retirement of the Space Shuttle, N905NA was put on display at the JSC, and N911NA was put on display at the Joe Davies Heritage Airpark in Palmdale, California . The Crew Transport Vehicle (CTV)
18200-403: Was later improved to 270,000 kg (586,000 lb). The Spacelab module was a European-funded pressurized laboratory that was carried within the payload bay and allowed for scientific research while in orbit. The Spacelab module contained two 2.7 m (9 ft) segments that were mounted in the aft end of the payload bay to maintain the center of gravity during flight. Astronauts entered
18340-406: Was located below the flight deck and was where the galley and crew bunks were set up, as well as three or four crew member seats. The mid-deck contained the airlock, which could support two astronauts on an extravehicular activity (EVA), as well as access to pressurized research modules. An equipment bay was below the mid-deck, which stored environmental control and waste management systems. On
18480-444: Was lost with all crew on the 28th landing attempt; Challenger launched and landed 9 times and was lost with all crew on the 10th launch attempt; Discovery launched and landed 39 times; Atlantis launched and landed 33 times; Endeavour launched and landed 25 times. In 1986 President Ronald Reagan called for an air-breathing scramjet National Aerospace Plane (NASP)/ X-30 . The project failed due to technical issues and
18620-591: Was moved to the Marshall Space Flight Center (MSFC) on March 13, 1978. Enterprise underwent shake tests in the Mated Vertical Ground Vibration Test, where it was attached to an external tank and solid rocket boosters, and underwent vibrations to simulate the stresses of launch. In April 1979, Enterprise was taken to the KSC, where it was attached to an external tank and solid rocket boosters, and moved to LC-39 . Once installed at
18760-587: Was never used). The Johnson Space Center (JSC) served as the central point for all Shuttle operations and the MSFC was responsible for the main engines, external tank, and solid rocket boosters. The John C. Stennis Space Center handled main engine testing, and the Goddard Space Flight Center managed the global tracking network. The orbiter had design elements and capabilities of both a rocket and an aircraft to allow it to launch vertically and then land as
18900-422: Was not launched under conditions where it could have been struck by lightning , as its exhaust plume could have triggered lightning by providing a current path to ground after launch, which occurred on Apollo 12 . The NASA Anvil Rule for a Shuttle launch stated that an anvil cloud could not appear within a distance of 19 km (10 nmi). The Shuttle Launch Weather Officer monitored conditions until
19040-418: Was tested on STS-2 and STS-3, and the first full mission was on STS-9. Three RS-25 engines, also known as the Space Shuttle Main Engines (SSME), were mounted on the orbiter's aft fuselage in a triangular pattern. The engine nozzles could gimbal ±10.5° in pitch, and ±8.5° in yaw during ascent to change the direction of their thrust to steer the Shuttle. The titanium alloy reusable engines were independent of
19180-531: Was the first mission to make an Orbital Maneuvering System (OMS) assist burn during the ascent. Three of the seven STS-90 crew (Williams, Pawelczyk and Buckey) appeared on the Canadian television series Popular Mechanics for Kids . Working with engineers on the ground a week into the flight, the on-orbit crew used aluminum tape to bypass a suspect valve in the Regenerative Carbon Dioxide Removal System that had threatened to cut short
19320-598: Was the second shuttle flight where a bat was observed landing on the External Tank (the first being STS-72 ), but it flew away just after main engine start. Another bat was observed landing on the External Tank during STS-119 , but remained on the tank during liftoff. [REDACTED] This article incorporates public domain material from websites or documents of the National Aeronautics and Space Administration . Space Shuttle The Space Shuttle
19460-444: Was the top level of the crew compartment and contained the flight controls for the orbiter. The commander sat in the front left seat, and the pilot sat in the front right seat, with two to four additional seats set up for additional crew members. The instrument panels contained over 2,100 displays and controls, and the commander and pilot were both equipped with a heads-up display (HUD) and a Rotational Hand Controller (RHC) to gimbal
19600-547: Was vented from the nose to cause the ET to tumble, ensuring that it would break up upon reentry. The ET was the only major component of the Space Shuttle system that was not reused, and it would travel along a ballistic trajectory into the Indian or Pacific Ocean. For the first two missions, STS-1 and STS-2 , the ET was covered in 270 kg (595 lb) of white fire-retardant latex paint to provide protection against damage from ultraviolet radiation. Further research determined that
#283716