200-683: STS-114 was the first "Return to Flight" Space Shuttle mission following the Space Shuttle Columbia disaster . Discovery launched at 10:39 EDT (14:39 UTC ) on her 31st flight on July 26, 2005. The launch, 907 days (approx. 29 months) after the loss of Columbia , was approved despite unresolved fuel sensor anomalies in the external tank that had prevented the shuttle from launching on July 13, its originally scheduled date. The mission ended on August 9, 2005, when Discovery landed at Edwards Air Force Base in California. Poor weather over
400-993: A spaceplane to a runway landing, usually to the Shuttle Landing Facility at KSC, Florida, or to Rogers Dry Lake in Edwards Air Force Base , California. If the landing occurred at Edwards, the orbiter was flown back to the KSC atop the Shuttle Carrier Aircraft (SCA), a specially modified Boeing 747 designed to carry the shuttle above it. The first orbiter, Enterprise , was built in 1976 and used in Approach and Landing Tests (ALT), but had no orbital capability. Four fully operational orbiters were initially built: Columbia , Challenger , Discovery , and Atlantis . Of these, two were lost in mission accidents: Challenger in 1986 and Columbia in 2003 , with
600-545: A 19-species model. An important aspect of modelling non-equilibrium real gas effects is radiative heat flux. If a vehicle is entering an atmosphere at very high speed (hyperbolic trajectory, lunar return) and has a large nose radius then radiative heat flux can dominate TPS heating. Radiative heat flux during entry into an air or carbon dioxide atmosphere typically comes from asymmetric diatomic molecules; e.g., cyanogen (CN), carbon monoxide , nitric oxide (NO), single ionized molecular nitrogen etc. These molecules are formed by
800-471: A Gibbs free energy equilibrium program, the iterative process from the originally specified molecular composition to the final calculated equilibrium composition is essentially random and not time accurate. With a non-equilibrium program, the computation process is time accurate and follows a solution path dictated by chemical and reaction rate formulas. The five species model has 17 chemical formulas (34 when counting reverse formulas). The Lighthill-Freeman model
1000-487: A NASA engineer who had worked to design the Mercury capsule, patented a design for a two-stage fully recoverable system with a straight-winged orbiter mounted on a larger straight-winged booster. The Air Force Flight Dynamics Laboratory argued that a straight-wing design would not be able to withstand the high thermal and aerodynamic stresses during reentry, and would not provide the required cross-range capability. Additionally,
1200-492: A challenge. The experimental measurement of radiative heat flux (typically done with shock tubes) along with theoretical calculation through the unsteady Schrödinger equation are among the more esoteric aspects of aerospace engineering. Most of the aerospace research work related to understanding radiative heat flux was done in the 1960s, but largely discontinued after conclusion of the Apollo Program. Radiative heat flux in air
1400-459: A complete sphere or a spherical section forebody with a converging conical afterbody. The aerodynamics of a sphere or spherical section are easy to model analytically using Newtonian impact theory. Likewise, the spherical section's heat flux can be accurately modeled with the Fay–Riddell equation . The static stability of a spherical section is assured if the vehicle's center of mass is upstream from
1600-435: A converging conical afterbody. It flew a lifting entry with a hypersonic trim angle of attack of −27° (0° is blunt-end first) to yield an average L/D (lift-to-drag ratio) of 0.368. The resultant lift achieved a measure of cross-range control by offsetting the vehicle's center of mass from its axis of symmetry, allowing the lift force to be directed left or right by rolling the capsule on its longitudinal axis . Other examples of
1800-497: A crewed spaceflight engineer on both STS-51-C and STS-51-J to serve as a military representative for a National Reconnaissance Office payload. A Space Shuttle crew typically had seven astronauts, with STS-61-A flying with eight. The crew compartment comprised three decks and was the pressurized, habitable area on all Space Shuttle missions. The flight deck consisted of two seats for the commander and pilot, as well as an additional two to four seats for crew members. The mid-deck
2000-529: A fourth spacewalk were cancelled. This timeline is a summary. For a more detailed timeline, see NASA Timeline of Significant Mission Events Archived September 8, 2006, at the Wayback Machine . NASA began a tradition of playing music to astronauts during the Gemini program , which was first used to wake up a flight crew during Apollo 15 . Each track is specially chosen, often by their families, and usually has
2200-459: A future reusable shuttle: Class I would have a reusable orbiter mounted on expendable boosters, Class II would use multiple expendable rocket engines and a single propellant tank (stage-and-a-half), and Class III would have both a reusable orbiter and a reusable booster. In September 1969, the Space Task Group, under the leadership of U.S. Vice President Spiro Agnew , issued a report calling for
SECTION 10
#17328518021902400-401: A gap filler was the likely cause of the high temperatures observed during this re-entry. Protruding gap fillers were also seen on STS-73 . A further in-flight repair was considered to remove or clip a damaged thermal blanket located beneath the commander's window on the port side of the orbiter. Wind tunnel testing by NASA determined that the thermal blanket was safe for re-entry, and plans for
2600-451: A gas in equilibrium with fixed pressure and temperature can be determined through the Gibbs free energy method . Gibbs free energy is simply the total enthalpy of the gas minus its total entropy times temperature. A chemical equilibrium program normally does not require chemical formulas or reaction-rate equations. The program works by preserving the original elemental abundances specified for
2800-566: A gas that are important to aeronautical engineers who design heat shields: Almost all aeronautical engineers are taught the perfect (ideal) gas model during their undergraduate education. Most of the important perfect gas equations along with their corresponding tables and graphs are shown in NACA Report 1135. Excerpts from NACA Report 1135 often appear in the appendices of thermodynamics textbooks and are familiar to most aeronautical engineers who design supersonic aircraft. The perfect gas theory
3000-576: A glider. Its three-part fuselage provided support for the crew compartment, cargo bay, flight surfaces, and engines. The rear of the orbiter contained the Space Shuttle Main Engines (SSME), which provided thrust during launch, as well as the Orbital Maneuvering System (OMS), which allowed the orbiter to achieve, alter, and exit its orbit once in space. Its double- delta wings were 18 m (60 ft) long, and were swept 81° at
3200-563: A heat shield designer must use a real gas model . An entry vehicle's pitching moment can be significantly influenced by real-gas effects. Both the Apollo command module and the Space Shuttle were designed using incorrect pitching moments determined through inaccurate real-gas modelling. The Apollo-CM's trim-angle angle of attack was higher than originally estimated, resulting in a narrower lunar return entry corridor. The actual aerodynamic center of
3400-400: A large bird struck near the top of the external fuel tank, and appeared in subsequent video frames to slide down the tank. NASA did not expect this to hurt the mission because it did not hit the orbiter, and because the vehicle was traveling relatively slowly at the time. A small fragment of thermal tile, estimated to be around 1.5 inches (38 mm) in size, was ejected from an edge tile of
3600-455: A mixing of hot and cold air, which could have a major effect on the shuttle temperature. The decision to make the repair balanced the risks of the EVA with the risks of leaving the protruding gap fillers as they were. It is thought that gap filler protrusions of a similar magnitude were present on previous missions, but were not observed in-orbit. Consideration was also given to the risks of elements of
3800-477: A mobile platform for astronauts conducting an EVA. The RMS was built by the Canadian company Spar Aerospace and was controlled by an astronaut inside the orbiter's flight deck using their windows and closed-circuit television. The RMS allowed for six degrees of freedom and had six joints located at three points along the arm. The original RMS could deploy or retrieve payloads up to 29,000 kg (65,000 lb), which
4000-633: A mock-up of the ablative material to be analyzed within a hypersonic wind tunnel. Testing of ablative materials occurs at the Ames Arc Jet Complex. Many spacecraft thermal protection systems have been tested in this facility, including the Apollo, space shuttle, and Orion heat shield materials. Carbon phenolic was originally developed as a rocket nozzle throat material (used in the Space Shuttle Solid Rocket Booster ) and for reentry-vehicle nose tips. The thermal conductivity of
4200-454: A nose radius of 1 meter, i.e., time of travel is about 18 microseconds. This is roughly the time required for shock-wave-initiated chemical dissociation to approach chemical equilibrium in a shock layer for a 7.8 km/s entry into air during peak heat flux. Consequently, as air approaches the entry vehicle's stagnation point, the air effectively reaches chemical equilibrium thus enabling an equilibrium model to be usable. For this case, most of
SECTION 20
#17328518021904400-402: A nose radius of 2.34 cm, a forward-frustum half-angle of 10.4°, an inter-frustum radius of 14.6 cm, aft-frustum half-angle of 6°, and an axial length of 2.079 meters. No accurate diagram or picture of AMaRV has ever appeared in the open literature. However, a schematic sketch of an AMaRV-like vehicle along with trajectory plots showing hairpin turns has been published. AMaRV's attitude
4600-528: A partial-pressure version of the high-altitude pressure suits with a helmet. In 1994, the LES was replaced by the full-pressure Advanced Crew Escape Suit (ACES), which improved the safety of the astronauts in an emergency situation. Columbia originally had modified SR-71 zero-zero ejection seats installed for the ALT and first four missions, but these were disabled after STS-4 and removed after STS-9 . The flight deck
4800-517: A partially reusable system would be the most cost-effective solution. The head of the NASA Office of Manned Space Flight, George Mueller , announced the plan for a reusable shuttle on August 10, 1968. NASA issued a request for proposal (RFP) for designs of the Integral Launch and Reentry Vehicle (ILRV) on October 30, 1968. Rather than award a contract based upon initial proposals, NASA announced
5000-458: A particular TPS material is usually proportional to the material's density. Carbon phenolic is a very effective ablative material, but also has high density which is undesirable. The NASA Galileo Probe used carbon phenolic for its TPS material. If the heat flux experienced by an entry vehicle is insufficient to cause pyrolysis then the TPS material's conductivity could allow heat flux conduction into
5200-421: A perfect gas model, the ratio of specific heats (also called isentropic exponent , adiabatic index , gamma , or kappa ) is assumed to be constant along with the gas constant . For a real gas, the ratio of specific heats can wildly oscillate as a function of temperature. Under a perfect gas model there is an elegant set of equations for determining thermodynamic state along a constant entropy stream line called
5400-485: A phased approach for the Space Shuttle contracting and development; Phase A was a request for studies completed by competing aerospace companies, Phase B was a competition between two contractors for a specific contract, Phase C involved designing the details of the spacecraft components, and Phase D was the production of the spacecraft. In December 1968, NASA created the Space Shuttle Task Group to determine
5600-481: A port-side hatch that the crew used for entry and exit while on Earth. The airlock is a structure installed to allow movement between two spaces with different gas components, conditions, or pressures. Continuing on the mid-deck structure, each orbiter was originally installed with an internal airlock in the mid-deck. The internal airlock was installed as an external airlock in the payload bay on Discovery , Atlantis , and Endeavour to improve docking with Mir and
5800-665: A result of an O-ring failing at low temperature, the SRBs were redesigned to provide a constant seal regardless of the ambient temperature. The Space Shuttle's operations were supported by vehicles and infrastructure that facilitated its transportation, construction, and crew access. The crawler-transporters carried the MLP and the Space Shuttle from the VAB to the launch site. The Shuttle Carrier Aircraft (SCA) were two modified Boeing 747s that could carry an orbiter on its back. The original SCA (N905NA)
6000-661: A second orbiter. Later that month, Rockwell began converting STA-099 to OV-099, later named Challenger . On January 29, 1979, NASA ordered two additional orbiters, OV-103 and OV-104, which were named Discovery and Atlantis . Construction of OV-105, later named Endeavour , began in February 1982, but NASA decided to limit the Space Shuttle fleet to four orbiters in 1983. After the loss of Challenger , NASA resumed production of Endeavour in September 1987. After it arrived at Edwards AFB, Enterprise underwent flight testing with
6200-645: A separate central processing unit (CPU) and input/output processor (IOP), and non-volatile solid-state memory . From 1991 to 1993, the orbiter vehicles were upgraded to the AP-101S, which improved the memory and processing capabilities, and reduced the volume and weight of the computers by combining the CPU and IOP into a single unit. Four of the GPCs were loaded with the Primary Avionics Software System (PASS), which
STS-114 - Misplaced Pages Continue
6400-418: A spacewalk on the exterior of a spacecraft in flight. On August 1, it was announced that protruding gap fillers on the front underside of the shuttle would be inspected and dealt with during the third spacewalk of the mission. The spacewalk was conducted on the morning of August 3. Robinson easily removed the two fillers with his fingers. Later on the same day, NASA officials said that they were looking closely at
6600-515: A special meaning to an individual member of the crew, or is applicable to their daily activities. On flight day 10, the entire STS-114 crew, and the crew of Expedition 11 gathered to wish Rick Husband's son Matthew a happy birthday. Rick Husband was the commander of Columbia on STS-107 . We know it's still August third down there on the planet Earth, and from the Shuttle Discovery we would like to say "Happy birthday" to Matthew Husband, who
6800-428: A specific destination on the surface at zero velocity while keeping stresses on the spacecraft and any passengers within acceptable limits. This may be accomplished by propulsive or aerodynamic (vehicle characteristics or parachute ) means, or by some combination. There are several basic shapes used in designing entry vehicles: The simplest axisymmetric shape is the sphere or spherical section. This can either be
7000-410: A speech. After STS-4, NASA declared its Space Transportation System (STS) operational. The Space Shuttle was the first operational orbital spacecraft designed for reuse . Each Space Shuttle orbiter was designed for a projected lifespan of 100 launches or ten years of operational life, although this was later extended. At launch, it consisted of the orbiter , which contained the crew and payload,
7200-407: A sphere-cone shape and were the first American example of a non-munition entry vehicle ( Discoverer-I , launched on 28 February 1959). The sphere-cone was later used for space exploration missions to other celestial bodies or for return from open space; e.g., Stardust probe. Unlike with military RVs, the advantage of the blunt body's lower TPS mass remained with space exploration entry vehicles like
7400-513: A stream of vaporized metal making it very visible to radar . These defects made the Mk-2 overly susceptible to anti-ballistic missile (ABM) systems. Consequently, an alternative sphere-cone RV to the Mk-2 was developed by General Electric. This new RV was the Mk-6 which used a non-metallic ablative TPS, a nylon phenolic. This new TPS was so effective as a reentry heat shield that significantly reduced bluntness
7600-459: A thermal blanket located next to the commander's window on the port side of the orbiter. Published reports on August 4, 2005, said that wind tunnel testing had demonstrated that the orbiter was safe to re-enter with the billowed blanket. On July 30, 2005, NASA announced that STS-114 would be extended for one day, so that Discovery' s crew could help the ISS crew maintain the station while the shuttle fleet
7800-761: A total of 135 missions from 1981 to 2011. They launched from the Kennedy Space Center (KSC) in Florida . Operational missions launched numerous satellites , interplanetary probes , and the Hubble Space Telescope (HST), conducted science experiments in orbit, participated in the Shuttle- Mir program with Russia, and participated in the construction and servicing of the International Space Station (ISS). The Space Shuttle fleet's total mission time
8000-459: A total of 14 astronauts killed. A fifth operational (and sixth in total) orbiter, Endeavour , was built in 1991 to replace Challenger . The three surviving operational vehicles were retired from service following Atlantis ' s final flight on July 21, 2011. The U.S. relied on the Russian Soyuz spacecraft to transport astronauts to the ISS from the last Shuttle flight until the launch of
8200-411: A trailing vortex behind the entry vehicle. Correctly modelling the flow in the wake of an entry vehicle is very difficult. Thermal protection shield (TPS) heating in the vehicle's afterbody is usually not very high, but the geometry and unsteadiness of the vehicle's wake can significantly influence aerodynamics (pitching moment) and particularly dynamic stability. A thermal protection system , or TPS,
STS-114 - Misplaced Pages Continue
8400-428: A two-part drag parachute system to slow the orbiter after landing. The orbiter used retractable landing gear with a nose landing gear and two main landing gear, each containing two tires. The main landing gear contained two brake assemblies each, and the nose landing gear contained an electro-hydraulic steering mechanism. The Space Shuttle crew varied per mission. They underwent rigorous testing and training to meet
8600-399: A vehicle's design life). Since the gap fillers are not necessary for re-entry, it was acceptable to simply pull them out. An overview of the situation, including procedures for dealing with the protrusions, were sent electronically to the crew and printed aboard the shuttle. The crew were also able to watch uploaded videos of NASA personnel on the ground demonstrating the repair techniques. Both
8800-525: Is another entry vehicle geometry and was used with the X-23 PRIME (Precision Recovery Including Maneuvering Entry) vehicle. Objects entering an atmosphere from space at high velocities relative to the atmosphere will cause very high levels of heating . Atmospheric entry heating comes principally from two sources: As velocity increases, both convective and radiative heating increase, but at different rates. At very high speeds, radiative heating will dominate
9000-465: Is at 400,000 feet (122 km), the main heating during controlled entry takes place at altitudes of 65 to 35 kilometres (213,000 to 115,000 ft), peaking at 58 kilometres (190,000 ft). At typical reentry temperatures, the air in the shock layer is both ionized and dissociated . This chemical dissociation necessitates various physical models to describe the shock layer's thermal and chemical properties. There are four basic physical models of
9200-506: Is based upon a single ordinary differential equation and one algebraic equation. The five species model is based upon 5 ordinary differential equations and 17 algebraic equations. Because the 5 ordinary differential equations are tightly coupled, the system is numerically "stiff" and difficult to solve. The five species model is only usable for entry from low Earth orbit where entry velocity is approximately 7.8 km/s (28,000 km/h; 17,000 mph). For lunar return entry of 11 km/s,
9400-452: Is cooled by 1,080 interior lines carrying liquid hydrogen and is thermally protected by insulative and ablative material. The RS-25 engines had several improvements to enhance reliability and power. During the development program, Rocketdyne determined that the engine was capable of safe reliable operation at 104% of the originally specified thrust. To keep the engine thrust values consistent with previous documentation and software, NASA kept
9600-448: Is elegant and extremely useful for designing aircraft but assumes that the gas is chemically inert. From the standpoint of aircraft design, air can be assumed to be inert for temperatures less than 550 K (277 °C; 530 °F) at one atmosphere pressure. The perfect gas theory begins to break down at 550 K and is not usable at temperatures greater than 2,000 K (1,730 °C; 3,140 °F). For temperatures greater than 2,000 K,
9800-461: Is lower than other high-heat-flux-ablative materials, such as conventional carbon phenolics. PICA was patented by NASA Ames Research Center in the 1990s and was the primary TPS material for the Stardust aeroshell. The Stardust sample-return capsule was the fastest man-made object ever to reenter Earth's atmosphere, at 28,000 mph (ca. 12.5 km/s) at 135 km altitude. This was faster than
10000-528: Is pre-bonded to the aeroshell's structure thus enabling construction of a large heat shield. Phenolic-impregnated carbon ablator (PICA), a carbon fiber preform impregnated in phenolic resin , is a modern TPS material and has the advantages of low density (much lighter than carbon phenolic) coupled with efficient ablative ability at high heat flux. It is a good choice for ablative applications such as high-peak-heating conditions found on sample-return missions or lunar-return missions. PICA's thermal conductivity
10200-446: Is slowly reduced such that chemical reactions can continue then the gas can remain in equilibrium. However, it is possible for gas pressure to be so suddenly reduced that almost all chemical reactions stop. For that situation the gas is considered frozen. The distinction between equilibrium and frozen is important because it is possible for a gas such as air to have significantly different properties (speed-of-sound, viscosity etc.) for
SECTION 50
#173285180219010400-514: Is ten years old today. And Houston, that wake-up music sure makes me think of Rick Husband's mom, who lives in Amarillo, so we'd like to say "Hi" to Mrs. Husband, too. Since the loss of Columbia in STS-107 , it had been suggested that on future shuttle missions there would be a planned rescue capability involving having a second shuttle ready to fly at short notice. Even prior to the sensor problem causing
10600-457: Is the barrier that protects a spacecraft during the searing heat of atmospheric reentry. Multiple approaches for the thermal protection of spacecraft are in use, among them ablative heat shields, passive cooling, and active cooling of spacecraft surfaces. In general they can be divided into two categories: ablative TPS and reusable TPS. Ablative TPS are required when space craft reach a relatively low altitude before slowing down. Spacecraft like
10800-447: Is the movement of an object from outer space into and through the gases of an atmosphere of a planet , dwarf planet , or natural satellite . There are two main types of atmospheric entry: uncontrolled entry , such as the entry of astronomical objects , space debris , or bolides ; and controlled entry (or reentry ) of a spacecraft capable of being navigated or following a predetermined course. Technologies and procedures allowing
11000-453: Is typically better than that of a spherical section. The vehicle enters sphere-first. With a sufficiently small half-angle and properly placed center of mass, a sphere-cone can provide aerodynamic stability from Keplerian entry to surface impact. (The half-angle is the angle between the cone's axis of rotational symmetry and its outer surface, and thus half the angle made by the cone's surface edges.) The original American sphere-cone aeroshell
11200-485: The Columbia was upstream from the calculated value due to real-gas effects. On Columbia ' s maiden flight ( STS-1 ), astronauts John Young and Robert Crippen had some anxious moments during reentry when there was concern about losing control of the vehicle. An equilibrium real-gas model assumes that a gas is chemically reactive, but also assumes all chemical reactions have had time to complete and all components of
11400-459: The Columbia disaster . Beginning with STS-114 , the orbiter vehicles were equipped with the wing leading edge impact detection system to alert the crew to any potential damage. The entire underside of the orbiter vehicle, as well as the other hottest surfaces, were protected with tiles of high-temperature reusable surface insulation, made of borosilicate glass -coated silica fibers that trapped heat in air pockets and redirected it out. Areas on
11600-749: The Crew Dragon Demo-2 mission in May 2020. In the late 1930s, the German government launched the " Amerikabomber " project, and Eugen Sanger 's idea, together with mathematician Irene Bredt , was a winged rocket called the Silbervogel (German for "silver bird"). During the 1950s, the United States Air Force proposed using a reusable piloted glider to perform military operations such as reconnaissance, satellite attack, and air-to-ground weapons employment. In
11800-628: The G77 Fortran compiler. A non-equilibrium real gas model is the most accurate model of a shock layer's gas physics, but is more difficult to solve than an equilibrium model. The simplest non-equilibrium model is the Lighthill-Freeman model developed in 1958. The Lighthill-Freeman model initially assumes a gas made up of a single diatomic species susceptible to only one chemical formula and its reverse; e.g., N 2 = N + N and N + N = N 2 (dissociation and recombination). Because of its simplicity,
12000-581: The Galileo Probe with a half-angle of 45° or the Viking aeroshell with a half-angle of 70°. Space exploration sphere-cone entry vehicles have landed on the surface or entered the atmospheres of Mars , Venus , Jupiter , and Titan . The biconic is a sphere-cone with an additional frustum attached. The biconic offers a significantly improved L/D ratio. A biconic designed for Mars aerocapture typically has an L/D of approximately 1.0 compared to an L/D of 0.368 for
12200-558: The ISS , along with the Orbiter Docking System . The airlock module can be fitted in the mid-bay, or connected to it but in the payload bay. With an internal cylindrical volume of 1.60 metres (5 feet 3 inches) diameter and 2.11 metres (6 feet 11 inches) in length, it can hold two suited astronauts. It has two D-shaped hatchways 1.02 m (40 in) long (diameter), and 0.91 m (36 in) wide. The orbiter
SECTION 60
#173285180219012400-499: The Kennedy Space Center in Florida hampered the shuttle from using its primary landing site. Analysis of the launch footage showed debris separating from the external tank during ascent; this was of particular concern because it was the issue that had set off the Columbia disaster. As a result, NASA decided on July 27 to postpone future shuttle flights pending additional modifications to
12600-543: The Martin Marietta X-24B . The program tested aerodynamic characteristics that would later be incorporated in design of the Space Shuttle, including unpowered landing from a high altitude and speed. On September 24, 1966, as the Apollo space program neared its design completion, NASA and the Air Force released a joint study concluding that a new vehicle was required to satisfy their respective future demands and that
12800-649: The OBSS , and flight managers scheduled the operation for July 29, 2005. This represented the only known possible damage to Discovery that could have posed a risk during re-entry. At 127.1 seconds after liftoff, and 5.3 seconds after SRB separation, a large piece of debris separated from the Protuberance Air Load (PAL) ramp, which is part of the external tank. The debris was thought to have measured 36.3 by 11 by 6.7 inches (922 by 279 by 170 mm) – and to weigh about 0.45 kilograms (0.99 lb), or half as much as
13000-636: The STS-93 mission). The STS-114 mission was initially to be flown aboard the orbiter Atlantis , but NASA replaced it with Discovery after improperly installed gear was found in Atlantis ' Rudder Speed Brake system. During OMM for Discovery , an actuator on the RSB system was found to be installed incorrectly. This created a fleet wide suspect condition. The Rudder Speed Brake system was removed and refurbished on all three remaining orbiter vehicles, and since Discovery 's RSB
13200-543: The Shuttle Carrier Aircraft , a Boeing 747 that had been modified to carry the orbiter. In February 1977, Enterprise began the Approach and Landing Tests (ALT) and underwent captive flights, where it remained attached to the Shuttle Carrier Aircraft for the duration of the flight. On August 12, 1977, Enterprise conducted its first glide test, where it detached from the Shuttle Carrier Aircraft and landed at Edwards AFB. After four additional flights, Enterprise
13400-476: The Soyuz ), or unbounded (e.g., meteors ) trajectories. Various advanced technologies have been developed to enable atmospheric reentry and flight at extreme velocities. An alternative method of controlled atmospheric entry is buoyancy which is suitable for planetary entry where thick atmospheres, strong gravity, or both factors complicate high-velocity hyperbolic entry, such as the atmospheres of Venus , Titan and
13600-505: The Space Shuttle program . Its official program name was Space Transportation System (STS), taken from the 1969 plan led by U.S. Vice President Spiro Agnew for a system of reusable spacecraft where it was the only item funded for development. The first ( STS-1 ) of four orbital test flights occurred in 1981, leading to operational flights ( STS-5 ) beginning in 1982. Five complete Space Shuttle orbiter vehicles were built and flown on
13800-610: The Stardust probe. Crewed space vehicles must be slowed to subsonic speeds before parachutes or air brakes may be deployed. Such vehicles have high kinetic energies, and atmospheric dissipation is the only way of expending this, as it is highly impractical to use retrorockets for the entire reentry procedure. Ballistic warheads and expendable vehicles do not require slowing at reentry, and in fact, are made streamlined so as to maintain their speed. Furthermore, slow-speed returns to Earth from near-space such as high-altitude parachute jumps from balloons do not require heat shielding because
14000-619: The Tracking and Data Relay Satellite System and the Spacecraft Tracking and Data Acquisition Network ground stations to communicate with the orbiter throughout its orbit. Additionally, the orbiter deployed a high-bandwidth K u band radio out of the cargo bay, which could also be utilized as a rendezvous radar. The orbiter was also equipped with two UHF radios for communications with air traffic control and astronauts conducting EVA. The Space Shuttle's fly-by-wire control system
14200-602: The V-2 , stabilization and aerodynamic stress were important issues (many V-2s broke apart during reentry), but heating was not a serious problem. Medium-range missiles like the Soviet R-5 , with a 1,200-kilometer (650-nautical-mile) range, required ceramic composite heat shielding on separable reentry vehicles (it was no longer possible for the entire rocket structure to survive reentry). The first ICBMs , with ranges of 8,000 to 12,000 km (4,300 to 6,500 nmi), were only possible with
14400-529: The external tank (ET), and the two solid rocket boosters (SRBs). Responsibility for the Space Shuttle components was spread among multiple NASA field centers. The KSC was responsible for launch, landing, and turnaround operations for equatorial orbits (the only orbit profile actually used in the program). The U.S. Air Force at the Vandenberg Air Force Base was responsible for launch, landing, and turnaround operations for polar orbits (though this
14600-408: The giant planets . The concept of the ablative heat shield was described as early as 1920 by Robert Goddard : "In the case of meteors, which enter the atmosphere with speeds as high as 30 miles (48 km) per second, the interior of the meteors remains cold, and the erosion is due, to a large extent, to chipping or cracking of the suddenly heated surface. For this reason, if the outer surface of
14800-419: The isentropic chain . For a real gas, the isentropic chain is unusable and a Mollier diagram would be used instead for manual calculation. However, graphical solution with a Mollier diagram is now considered obsolete with modern heat shield designers using computer programs based upon a digital lookup table (another form of Mollier diagram) or a chemistry based thermodynamics program. The chemical composition of
15000-484: The qualification requirements for their roles. The crew was divided into three categories: Pilots, Mission Specialists, and Payload Specialists. Pilots were further divided into two roles: Space Shuttle Commanders and Space Shuttle Pilots. The test flights only had two members each, the commander and pilot, who were both qualified pilots that could fly and land the orbiter. The on-orbit operations, such as experiments, payload deployment, and EVAs, were conducted primarily by
15200-477: The shock waves from the noses of the solid rocket boosters and the external fuel tank. The other, in a different location where there is a wider gap between tiles, simply functions to reduce the gap size between tiles, which in turn reduces heat transfer to the shuttle. Even without this filler NASA did not expect the increased heat to cause a problem during reentry (it is present to avoid a level of heating which would only be problematic if experienced many times over
15400-445: The 2195 aluminum-lithium alloy, which was 40% stronger and 10% less dense than its predecessor, 2219 aluminum-lithium alloy. The SLWT weighed 3,400 kg (7,500 lb) less than the LWT, which allowed the Space Shuttle to deliver heavy elements to ISS's high inclination orbit. The Solid Rocket Boosters (SRB) provided 71.4% of the Space Shuttle's thrust during liftoff and ascent, and were
15600-534: The 70° sphere-cone entry vehicles sent by NASA to Mars other than the Mars Science Laboratory (MSL). SLA-561V begins significant ablation at a heat flux of approximately 110 W/cm , but will fail for heat fluxes greater than 300 W/cm . The MSL aeroshell TPS is currently designed to withstand a peak heat flux of 234 W/cm . The peak heat flux experienced by the Viking 1 aeroshell which landed on Mars
15800-452: The Air Force required a larger payload capacity than Faget's design allowed. In January 1971, NASA and Air Force leadership decided that a reusable delta-wing orbiter mounted on an expendable propellant tank would be the optimal design for the Space Shuttle. After they established the need for a reusable, heavy-lift spacecraft, NASA and the Air Force determined the design requirements of their respective services. The Air Force expected to use
16000-619: The Apollo mission capsules and 70% faster than the Shuttle. PICA was critical for the viability of the Stardust mission, which returned to Earth in 2006. Stardust's heat shield (0.81 m base diameter) was made of one monolithic piece sized to withstand a nominal peak heating rate of 1.2 kW/cm . A PICA heat shield was also used for the Mars Science Laboratory entry into the Martian atmosphere . An improved and easier to produce version called PICA-X
16200-754: The Apollo-CM. The higher L/D makes a biconic shape better suited for transporting people to Mars due to the lower peak deceleration. Arguably, the most significant biconic ever flown was the Advanced Maneuverable Reentry Vehicle (AMaRV). Four AMaRVs were made by the McDonnell Douglas Corp. and represented a significant leap in RV sophistication. Three AMaRVs were launched by Minuteman-1 ICBMs on 20 December 1979, 8 October 1980 and 4 October 1981. AMaRV had an entry mass of approximately 470 kg,
16400-647: The DC-X also served as the basis for an unsuccessful proposal for what eventually became the Lockheed Martin X-33 . Non- axisymmetric shapes have been used for crewed entry vehicles. One example is the winged orbit vehicle that uses a delta wing for maneuvering during descent much like a conventional glider. This approach has been used by the American Space Shuttle and the Soviet Buran . The lifting body
16600-518: The ET. The SRBs were jettisoned before the vehicle reached orbit, while the main engines continued to operate, and the ET was jettisoned after main engine cutoff and just before orbit insertion , which used the orbiter's two Orbital Maneuvering System (OMS) engines. At the conclusion of the mission, the orbiter fired its OMS to deorbit and reenter the atmosphere . The orbiter was protected during reentry by its thermal protection system tiles, and it glided as
16800-500: The Earth under the influence of Earth's gravity , and are slowed by friction upon encountering Earth's atmosphere. Meteors are also often travelling quite fast relative to the Earth simply because their own orbital path is different from that of the Earth before they encounter Earth's gravity well . Most objects enter at hypersonic speeds due to their sub-orbital (e.g., intercontinental ballistic missile reentry vehicles), orbital (e.g.,
17000-669: The IMU, INS, and TACAN systems, which first flew on STS-118 in August 2007. While in orbit, the crew primarily communicated using one of four S band radios, which provided both voice and data communications. Two of the S ;band radios were phase modulation transceivers , and could transmit and receive information. The other two S band radios were frequency modulation transmitters and were used to transmit data to NASA. As S band radios can operate only within their line of sight , NASA used
17200-466: The IMUs while in orbit. The star trackers are deployed while in orbit, and can automatically or manually align on a star. In 1991, NASA began upgrading the inertial measurement units with an inertial navigation system (INS), which provided more accurate location information. In 1993, NASA flew a GPS receiver for the first time aboard STS-51 . In 1997, Honeywell began developing an integrated GPS/INS to replace
17400-474: The KSC. The Space Shuttle was prepared for launch primarily in the VAB at the KSC. The SRBs were assembled and attached to the external tank on the MLP. The orbiter vehicle was prepared at the Orbiter Processing Facility (OPF) and transferred to the VAB, where a crane was used to rotate it to the vertical orientation and mate it to the external tank. Once the entire stack was assembled, the MLP
17600-525: The Lighthill-Freeman model is a useful pedagogical tool, but is too simple for modelling non-equilibrium air. Air is typically assumed to have a mole fraction composition of 0.7812 molecular nitrogen, 0.2095 molecular oxygen and 0.0093 argon. The simplest real gas model for air is the five species model , which is based upon N 2 , O 2 , NO, N, and O. The five species model assumes no ionization and ignores trace species like carbon dioxide. When running
17800-524: The RS-25 experienced multiple nozzle failures, as well as broken turbine blades. Despite the problems during testing, NASA ordered the nine RS-25 engines needed for its three orbiters under construction in May 1978. NASA experienced significant delays in the development of the Space Shuttle's thermal protection system . Previous NASA spacecraft had used ablative heat shields, but those could not be reused. NASA chose to use ceramic tiles for thermal protection, as
18000-568: The Russian Space Corporation Energia , was reported by Pravda as saying: "If necessary, we will be able to bring home nine astronauts on board three Soyuz spacecraft in January and February of the next year". Space Shuttle The Space Shuttle is a retired, partially reusable low Earth orbital spacecraft system operated from 1981 to 2011 by the U.S. National Aeronautics and Space Administration (NASA) as part of
18200-505: The SRBs provided structural support for the orbiter vehicle and ET, as they were the only system that was connected to the mobile launcher platform (MLP). At the time of launch, the SRBs were armed at T−5 minutes, and could only be electrically ignited once the RS-25 engines had ignited and were without issue. They each provided 12,500 kN (2,800,000 lbf) of thrust, which was later improved to 13,300 kN (3,000,000 lbf) beginning on STS-8 . After expending their fuel,
18400-558: The SRBs were jettisoned approximately two minutes after launch at an altitude of approximately 46 km (150,000 ft). Following separation, they deployed drogue and main parachutes, landed in the ocean, and were recovered by the crews aboard the ships MV Freedom Star and MV Liberty Star . Once they were returned to Cape Canaveral, they were cleaned and disassembled. The rocket motor, igniter, and nozzle were then shipped to Thiokol to be refurbished and reused on subsequent flights. The SRBs underwent several redesigns throughout
18600-399: The Space Shuttle through ascent, orbit, and reentry, but could not support an entire mission. The five GPCs were separated in three separate bays within the mid-deck to provide redundancy in the event of a cooling fan failure. After achieving orbit, the crew would switch some of the GPCs functions from guidance, navigation, and control (GNC) to systems management (SM) and payload (PL) to support
18800-519: The Space Shuttle to launch large satellites, and required it to be capable of lifting 29,000 kg (65,000 lb) to an eastward LEO or 18,000 kg (40,000 lb) into a polar orbit . The satellite designs also required that the Space Shuttle have a 4.6 by 18 m (15 by 60 ft) payload bay. NASA evaluated the F-1 and J-2 engines from the Saturn rockets , and determined that they were insufficient for
19000-578: The Spacelab module through a 2.7 or 5.8 m (8.72 or 18.88 ft) tunnel that connected to the airlock. The Spacelab equipment was primarily stored in pallets, which provided storage for both experiments as well as computer and power equipment. Spacelab hardware was flown on 28 missions through 1999 and studied subjects including astronomy, microgravity, radar, and life sciences. Spacelab hardware also supported missions such as Hubble Space Telescope (HST) servicing and space station resupply. The Spacelab module
19200-483: The TPS bondline material thus leading to TPS failure. Consequently, for entry trajectories causing lower heat flux, carbon phenolic is sometimes inappropriate and lower-density TPS materials such as the following examples can be better design choices: SLA in SLA-561V stands for super light-weight ablator . SLA-561V is a proprietary ablative made by Lockheed Martin that has been used as the primary TPS material on all of
19400-567: The aft seating location, and also controlled the data on the HUD. In 1998, Atlantis was upgraded with the Multifunction Electronic Display System (MEDS), which was a glass cockpit upgrade to the flight instruments that replaced the eight MCDS display units with 11 multifunction colored digital screens. MEDS was flown for the first time in May 2000 on STS-101 , and the other orbiter vehicles were upgraded to it. The aft section of
19600-442: The apparatus were to consist of layers of a very infusible hard substance with layers of a poor heat conductor between, the surface would not be eroded to any considerable extent, especially as the velocity of the apparatus would not be nearly so great as that of the average meteor." Practical development of reentry systems began as the range, and reentry velocity of ballistic missiles increased. For early short-range missiles, like
19800-401: The associated propellant tanks. The AJ10 engines used monomethylhydrazine (MMH) oxidized by dinitrogen tetroxide (N 2 O 4 ). The pods carried a maximum of 2,140 kg (4,718 lb) of MMH and 3,526 kg (7,773 lb) of N 2 O 4 . The OMS engines were used after main engine cut-off (MECO) for orbital insertion. Throughout the flight, they were used for orbit changes, as well as
20000-422: The atmospheric entry returns to the same body that the vehicle had launched from, the event is referred to as reentry (almost always referring to Earth entry). The fundamental design objective in atmospheric entry of a spacecraft is to dissipate the energy of a spacecraft that is traveling at hypersonic speed as it enters an atmosphere such that equipment, cargo, and any passengers are slowed and land near
20200-549: The built-in hold at T−9 minutes, the countdown was automatically controlled by the Ground Launch Sequencer (GLS) at the LCC, which stopped the countdown if it sensed a critical problem with any of the Space Shuttle's onboard systems. At T−3 minutes 45 seconds, the engines began conducting gimbal tests, which were concluded at T−2 minutes 15 seconds. The ground Launch Processing System handed off
20400-461: The bulk of the ET, and was 29 m (96.7 ft) tall. The orbiter vehicle was attached to the ET at two umbilical plates, which contained five propellant and two electrical umbilicals, and forward and aft structural attachments. The exterior of the ET was covered in orange spray-on foam to allow it to survive the heat of ascent. The ET provided propellant to the Space Shuttle Main Engines from liftoff until main engine cutoff. The ET separated from
20600-464: The case of the Galileo probe's entry into Jupiter's atmosphere, the shock layer was mostly in equilibrium during peak heat flux due to the very high pressures experienced (this is counterintuitive given the free stream velocity was 39 km/s during peak heat flux). Determining the thermodynamic state of the stagnation point is more difficult under an equilibrium gas model than a perfect gas model. Under
20800-402: The center of curvature (dynamic stability is more problematic). Pure spheres have no lift. However, by flying at an angle of attack , a spherical section has modest aerodynamic lift thus providing some cross-range capability and widening its entry corridor. In the late 1950s and early 1960s, high-speed computers were not yet available and computational fluid dynamics was still embryonic. Because
21000-540: The contract to build the orbiter to North American Rockwell. In August 1973, the external tank contract to Martin Marietta , and in November the solid-rocket booster contract to Morton Thiokol . On June 4, 1974, Rockwell began construction on the first orbiter, OV-101, dubbed Constitution, later to be renamed Enterprise . Enterprise was designed as a test vehicle, and did not include engines or heat shielding. Construction
21200-477: The control to the orbiter vehicle's GPCs at T−31 seconds. At T−16 seconds, the GPCs armed the SRBs, the sound suppression system (SPS) began to drench the MLP and SRB trenches with 1,100,000 L (300,000 U.S. gal) of water to protect the orbiter vehicle from damage by acoustical energy and rocket exhaust reflected from the flame trench and MLP during lift-off. At T−10 seconds, hydrogen igniters were activated under each engine bell to quell
21400-598: The controlled atmospheric entry, descent, and landing of spacecraft are collectively termed as EDL . Objects entering an atmosphere experience atmospheric drag , which puts mechanical stress on the object, and aerodynamic heating —caused mostly by compression of the air in front of the object, but also by drag. These forces can cause loss of mass ( ablation ) or even complete disintegration of smaller objects, and objects with lower compressive strength can explode. Reentry has been achieved with speeds ranging from 7.8 km/s for low Earth orbit to around 12.5 km/s for
21600-418: The convective heat fluxes, as radiative heating is proportional to the eighth power of velocity, while convective heating is proportional to the third power of velocity. Radiative heating thus predominates early in atmospheric entry, while convection predominates in the later phases. During certain intensity of ionization, a radio-blackout with the spacecraft is produced. While NASA's Earth entry interface
21800-573: The cracks that resulted in foam loss. NASA official Wayne Hale formally apologized to the Michoud workers who had been blamed for the loss of Columbia for almost three years. On the third EVA of the mission, two areas on the underside of the shuttle where photographic surveying identified protruding gap fillers were dealt with. According to NASA, the gap fillers, which each serve different purposes, are not required for reentry. One filler prevents "chattering" of tiles during ascent, which would occur due to
22000-651: The delay in the launch, a rescue option (called STS-300 by NASA) had been planned, which involved the crew of STS-114 remaining docked at the International Space Station until Atlantis could be launched with a four-person crew to retrieve the astronauts. Discovery would then be ditched by remote control over the Pacific Ocean, with Atlantis bringing back both its own crew, as well as that of Discovery . A further option for rescue would be to use Russian Soyuz spacecraft . Nikolay Sevastyanov , director of
22200-421: The deorbit burn prior to reentry. Each OMS engine produced 27,080 N (6,087 lbf) of thrust, and the entire system could provide 305 m/s (1,000 ft/s) of velocity change . The orbiter was protected from heat during reentry by the thermal protection system (TPS), a thermal soaking protective layer around the orbiter. In contrast with previous US spacecraft, which had used ablative heat shields,
22400-507: The development of a space shuttle to bring people and cargo to low Earth orbit (LEO), as well as a space tug for transfers between orbits and the Moon, and a reusable nuclear upper stage for deep space travel. After the release of the Space Shuttle Task Group report, many aerospace engineers favored the Class III, fully reusable design because of perceived savings in hardware costs. Max Faget ,
22600-569: The development of modern ablative heat shields and blunt-shaped vehicles. In the United States, this technology was pioneered by H. Julian Allen and A. J. Eggers Jr. of the National Advisory Committee for Aeronautics (NACA) at Ames Research Center . In 1951, they made the counterintuitive discovery that a blunt shape (high drag) made the most effective heat shield. From simple engineering principles, Allen and Eggers showed that
22800-692: The earliest date for the next launch would be in March 2006. However, because Hurricane Katrina hit the Gulf Coast , the next launch was delayed further. With the destruction suffered by Michoud and NASA's Stennis Space Center in Mississippi due to Hurricane Katrina and the subsequent flooding, the launch of the next shuttle mission ( STS-121 ) was further delayed until July 4, 2006. In December 2005 x-ray photographs of another tank showed that thermal expansion and contraction during filling, not human error, caused
23000-552: The ease of refurbishing them for reuse after they landed in the ocean. In January 1972, President Richard Nixon approved the Shuttle, and NASA decided on its final design in March. The development of the Space Shuttle Main Engine (SSME) remained the responsibility of Rocketdyne, and the contract was issued in July 1971, and updated SSME specifications were submitted to Rocketdyne in that April. That August, NASA awarded
23200-479: The effects of aerodynamic and thermal stresses during launch and reentry. The beginning of the development of the RS-25 Space Shuttle Main Engine was delayed for nine months while Pratt & Whitney challenged the contract that had been issued to Rocketdyne. The first engine was completed in March 1975, after issues with developing the first throttleable, reusable engine. During engine testing,
23400-499: The engines during powered flight and fly the orbiter during unpowered flight. Both seats also had rudder controls, to allow rudder movement in flight and nose-wheel steering on the ground. The orbiter vehicles were originally installed with the Multifunction CRT Display System (MCDS) to display and control flight information. The MCDS displayed the flight information at the commander and pilot seats, as well as at
23600-547: The external tanks at the Michoud Assembly Facility in Louisiana caused the foam loss on Discovery . NASA Administrator Michael Griffin stated that the earliest the next shuttle could launch is September 22, 2005, but that's only "if next week, the guys have an Aha! effect on the foam and spot why this big chunk came off." Later in August, it became clear that a September launch date would not be possible, and that
23800-592: The feasibility of reusable boosters. This became the basis for the aerospaceplane , a fully reusable spacecraft that was never developed beyond the initial design phase in 1962–1963. Beginning in the early 1950s, NASA and the Air Force collaborated on developing lifting bodies to test aircraft that primarily generated lift from their fuselages instead of wings, and tested the NASA M2-F1 , Northrop M2-F2 , Northrop M2-F3 , Northrop HL-10 , Martin Marietta X-24A , and
24000-649: The final decision to scrub a launch was announced. In addition to the weather at the launch site, conditions had to be acceptable at one of the Transatlantic Abort Landing sites and the SRB recovery area. The mission crew and the Launch Control Center (LCC) personnel completed systems checks throughout the countdown. Two built-in holds at T−20 minutes and T−9 minutes provided scheduled breaks to address any issues and additional preparation. After
24200-518: The first four Shuttle missions, astronauts wore modified U.S. Air Force high-altitude full-pressure suits, which included a full-pressure helmet during ascent and descent. From the fifth flight, STS-5 , until the loss of Challenger , the crew wore one-piece light blue nomex flight suits and partial-pressure helmets. After the Challenger disaster, the crew members wore the Launch Entry Suit (LES),
24400-426: The first time NASA performed a crewed first-flight of a spacecraft. On April 12, 1981, the Space Shuttle launched for the first time, and was piloted by John Young and Robert Crippen . During the two-day mission, Young and Crippen tested equipment on board the shuttle, and found several of the ceramic tiles had fallen off the top side of the Columbia . NASA coordinated with the Air Force to use satellites to image
24600-624: The flight deck contained windows looking into the payload bay, as well as an RHC to control the Remote Manipulator System during cargo operations. Additionally, the aft flight deck had monitors for a closed-circuit television to view the cargo bay. The mid-deck contained the crew equipment storage, sleeping area, galley, medical equipment, and hygiene stations for the crew. The crew used modular lockers to store equipment that could be scaled depending on their needs, as well as permanently installed floor compartments. The mid-deck contained
24800-453: The flight hardware. Shuttle flights resumed a year later with STS-121 on July 4, 2006. This mission was to carry the Expedition 7 crew to the ISS and bring home the Expedition 6 crew. The original crew was to be: STS-114 marked the return to flight of the Space Shuttle after the Columbia disaster and was the second Shuttle flight with a female commander (Eileen Collins, who also commanded
25000-491: The forward separation motors and the parachute systems that were used during recovery. The rocket nozzles could gimbal up to 8° to allow for in-flight adjustments. The rocket motors were each filled with a total 500,000 kg (1,106,640 lb) of solid rocket propellant ( APCP + PBAN ), and joined in the Vehicle Assembly Building (VAB) at KSC. In addition to providing thrust during the first stage of launch,
25200-429: The front landing gear door at some point before SRB separation. A small white area appeared on the tile as the piece detached, and the loose shard could be seen in a single frame of the video. It is unknown what object (if any) struck the tile to cause the damage. The damaged tile was inspected further when the images from the umbilical camera were downloaded on day three. Engineers requested that this area be inspected by
25400-447: The gas and varying the different molecular combinations of the elements through numerical iteration until the lowest possible Gibbs free energy is calculated (a Newton–Raphson method is the usual numerical scheme). The data base for a Gibbs free energy program comes from spectroscopic data used in defining partition functions . Among the best equilibrium codes in existence is the program Chemical Equilibrium with Applications (CEA) which
25600-432: The gas have the same temperature (this is called thermodynamic equilibrium ). When air is processed by a shock wave, it is superheated by compression and chemically dissociates through many different reactions. Direct friction upon the reentry object is not the main cause of shock-layer heating. It is caused mainly from isentropic heating of the air molecules within the compression wave. Friction based entropy increases of
25800-644: The gravitational acceleration of an object starting at relative rest from within the atmosphere itself (or not far above it) cannot create enough velocity to cause significant atmospheric heating. For Earth, atmospheric entry occurs by convention at the Kármán line at an altitude of 100 km (62 miles; 54 nautical miles) above the surface, while at Venus atmospheric entry occurs at 250 km (160 mi; 130 nmi) and at Mars atmospheric entry at about 80 km (50 mi; 43 nmi). Uncontrolled objects reach high velocities while accelerating through space toward
26000-408: The heat load experienced by an entry vehicle was inversely proportional to the drag coefficient ; i.e., the greater the drag, the less the heat load. If the reentry vehicle is made blunt, air cannot "get out of the way" quickly enough, and acts as an air cushion to push the shock wave and heated shock layer forward (away from the vehicle). Since most of the hot gases are no longer in direct contact with
26200-444: The hot shock layer gas away from the heat shield's outer wall (creating a cooler boundary layer ). The boundary layer comes from blowing of gaseous reaction products from the heat shield material and provides protection against all forms of heat flux. The overall process of reducing the heat flux experienced by the heat shield's outer wall by way of a boundary layer is called blockage . Ablation occurs at two levels in an ablative TPS:
26400-402: The inner leading edge and 45° at the outer leading edge. Each wing had an inboard and outboard elevon to provide flight control during reentry, along with a flap located between the wings, below the engines to control pitch . The orbiter's vertical stabilizer was swept backwards at 45° and contained a rudder that could split to act as a speed brake . The vertical stabilizer also contained
26600-504: The largest solid-propellant motors ever flown. Each SRB was 45 m (149.2 ft) tall and 3.7 m (12.2 ft) wide, weighed 68,000 kg (150,000 lb), and had a steel exterior approximately 13 mm (.5 in) thick. The SRB's subcomponents were the solid-propellant motor, nose cone, and rocket nozzle. The solid-propellant motor comprised the majority of the SRB's structure. Its casing consisted of 11 steel sections which made up its four main segments. The nose cone housed
26800-561: The late 1950s, the Air Force began developing the partially reusable X-20 Dyna-Soar . The Air Force collaborated with NASA on the Dyna-Soar and began training six pilots in June 1961. The rising costs of development and the prioritization of Project Gemini led to the cancellation of the Dyna-Soar program in December 1963. In addition to the Dyna-Soar, the Air Force had conducted a study in 1957 to test
27000-486: The launch pad, the Space Shuttle was used to verify the proper positioning of the launch complex hardware. Enterprise was taken back to California in August 1979, and later served in the development of the SLC-6 at Vandenberg AFB in 1984. On November 24, 1980, Columbia was mated with its external tank and solid-rocket boosters, and was moved to LC-39 on December 29. The first Space Shuttle mission, STS-1 , would be
27200-437: The mission specialists who were specifically trained for their intended missions and systems. Early in the Space Shuttle program, NASA flew with payload specialists, who were typically systems specialists who worked for the company paying for the payload's deployment or operations. The final payload specialist, Gregory B. Jarvis , flew on STS-51-L , and future non-pilots were designated as mission specialists. An astronaut flew as
27400-438: The molecules within the wave also account for some heating. The distance from the shock wave to the stagnation point on the entry vehicle's leading edge is called shock wave stand off . An approximate rule of thumb for shock wave standoff distance is 0.14 times the nose radius. One can estimate the time of travel for a gas molecule from the shock wave to the stagnation point by assuming a free stream velocity of 7.8 km/s and
27600-576: The new Orbiter Boom Sensor System (OBSS) – a set of instruments on a 50 feet (15 m) extension attached to the Canadarm . The OBSS instrument package consists of visual imaging equipment and a Laser Dynamic Range Imager (LDRI) to detect problems with the shuttle's Thermal Protection System (TPS). The crew scanned the leading edges of the wings, the nose cap, and the crew compartment for damage, as well as other potential problem areas engineers wished to inspect based on video taken during lift-off. STS-114
27800-451: The night before it undocked from the ISS. After undocking, the shuttle flew around the station to take photos. Atmospheric reentry and landing was originally planned for August 8, 2005, at Kennedy Space Center , but unsuitable weather postponed the landing until the next day, then moved it to Edwards Air Force Base in California, where Discovery touched down at 08:11EDT (05:11 am PDT, 12:11 UTC). Around 2.5 seconds after lift-off,
28000-434: The operational mission. The Space Shuttle was not launched if its flight would run from December to January, as its flight software would have required the orbiter vehicle's computers to be reset at the year change. In 2007, NASA engineers devised a solution so Space Shuttle flights could cross the year-end boundary. Space Shuttle missions typically brought a portable general support computer (PGSC) that could integrate with
28200-424: The optimal design for a reusable spacecraft, and issued study contracts to General Dynamics , Lockheed , McDonnell Douglas , and North American Rockwell . In July 1969, the Space Shuttle Task Group issued a report that determined the Shuttle would support short-duration crewed missions and space station, as well as the capabilities to launch, service, and retrieve satellites. The report also created three classes of
28400-436: The orange foam itself was sufficiently protected, and the ET was no longer covered in latex paint beginning on STS-3. A light-weight tank (LWT) was first flown on STS-6, which reduced tank weight by 4,700 kg (10,300 lb). The LWT's weight was reduced by removing components from the hydrogen tank and reducing the thickness of some skin panels. In 1998, a super light-weight ET (SLWT) first flew on STS-91 . The SLWT used
28600-437: The orbiter vehicle 18 seconds after engine cutoff and could be triggered automatically or manually. At the time of separation, the orbiter vehicle retracted its umbilical plates, and the umbilical cords were sealed to prevent excess propellant from venting into the orbiter vehicle. After the bolts attached at the structural attachments were sheared, the ET separated from the orbiter vehicle. At the time of separation, gaseous oxygen
28800-467: The orbiter vehicle and would be removed and replaced in between flights. The RS-25 is a staged-combustion cycle cryogenic engine that used liquid oxygen and hydrogen and had a higher chamber pressure than any previous liquid-fueled rocket. The original main combustion chamber operated at a maximum pressure of 226.5 bar (3,285 psi). The engine nozzle is 287 cm (113 in) tall and has an interior diameter of 229 cm (90.3 in). The nozzle
29000-500: The orbiter vehicle's computers and communication suite, as well as monitor scientific and payload data. Early missions brought the Grid Compass , one of the first laptop computers, as the PGSC, but later missions brought Apple and Intel laptops. The payload bay comprised most of the orbiter vehicle's fuselage , and provided the cargo-carrying space for the Space Shuttle's payloads. It
29200-535: The orbiter vehicle's heat, and were opened upon reaching orbit for heat rejection. The orbiter could be used in conjunction with a variety of add-on components depending on the mission. This included orbital laboratories, boosters for launching payloads farther into space, the Remote Manipulator System (RMS), and optionally the EDO pallet to extend the mission duration. To limit the fuel consumption while
29400-512: The orbiter was docked at the ISS, the Station-to-Shuttle Power Transfer System (SSPTS) was developed to convert and transfer station power to the orbiter. The SSPTS was first used on STS-118, and was installed on Discovery and Endeavour . The Remote Manipulator System (RMS), also known as Canadarm, was a mechanical arm attached to the cargo bay. It could be used to grasp and manipulate payloads, as well as serve as
29600-544: The originally specified thrust at 100%, but had the RS-25 operate at higher thrust. RS-25 upgrade versions were denoted as Block I and Block II. 109% thrust level was achieved with the Block II engines in 2001, which reduced the chamber pressure to 207.5 bars (3,010 psi), as it had a larger throat area. The normal maximum throttle was 104 percent, with 106% or 109% used for mission aborts. The Orbital Maneuvering System (OMS) consisted of two aft-mounted AJ10-190 engines and
29800-481: The outer surface of the TPS material chars, melts, and sublimes , while the bulk of the TPS material undergoes pyrolysis and expels product gases. The gas produced by pyrolysis is what drives blowing and causes blockage of convective and catalytic heat flux. Pyrolysis can be measured in real time using thermogravimetric analysis , so that the ablative performance can be evaluated. Ablation can also provide blockage against radiative heat flux by introducing carbon into
30000-451: The piece of foam blamed for the loss of Columbia . The debris piece did not strike any part of the Discovery orbiter. Images of the external tank taken after separation from the orbiter show multiple areas where foam insulation was missing. Around 20 seconds later, a smaller piece of foam separated from the ET and apparently struck the orbiter's right wing. Based on the mass of the foam, and
30200-539: The procedure which would involve the ISS arm being used to carry Stephen K. Robinson below the shuttle, possibly the use of a sharp tool which had the potential to damage the EVA suit or shuttle tiles. The possibility of making things worse by attempting a repair was given serious consideration. Cameras on the shuttle arm and on Robinson's helmet were used to monitor the activities under the shuttle. Protruding gap fillers had been identified as an issue on previous flights, notably STS-28 . A post-flight analysis identified that
30400-405: The program's lifetime. STS-6 and STS-7 used SRBs 2,300 kg (5,000 lb) lighter due to walls that were 0.10 mm (.004 in) thinner, but were determined to be too thin to fly safely. Subsequent flights until STS-26 used cases that were 0.076 mm (.003 in) thinner than the standard-weight cases, which reduced 1,800 kg (4,000 lb). After the Challenger disaster as
30600-400: The propellant for the Space Shuttle Main Engines, and connected the orbiter vehicle with the solid rocket boosters. The ET was 47 m (153.8 ft) tall and 8.4 m (27.6 ft) in diameter, and contained separate tanks for liquid oxygen and liquid hydrogen. The liquid oxygen tank was housed in the nose of the ET, and was 15 m (49.3 ft) tall. The liquid hydrogen tank comprised
30800-537: The rear of the payload bay, together with the TPS Repair Box. The crew conducted three spacewalks while at the station. The first demonstrated repair techniques on the Shuttle's Thermal Protection System. During the second, the spacewalkers replaced the failed gyroscope. On the third, they installed the External Stowage Platform and repaired the shuttle, the first time repairs had been carried out during
31000-461: The requirements of the Space Shuttle; in July 1971, it issued a contract to Rocketdyne to begin development on the RS-25 engine. NASA reviewed 29 potential designs for the Space Shuttle and determined that a design with two side boosters should be used, and the boosters should be reusable to reduce costs. NASA and the Air Force elected to use solid-propellant boosters because of the lower costs and
31200-636: The reusability of the orbiter required a multi-use heat shield. During reentry, the TPS experienced temperatures up to 1,600 °C (3,000 °F), but had to keep the orbiter vehicle's aluminum skin temperature below 180 °C (350 °F). The TPS primarily consisted of four types of tiles. The nose cone and leading edges of the wings experienced temperatures above 1,300 °C (2,300 °F), and were protected by reinforced carbon-carbon tiles (RCC). Thicker RCC tiles were developed and installed in 1998 to prevent damage from micrometeoroid and orbital debris , and were further improved after RCC damage caused in
31400-451: The same thermodynamic state; e.g., pressure and temperature. Frozen gas can be a significant issue in the wake behind an entry vehicle. During reentry, free stream air is compressed to high temperature and pressure by the entry vehicle's shock wave. Non-equilibrium air in the shock layer is then transported past the entry vehicle's leading side into a region of rapidly expanding flow that causes freezing. The frozen air can then be entrained into
31600-430: The shock layer between the shock wave and leading edge of an entry vehicle is chemically reacting and not in a state of equilibrium. The Fay–Riddell equation , which is of extreme importance towards modeling heat flux, owes its validity to the stagnation point being in chemical equilibrium. The time required for the shock layer gas to reach equilibrium is strongly dependent upon the shock layer's pressure. For example, in
31800-447: The shock layer contains a significant amount of ionized nitrogen and oxygen. The five-species model is no longer accurate and a twelve-species model must be used instead. Atmospheric entry interface velocities on a Mars–Earth trajectory are on the order of 12 km/s (43,000 km/h; 27,000 mph). Modeling high-speed Mars atmospheric entry—which involves a carbon dioxide, nitrogen and argon atmosphere—is even more complex requiring
32000-578: The shock layer thus making it optically opaque. Radiative heat flux blockage was the primary thermal protection mechanism of the Galileo Probe TPS material (carbon phenolic). Early research on ablation technology in the USA was centered at NASA 's Ames Research Center located at Moffett Field , California. Ames Research Center was ideal, since it had numerous wind tunnels capable of generating varying wind velocities. Initial experiments typically mounted
32200-399: The shock wave dissociating ambient atmospheric gas followed by recombination within the shock layer into new molecular species. The newly formed diatomic molecules initially have a very high vibrational temperature that efficiently transforms the vibrational energy into radiant energy ; i.e., radiative heat flux. The whole process takes place in less than a millisecond which makes modelling
32400-529: The shuttle could then be constructed of lightweight aluminum , and the tiles could be individually replaced as needed. Construction began on Columbia on March 27, 1975, and it was delivered to the KSC on March 25, 1979. At the time of its arrival at the KSC, Columbia still had 6,000 of its 30,000 tiles remaining to be installed. However, many of the tiles that had been originally installed had to be replaced, requiring two years of installation before Columbia could fly. On January 5, 1979, NASA commissioned
32600-408: The space shuttle are designed to slow down at high altitude so that they can use reuseable TPS. (see: Space Shuttle thermal protection system ). Thermal protection systems are tested in high enthalpy ground testing or plasma wind tunnels that reproduce the combination of high enthalpy and high stagnation pressure using Induction plasma or DC plasma. The ablative heat shield functions by lifting
32800-471: The spherical section geometry in crewed capsules are Soyuz / Zond , Gemini , and Mercury . Even these small amounts of lift allow trajectories that have very significant effects on peak g-force , reducing it from 8–9 g for a purely ballistic (slowed only by drag) trajectory to 4–5 g, as well as greatly reducing the peak reentry heat. The sphere-cone is a spherical section with a frustum or blunted cone attached. The sphere-cone's dynamic stability
33000-477: The spherical section was amenable to closed-form analysis, that geometry became the default for conservative design. Consequently, crewed capsules of that era were based upon the spherical section. Pure spherical entry vehicles were used in the early Soviet Vostok and Voskhod capsules and in Soviet Mars and Venera descent vehicles. The Apollo command module used a spherical section forebody heat shield with
33200-405: The stagnant gas inside the cones before ignition. Failure to burn these gases could trip the onboard sensors and create the possibility of an overpressure and explosion of the vehicle during the firing phase. The hydrogen tank's prevalves were opened at T−9.5 seconds in preparation for engine start. Atmospheric entry Atmospheric entry (sometimes listed as V impact or V entry )
33400-418: The underside of Columbia , and determined there was no damage. Columbia reentered the atmosphere and landed at Edwards AFB on April 14. NASA conducted three additional test flights with Columbia in 1981 and 1982. On July 4, 1982, STS-4 , flown by Ken Mattingly and Henry Hartsfield , landed on a concrete runway at Edwards AFB. President Ronald Reagan and his wife Nancy met the crew, and delivered
33600-467: The upper parts of the orbiter vehicle were coated in tiles of white low-temperature reusable surface insulation with similar composition, which provided protection for temperatures below 650 °C (1,200 °F). The payload bay doors and parts of the upper wing surfaces were coated in reusable Nomex felt surface insulation or in beta cloth , as the temperature there remained below 370 °C (700 °F). The Space Shuttle external tank (ET) carried
33800-455: The vehicle, the heat energy would stay in the shocked gas and simply move around the vehicle to later dissipate into the atmosphere. The Allen and Eggers discovery, though initially treated as a military secret, was eventually published in 1958. When atmospheric entry is part of a spacecraft landing or recovery, particularly on a planetary body other than Earth, entry is part of a phase referred to as entry, descent, and landing , or EDL. When
34000-485: The velocity at which it would have struck the wing, NASA estimated it only exerted one-tenth the energy required to cause potential damage. Laser scanning and imaging of the wing by the OBSS did not reveal any damage. On July 27, 2005, NASA announced that it was postponing all Shuttle flights until the foam loss problem could be resolved. As with Columbia , NASA at first believed that workers' improper installation and handling of
34200-414: The videos and 12-page procedure document were also made publicly available via NASA's website. During the third EVA, both fillers were successfully removed with less than a pound of force and without the need to use any tools. Stephen K. Robinson gave a running commentary of his work: "I'm grasping it and I'm pulling it and it's coming out very easily" ... "It looks like this big patient is cured". If it
34400-512: Was 1,323 days. Space Shuttle components include the Orbiter Vehicle (OV) with three clustered Rocketdyne RS-25 main engines, a pair of recoverable solid rocket boosters (SRBs), and the expendable external tank (ET) containing liquid hydrogen and liquid oxygen . The Space Shuttle was launched vertically , like a conventional rocket, with the two SRBs operating in parallel with the orbiter's three main engines , which were fueled from
34600-462: Was 18 m (60 ft) long and 4.6 m (15 ft) wide, and could accommodate cylindrical payloads up to 4.6 m (15 ft) in diameter. Two payload bay doors hinged on either side of the bay, and provided a relatively airtight seal to protect payloads from heating during launch and reentry. Payloads were secured in the payload bay to the attachment points on the longerons . The payload bay doors served an additional function as radiators for
34800-402: Was 21 W/cm . For Viking 1 , the TPS acted as a charred thermal insulator and never experienced significant ablation. Viking 1 was the first Mars lander and based upon a very conservative design. The Viking aeroshell had a base diameter of 3.54 meters (the largest used on Mars until Mars Science Laboratory). SLA-561V is applied by packing the ablative material into a honeycomb core that
35000-490: Was Space Shuttle-specific software that provided control through all phases of flight. During ascent, maneuvering, reentry, and landing, the four PASS GPCs functioned identically to produce quadruple redundancy and would error check their results. In case of a software error that would cause erroneous reports from the four PASS GPCs, a fifth GPC ran the Backup Flight System, which used a different program and could control
35200-618: Was a modified airport jet bridge that was used to assist astronauts to egress from the orbiter after landing, where they would undergo their post-mission medical checkups. The Astrovan transported astronauts from the crew quarters in the Operations and Checkout Building to the launch pad on launch day. The NASA Railroad comprised three locomotives that transported SRB segments from the Florida East Coast Railway in Titusville to
35400-462: Was carried for 5.6 km (3.5 mi) to Launch Complex 39 by one of the crawler-transporters . After the Space Shuttle arrived at one of the two launchpads, it would connect to the Fixed and Rotation Service Structures, which provided servicing capabilities, payload insertion, and crew transportation. The crew was transported to the launch pad at T−3 hours and entered the orbiter vehicle, which
35600-777: Was classified as Logistics Flight 1. The flight carried the Raffaello Multi-Purpose Logistics Module , built by the Italian Space Agency , as well as the External Stowage Platform -2, which was mounted to the port side of the Quest Airlock. They deployed MISSE 5 to the station's exterior, and replaced one of the ISS's Control Moment Gyroscopes (CMG). The CMG was carried up on the LMC (Lightweight Multi-Purpose Experiment Support Structure Carrier) at
35800-565: Was closed at T−2 hours. Liquid oxygen and hydrogen were loaded into the external tank via umbilicals that attached to the orbiter vehicle, which began at T−5 hours 35 minutes. At T−3 hours 45 minutes, the hydrogen fast-fill was complete, followed 15 minutes later by the oxygen tank fill. Both tanks were slowly filled up until the launch as the oxygen and hydrogen evaporated. The launch commit criteria considered precipitation, temperatures, cloud cover, lightning forecast, wind, and humidity. The Space Shuttle
36000-660: Was completed on September 17, 1976, and Enterprise was moved to the Edwards Air Force Base to begin testing. Rockwell constructed the Main Propulsion Test Article (MPTA)-098 , which was a structural truss mounted to the ET with three RS-25 engines attached. It was tested at the National Space Technology Laboratory (NSTL) to ensure that the engines could safely run through the launch profile. Rockwell conducted mechanical and thermal stress tests on Structural Test Article (STA)-099 to determine
36200-418: Was controlled through a split body flap (also called a split-windward flap ) along with two yaw flaps mounted on the vehicle's sides. Hydraulic actuation was used for controlling the flaps. AMaRV was guided by a fully autonomous navigation system designed for evading anti-ballistic missile (ABM) interception. The McDonnell Douglas DC-X (also a biconic) was essentially a scaled-up version of AMaRV. AMaRV and
36400-450: Was corrected first, it became the new Return to Flight vehicle, superseding Atlantis . Seventeen years prior, Discovery had flown NASA's previous Return to Flight mission, STS-26 . The STS-114 mission delivered supplies to the International Space Station . However, the major focus of the mission was testing and evaluating new Space Shuttle flight safety techniques, which included new inspection and repair techniques. The crewmembers used
36600-643: Was developed by SpaceX in 2006–2010 for the Dragon space capsule . The first reentry test of a PICA-X heat shield was on the Dragon C1 mission on 8 December 2010. The PICA-X heat shield was designed, developed and fully qualified by a small team of a dozen engineers and technicians in less than four years. PICA-X is ten times less expensive to manufacture than the NASA PICA heat shield material. A second enhanced version of PICA—called PICA-3—was developed by SpaceX during
36800-535: Was entirely reliant on its main computer, the Data Processing System (DPS). The DPS controlled the flight controls and thrusters on the orbiter, as well as the ET and SRBs during launch. The DPS consisted of five general-purpose computers (GPC), two magnetic tape mass memory units (MMUs), and the associated sensors to monitor the Space Shuttle components. The original GPC used was the IBM AP-101B , which used
37000-657: Was equipped with an avionics system to provide information and control during atmospheric flight. Its avionics suite contained three microwave scanning beam landing systems , three gyroscopes , three TACANs , three accelerometers , two radar altimeters , two barometric altimeters , three attitude indicators , two Mach indicators , and two Mode C transponders . During reentry, the crew deployed two air data probes once they were traveling slower than Mach 5. The orbiter had three inertial measuring units (IMU) that it used for guidance and navigation during all phases of flight. The orbiter contains two star trackers to align
37200-469: Was first flown in 1975, and was used for the ALT and ferrying the orbiter from Edwards AFB to the KSC on all missions prior to 1991. A second SCA (N911NA) was acquired in 1988, and was first used to transport Endeavour from the factory to the KSC. Following the retirement of the Space Shuttle, N905NA was put on display at the JSC, and N911NA was put on display at the Joe Davies Heritage Airpark in Palmdale, California . The Crew Transport Vehicle (CTV)
37400-400: Was grounded. The extra day was also used to move more items from the shuttle to the ISS, as uncertainty mounted during the mission as to when a shuttle would next visit the station. The orbiter's arrival also gave the nearly 200-ton space station a free altitude boost of about 4,000 feet (1,200 m). The station loses about 100 feet (30 m) of altitude a day. The shuttle hatch was closed
37600-544: Was just sufficiently understood to ensure Apollo's success. However, radiative heat flux in carbon dioxide (Mars entry) is still barely understood and will require major research. The frozen gas model describes a special case of a gas that is not in equilibrium. The name "frozen gas" can be misleading. A frozen gas is not "frozen" like ice is frozen water. Rather a frozen gas is "frozen" in time (all chemical reactions are assumed to have stopped). Chemical reactions are normally driven by collisions between molecules. If gas pressure
37800-403: Was later improved to 270,000 kg (586,000 lb). The Spacelab module was a European-funded pressurized laboratory that was carried within the payload bay and allowed for scientific research while in orbit. The Spacelab module contained two 2.7 m (9 ft) segments that were mounted in the aft end of the payload bay to maintain the center of gravity during flight. Astronauts entered
38000-406: Was located below the flight deck and was where the galley and crew bunks were set up, as well as three or four crew member seats. The mid-deck contained the airlock, which could support two astronauts on an extravehicular activity (EVA), as well as access to pressurized research modules. An equipment bay was below the mid-deck, which stored environmental control and waste management systems. On
38200-442: Was moved to the Marshall Space Flight Center (MSFC) on March 13, 1978. Enterprise underwent shake tests in the Mated Vertical Ground Vibration Test, where it was attached to an external tank and solid rocket boosters, and underwent vibrations to simulate the stresses of launch. In April 1979, Enterprise was taken to the KSC, where it was attached to an external tank and solid rocket boosters, and moved to LC-39 . Once installed at
38400-471: Was never used). The Johnson Space Center (JSC) served as the central point for all Shuttle operations and the MSFC was responsible for the main engines, external tank, and solid rocket boosters. The John C. Stennis Space Center handled main engine testing, and the Goddard Space Flight Center managed the global tracking network. The orbiter had design elements and capabilities of both a rocket and an aircraft to allow it to launch vertically and then land as
38600-422: Was not launched under conditions where it could have been struck by lightning , as its exhaust plume could have triggered lightning by providing a current path to ground after launch, which occurred on Apollo 12 . The NASA Anvil Rule for a Shuttle launch stated that an anvil cloud could not appear within a distance of 19 km (10 nmi). The Shuttle Launch Weather Officer monitored conditions until
38800-450: Was not possible to pull the fillers out, then the protruding sections could have been simply cut off. The gap fillers were made of a cloth impregnated with ceramic – they were stiff and could be easily cut with a tool similar to a hacksaw blade. Protruding gap fillers were a problem because they disrupted the normally laminar air flow under the orbiter during reentry, causing turbulence at lower speeds. A turbulent air flow would result in
39000-498: Was possible. However, the Mk-6 was a huge RV with an entry mass of 3,360 kg, a length of 3.1 m and a half-angle of 12.5°. Subsequent advances in nuclear weapon and ablative TPS design allowed RVs to become significantly smaller with a further reduced bluntness ratio compared to the Mk-6. Since the 1960s, the sphere-cone has become the preferred geometry for modern ICBM RVs with typical half-angles being between 10° and 11°. Reconnaissance satellite RVs (recovery vehicles) also used
39200-418: Was tested on STS-2 and STS-3, and the first full mission was on STS-9. Three RS-25 engines, also known as the Space Shuttle Main Engines (SSME), were mounted on the orbiter's aft fuselage in a triangular pattern. The engine nozzles could gimbal ±10.5° in pitch, and ±8.5° in yaw during ascent to change the direction of their thrust to steer the Shuttle. The titanium alloy reusable engines were independent of
39400-477: Was the Mk-2 RV (reentry vehicle), which was developed in 1955 by the General Electric Corp. The Mk-2's design was derived from blunt-body theory and used a radiatively cooled thermal protection system (TPS) based upon a metallic heat shield (the different TPS types are later described in this article). The Mk-2 had significant defects as a weapon delivery system, i.e., it loitered too long in the upper atmosphere due to its lower ballistic coefficient and also trailed
39600-444: Was the top level of the crew compartment and contained the flight controls for the orbiter. The commander sat in the front left seat, and the pilot sat in the front right seat, with two to four additional seats set up for additional crew members. The instrument panels contained over 2,100 displays and controls, and the commander and pilot were both equipped with a heads-up display (HUD) and a Rotational Hand Controller (RHC) to gimbal
39800-498: Was vented from the nose to cause the ET to tumble, ensuring that it would break up upon reentry. The ET was the only major component of the Space Shuttle system that was not reused, and it would travel along a ballistic trajectory into the Indian or Pacific Ocean. For the first two missions, STS-1 and STS-2 , the ET was covered in 270 kg (595 lb) of white fire-retardant latex paint to provide protection against damage from ultraviolet radiation. Further research determined that
40000-427: Was written by Bonnie J. McBride and Sanford Gordon at NASA Lewis (now renamed "NASA Glenn Research Center"). Other names for CEA are the "Gordon and McBride Code" and the "Lewis Code". CEA is quite accurate up to 10,000 K for planetary atmospheric gases, but unusable beyond 20,000 K ( double ionization is not modelled). CEA can be downloaded from the Internet along with full documentation and will compile on Linux under
#189810