This is an accepted version of this page
159-510: STS-103 , the 96th launch of the Space Shuttle and the 27th launch of Space Shuttle Discovery , was a Hubble Space Telescope servicing mission. It launched from Kennedy Space Center , Florida, on 19 December 1999 and returned on 27 December 1999 and was the last Shuttle mission of the 1990s. It was the only mission to span through Christmas after being delayed by 13 days for technical and weather reasons. The primary objective of STS-103
318-558: A Proton rocket on 20 November 1998. Zarya provided propulsion, attitude control , communications, and electrical power. Two weeks later on 4 December 1998, the American-made Unity was ferried aboard Space Shuttle Endeavour on STS-88 and joined with Zarya . Unity provided the connection between the Russian and US segments of the station and would provide ports to connect future modules and visiting spacecraft. While
477-993: A spaceplane to a runway landing, usually to the Shuttle Landing Facility at KSC, Florida, or to Rogers Dry Lake in Edwards Air Force Base , California. If the landing occurred at Edwards, the orbiter was flown back to the KSC atop the Shuttle Carrier Aircraft (SCA), a specially modified Boeing 747 designed to carry the shuttle above it. The first orbiter, Enterprise , was built in 1976 and used in Approach and Landing Tests (ALT), but had no orbital capability. Four fully operational orbiters were initially built: Columbia , Challenger , Discovery , and Atlantis . Of these, two were lost in mission accidents: Challenger in 1986 and Columbia in 2003 , with
636-662: A virtual reality exhibit called The Infinite featuring life aboard the ISS was announced. The International Space Station is a product of global collaboration, with its components manufactured across the world. The modules of the Russian Orbital Segment , including Zarya and Zvezda , were produced at the Khrunichev State Research and Production Space Center in Moscow. Zvezda was initially manufactured in 1985 as
795-475: A "shorter version" of MARS-500 may be carried out on the ISS. In 2009, noting the value of the partnership framework itself, Sergey Krasnov wrote, "When compared with partners acting separately, partners developing complementary abilities and resources could give us much more assurance of the success and safety of space exploration. The ISS is helping further advance near-Earth space exploration and realisation of prospective programmes of research and exploration of
954-487: A NASA engineer who had worked to design the Mercury capsule, patented a design for a two-stage fully recoverable system with a straight-winged orbiter mounted on a larger straight-winged booster. The Air Force Flight Dynamics Laboratory argued that a straight-wing design would not be able to withstand the high thermal and aerodynamic stresses during reentry, and would not provide the required cross-range capability. Additionally,
1113-619: A Rate Sensor Unit (RSU). It is the RSUs that the STS-103's astronauts changed. The RSUs each weigh 11.0 kilograms (24.3 lb) and are 12.8 by 10.5 by 8.9 inches (325 by 267 by 226 mm) in size. In addition to replacing all six gyroscopes on the December flight, the crew replaced a Fine Guidance Sensor (FGS) and the spacecraft's computer. The new computer reduced the burden of flight software maintenance and significantly lowered costs. The new computer
1272-737: A component for the Mir-2 space station, which was never launched. Much of the US Orbital Segment , including the Destiny and Unity modules, the Integrated Truss Structure , and solar arrays , were built at NASA's Marshall Space Flight Center in Huntsville, Alabama and Michoud Assembly Facility in New Orleans . These components underwent final assembly and processing for launch at
1431-497: A crewed spaceflight engineer on both STS-51-C and STS-51-J to serve as a military representative for a National Reconnaissance Office payload. A Space Shuttle crew typically had seven astronauts, with STS-61-A flying with eight. The crew compartment comprised three decks and was the pressurized, habitable area on all Space Shuttle missions. The flight deck consisted of two seats for the commander and pilot, as well as an additional two to four seats for crew members. The mid-deck
1590-554: A dozen Japanese universities conducted experiments in diverse fields. Cultural activities are another major objective of the ISS programme. Tetsuo Tanaka, the director of JAXA's Space Environment and Utilization Center, has said: "There is something about space that touches even people who are not interested in science." Amateur Radio on the ISS (ARISS) is a volunteer programme that encourages students worldwide to pursue careers in science, technology, engineering, and mathematics, through amateur radio communications opportunities with
1749-459: A future reusable shuttle: Class I would have a reusable orbiter mounted on expendable boosters, Class II would use multiple expendable rocket engines and a single propellant tank (stage-and-a-half), and Class III would have both a reusable orbiter and a reusable booster. In September 1969, the Space Task Group, under the leadership of U.S. Vice President Spiro Agnew , issued a report calling for
SECTION 10
#17328519698761908-576: A glider. Its three-part fuselage provided support for the crew compartment, cargo bay, flight surfaces, and engines. The rear of the orbiter contained the Space Shuttle Main Engines (SSME), which provided thrust during launch, as well as the Orbital Maneuvering System (OMS), which allowed the orbiter to achieve, alter, and exit its orbit once in space. Its double- delta wings were 18 m (60 ft) long, and were swept 81° at
2067-615: A lengthy interplanetary cruise, such as the six-month interval required to travel to Mars . Medical studies are conducted aboard the ISS on behalf of the National Space Biomedical Research Institute (NSBRI). Prominent among these is the Advanced Diagnostic Ultrasound in Microgravity study in which astronauts perform ultrasound scans under the guidance of remote experts. The study considers
2226-477: A location in the relative safety of low Earth orbit to test spacecraft systems that will be required for long-duration missions to the Moon and Mars. This provides experience in operations, maintenance, and repair and replacement activities on-orbit. This will help develop essential skills in operating spacecraft farther from Earth, reduce mission risks, and advance the capabilities of interplanetary spacecraft. Referring to
2385-477: A mobile platform for astronauts conducting an EVA. The RMS was built by the Canadian company Spar Aerospace and was controlled by an astronaut inside the orbiter's flight deck using their windows and closed-circuit television. The RMS allowed for six degrees of freedom and had six joints located at three points along the arm. The original RMS could deploy or retrieve payloads up to 29,000 kg (65,000 lb), which
2544-528: A partial-pressure version of the high-altitude pressure suits with a helmet. In 1994, the LES was replaced by the full-pressure Advanced Crew Escape Suit (ACES), which improved the safety of the astronauts in an emergency situation. Columbia originally had modified SR-71 zero-zero ejection seats installed for the ALT and first four missions, but these were disabled after STS-4 and removed after STS-9 . The flight deck
2703-517: A partially reusable system would be the most cost-effective solution. The head of the NASA Office of Manned Space Flight, George Mueller , announced the plan for a reusable shuttle on August 10, 1968. NASA issued a request for proposal (RFP) for designs of the Integral Launch and Reentry Vehicle (ILRV) on October 30, 1968. Rather than award a contract based upon initial proposals, NASA announced
2862-541: A phased approach for the Space Shuttle contracting and development; Phase A was a request for studies completed by competing aerospace companies, Phase B was a competition between two contractors for a specific contract, Phase C involved designing the details of the spacecraft components, and Phase D was the production of the spacecraft. In December 1968, NASA created the Space Shuttle Task Group to determine
3021-481: A port-side hatch that the crew used for entry and exit while on Earth. The airlock is a structure installed to allow movement between two spaces with different gas components, conditions, or pressures. Continuing on the mid-deck structure, each orbiter was originally installed with an internal airlock in the mid-deck. The internal airlock was installed as an external airlock in the payload bay on Discovery , Atlantis , and Endeavour to improve docking with Mir and
3180-665: A result of an O-ring failing at low temperature, the SRBs were redesigned to provide a constant seal regardless of the ambient temperature. The Space Shuttle's operations were supported by vehicles and infrastructure that facilitated its transportation, construction, and crew access. The crawler-transporters carried the MLP and the Space Shuttle from the VAB to the launch site. The Shuttle Carrier Aircraft (SCA) were two modified Boeing 747s that could carry an orbiter on its back. The original SCA (N905NA)
3339-661: A second orbiter. Later that month, Rockwell began converting STA-099 to OV-099, later named Challenger . On January 29, 1979, NASA ordered two additional orbiters, OV-103 and OV-104, which were named Discovery and Atlantis . Construction of OV-105, later named Endeavour , began in February 1982, but NASA decided to limit the Space Shuttle fleet to four orbiters in 1983. After the loss of Challenger , NASA resumed production of Endeavour in September 1987. After it arrived at Edwards AFB, Enterprise underwent flight testing with
SECTION 20
#17328519698763498-645: A separate central processing unit (CPU) and input/output processor (IOP), and non-volatile solid-state memory . From 1991 to 1993, the orbiter vehicles were upgraded to the AP-101S, which improved the memory and processing capabilities, and reduced the volume and weight of the computers by combining the CPU and IOP into a single unit. Four of the GPCs were loaded with the Primary Avionics Software System (PASS), which
3657-547: A series of education guides, students develop a deeper understanding of the past and near-term future of crewed space flight, as well as that of Earth and life. In the JAXA "Seeds in Space" experiments, the mutation effects of spaceflight on plant seeds aboard the ISS are explored by growing sunflower seeds that have flown on the ISS for about nine months. In the first phase of Kibō utilisation from 2008 to mid-2010, researchers from more than
3816-410: A speech. After STS-4, NASA declared its Space Transportation System (STS) operational. The Space Shuttle was the first operational orbital spacecraft designed for reuse . Each Space Shuttle orbiter was designed for a projected lifespan of 100 launches or ten years of operational life, although this was later extended. At launch, it consisted of the orbiter , which contained the crew and payload,
3975-421: A third in 1999. The Hubble team believed they understood the cause of the failures, although they could not be certain until the gyros were returned from space. Having fewer than three working gyroscopes would have precluded science observations, although the telescope would have remained safely in orbit until a servicing crew arrived. Hubble's gyros spin at a constant rate of 19,200 rpm on gas bearings. This wheel
4134-507: A third set of arrays were delivered on STS-116 , STS-117 , and STS-118 . As a result of the major expansion of the station's power-generating capabilities, more modules could be accommodated, and the US Harmony module and Columbus European laboratory were added. These were soon followed by the first two components of the Japanese Kibō laboratory. In March 2009, STS-119 completed
4293-761: A total of 135 missions from 1981 to 2011. They launched from the Kennedy Space Center (KSC) in Florida . Operational missions launched numerous satellites , interplanetary probes , and the Hubble Space Telescope (HST), conducted science experiments in orbit, participated in the Shuttle- Mir program with Russia, and participated in the construction and servicing of the International Space Station (ISS). The Space Shuttle fleet's total mission time
4452-459: A total of 14 astronauts killed. A fifth operational (and sixth in total) orbiter, Endeavour , was built in 1991 to replace Challenger . The three surviving operational vehicles were retired from service following Atlantis ' s final flight on July 21, 2011. The U.S. relied on the Russian Soyuz spacecraft to transport astronauts to the ISS from the last Shuttle flight until the launch of
4611-428: A two-part drag parachute system to slow the orbiter after landing. The orbiter used retractable landing gear with a nose landing gear and two main landing gear, each containing two tires. The main landing gear contained two brake assemblies each, and the nose landing gear contained an electro-hydraulic steering mechanism. The Space Shuttle crew varied per mission. They underwent rigorous testing and training to meet
4770-445: A wide range of free teaching materials that can be downloaded for use in classrooms. In one lesson, students can navigate a 3D model of the interior and exterior of the ISS, and face spontaneous challenges to solve in real time. The Japanese Aerospace Exploration Agency (JAXA) aims to inspire children to "pursue craftsmanship" and to heighten their "awareness of the importance of life and their responsibilities in society". Through
4929-628: Is a retired, partially reusable low Earth orbital spacecraft system operated from 1981 to 2011 by the U.S. National Aeronautics and Space Administration (NASA) as part of the Space Shuttle program . Its official program name was Space Transportation System (STS), taken from the 1969 plan led by U.S. Vice President Spiro Agnew for a system of reusable spacecraft where it was the only item funded for development. The first ( STS-1 ) of four orbital test flights occurred in 1981, leading to operational flights ( STS-5 ) beginning in 1982. Five complete Space Shuttle orbiter vehicles were built and flown on
STS-103 - Misplaced Pages Continue
5088-431: Is an important ISS research activity, with the objective of reaping economic benefits through the improvement of techniques used on Earth. Other areas of interest include the effect of low gravity on combustion, through the study of the efficiency of burning and control of emissions and pollutants. These findings may improve knowledge about energy production and lead to economic and environmental benefits. The ISS provides
5247-452: Is cooled by 1,080 interior lines carrying liquid hydrogen and is thermally protected by insulative and ablative material. The RS-25 engines had several improvements to enhance reliability and power. During the development program, Rocketdyne determined that the engine was capable of safe reliable operation at 104% of the originally specified thrust. To keep the engine thrust values consistent with previous documentation and software, NASA kept
5406-559: Is highly resistant to environmental hazards , were found to survive for three years in outer space , based on studies conducted on the International Space Station. These findings supported the notion of panspermia , the hypothesis that life exists throughout the Universe , distributed in various ways, including space dust , meteoroids , asteroids , comets , planetoids or contaminated spacecraft . Remote sensing of
5565-457: Is intended to detect dark matter and answer other fundamental questions about our universe. According to NASA, the AMS is as important as the Hubble Space Telescope . Currently docked on station, it could not have been easily accommodated on a free flying satellite platform because of its power and bandwidth needs. On 3 April 2013, scientists reported that hints of dark matter may have been detected by
5724-498: Is likely to be a global effort." Currently, US federal legislation prevents NASA co-operation with China on space projects without approval by the FBI and Congress. The ISS crew provides opportunities for students on Earth by running student-developed experiments, making educational demonstrations, allowing for student participation in classroom versions of ISS experiments, and directly engaging students using radio, and email. ESA offers
5883-457: Is mounted in a sealed cylinder, which floats in a thick fluid. Electricity is carried to the motor by thin wires (approximately the size of a human hair). It is believed that oxygen in the pressurized air used during the assembly process caused the wires to corrode and break. The new gyros were assembled using nitrogen instead of oxygen. Each gyroscope is packaged in a Rate Sensor assembly. The Rate Sensors are packaged in pairs into an assembly called
6042-479: Is necessary to control the internal temperature on the Hubble. The New Outer Blanket Layer (NOBL) and Shell/Shield Replacement Fabric (SSRF) help protect Hubble from the harsh environment of space. It protects the telescope from the severe and rapid temperature changes it experiences during each 90 minute orbit as it moves from sunlight to darkness. STS-103 also carried hundreds of thousands of student signatures as part of
6201-508: The Columbia disaster . Beginning with STS-114 , the orbiter vehicles were equipped with the wing leading edge impact detection system to alert the crew to any potential damage. The entire underside of the orbiter vehicle, as well as the other hottest surfaces, were protected with tiles of high-temperature reusable surface insulation, made of borosilicate glass -coated silica fibers that trapped heat in air pockets and redirected it out. Areas on
6360-552: The Canadarm2 and Dextre , a joint Canadian-U.S. endeavor. All of these components were shipped to the SSPF for launch processing. The assembly of the International Space Station, a major endeavour in space architecture , began in November 1998. Modules in the Russian segment launched and docked autonomously, with the exception of Rassvet . Other modules and components were delivered by
6519-576: The Columbus programme, the most ambitious effort in space undertaken by that organization at the time. The plan spearheaded by Germany and Italy included a module which would be attached to Freedom , and with the capability to evolve into a full-fledged European orbital outpost before the end of the century. Increasing costs threw these plans into doubt in the early 1990s. Congress was unwilling to provide enough money to build and operate Freedom , and demanded NASA increase international participation to defray
STS-103 - Misplaced Pages Continue
6678-749: The Crew Dragon Demo-2 mission in May 2020. In the late 1930s, the German government launched the " Amerikabomber " project, and Eugen Sanger 's idea, together with mathematician Irene Bredt , was a winged rocket called the Silbervogel (German for "silver bird"). During the 1950s, the United States Air Force proposed using a reusable piloted glider to perform military operations such as reconnaissance, satellite attack, and air-to-ground weapons employment. In
6837-558: The ISS , along with the Orbiter Docking System . The airlock module can be fitted in the mid-bay, or connected to it but in the payload bay. With an internal cylindrical volume of 1.60 metres (5 feet 3 inches) diameter and 2.11 metres (6 feet 11 inches) in length, it can hold two suited astronauts. It has two D-shaped hatchways 1.02 m (40 in) long (diameter), and 0.91 m (36 in) wide. The orbiter
6996-532: The MARS-500 experiment, a crew isolation experiment conducted on Earth, ESA states, "Whereas the ISS is essential for answering questions concerning the possible impact of weightlessness, radiation and other space-specific factors, aspects such as the effect of long-term isolation and confinement can be more appropriately addressed via ground-based simulations". Sergey Krasnov, the head of human space flight programmes for Russia's space agency, Roscosmos, in 2011 suggested
7155-592: The Martin Marietta X-24B . The program tested aerodynamic characteristics that would later be incorporated in design of the Space Shuttle, including unpowered landing from a high altitude and speed. On September 24, 1966, as the Apollo space program neared its design completion, NASA and the Air Force released a joint study concluding that a new vehicle was required to satisfy their respective future demands and that
7314-561: The Monitor of All-sky X-ray Image (MAXI) , and the Alpha Magnetic Spectrometer . Gravity at the altitude of the ISS is approximately 90% as strong as at Earth's surface, but objects in orbit are in a continuous state of freefall , resulting in an apparent state of weightlessness . This perceived weightlessness is disturbed by five effects: Researchers are investigating the effect of the station's near-weightless environment on
7473-903: The Operations and Checkout Building and the Space Station Processing Facility (SSPF) at the Kennedy Space Center in Florida. The US Orbital Segment also hosts the Columbus module contributed by the European Space Agency and built in Germany, the Kibō module contributed by Japan and built at the Tsukuba Space Center and the Institute of Space and Astronautical Science , along with
7632-433: The Russian Orbital Segment (ROS) assembled by Roscosmos, and the US Orbital Segment (USOS), assembled by NASA, JAXA, ESA and CSA. A striking feature of the ISS is the Integrated Truss Structure , which connects the large solar panels and radiators to the pressurized modules. The pressurized modules are specialized for research, habitation, storage, spacecraft control, and airlock functions. Visiting spacecraft dock at
7791-543: The Shuttle Carrier Aircraft , a Boeing 747 that had been modified to carry the orbiter. In February 1977, Enterprise began the Approach and Landing Tests (ALT) and underwent captive flights, where it remained attached to the Shuttle Carrier Aircraft for the duration of the flight. On August 12, 1977, Enterprise conducted its first glide test, where it detached from the Shuttle Carrier Aircraft and landed at Edwards AFB. After four additional flights, Enterprise
7950-472: The Space Shuttle , which then had to be installed by astronauts either remotely using robotic arms or during spacewalks, more formally known as extra-vehicular activities (EVAs). By 5 June 2011 astronauts had made over 159 EVAs to add components to the station, totaling more than 1,000 hours in space. The foundation for the ISS was laid with the launch of the Russian-built Zarya module atop
8109-619: The Tracking and Data Relay Satellite System and the Spacecraft Tracking and Data Acquisition Network ground stations to communicate with the orbiter throughout its orbit. Additionally, the orbiter deployed a high-bandwidth K u band radio out of the cargo bay, which could also be utilized as a rendezvous radar. The orbiter was also equipped with two UHF radios for communications with air traffic control and astronauts conducting EVA. The Space Shuttle's fly-by-wire control system
SECTION 50
#17328519698768268-529: The external tank (ET), and the two solid rocket boosters (SRBs). Responsibility for the Space Shuttle components was spread among multiple NASA field centers. The KSC was responsible for launch, landing, and turnaround operations for equatorial orbits (the only orbit profile actually used in the program). The U.S. Air Force at the Vandenberg Air Force Base was responsible for launch, landing, and turnaround operations for polar orbits (though this
8427-484: The qualification requirements for their roles. The crew was divided into three categories: Pilots, Mission Specialists, and Payload Specialists. Pilots were further divided into two roles: Space Shuttle Commanders and Space Shuttle Pilots. The test flights only had two members each, the commander and pilot, who were both qualified pilots that could fly and land the orbiter. The on-orbit operations, such as experiments, payload deployment, and EVAs, were conducted primarily by
8586-407: The 1975 Apollo-Soyuz Test Project , the first docking of spacecraft from two different spacefaring nations. The ASTP was considered a success, and further joint missions were also contemplated. One such concept was International Skylab, which proposed launching the backup Skylab B space station for a mission that would see multiple visits by both Apollo and Soyuz crew vehicles. More ambitious
8745-445: The 2195 aluminum-lithium alloy, which was 40% stronger and 10% less dense than its predecessor, 2219 aluminum-lithium alloy. The SLWT weighed 3,400 kg (7,500 lb) less than the LWT, which allowed the Space Shuttle to deliver heavy elements to ISS's high inclination orbit. The Solid Rocket Boosters (SRB) provided 71.4% of the Space Shuttle's thrust during liftoff and ascent, and were
8904-779: The AMS. According to the scientists, "The first results from the space-borne Alpha Magnetic Spectrometer confirm an unexplained excess of high-energy positrons in Earth-bound cosmic rays". The space environment is hostile to life. Unprotected presence in space is characterised by an intense radiation field (consisting primarily of protons and other subatomic charged particles from the solar wind , in addition to cosmic rays ), high vacuum, extreme temperatures, and microgravity. Some simple forms of life called extremophiles , as well as small invertebrates called tardigrades can survive in this environment in an extremely dry state through desiccation . Medical research improves knowledge about
9063-452: The Air Force required a larger payload capacity than Faget's design allowed. In January 1971, NASA and Air Force leadership decided that a reusable delta-wing orbiter mounted on an expendable propellant tank would be the optimal design for the Space Shuttle. After they established the need for a reusable, heavy-lift spacecraft, NASA and the Air Force determined the design requirements of their respective services. The Air Force expected to use
9222-518: The ET. The SRBs were jettisoned before the vehicle reached orbit, while the main engines continued to operate, and the ET was jettisoned after main engine cutoff and just before orbit insertion , which used the orbiter's two Orbital Maneuvering System (OMS) engines. At the conclusion of the mission, the orbiter fired its OMS to deorbit and reenter the atmosphere . The orbiter was protected during reentry by its thermal protection system tiles, and it glided as
9381-519: The Earth, astronomy, and deep space research on the ISS have significantly increased during the 2010s after the completion of the US Orbital Segment in 2011. Throughout the more than 20 years of the ISS program, researchers aboard the ISS and on the ground have examined aerosols , ozone , lightning , and oxides in Earth's atmosphere, as well as the Sun , cosmic rays, cosmic dust , antimatter , and dark matter in
9540-669: The IMU, INS, and TACAN systems, which first flew on STS-118 in August 2007. While in orbit, the crew primarily communicated using one of four S band radios, which provided both voice and data communications. Two of the S ;band radios were phase modulation transceivers , and could transmit and receive information. The other two S band radios were frequency modulation transmitters and were used to transmit data to NASA. As S band radios can operate only within their line of sight , NASA used
9699-419: The IMUs while in orbit. The star trackers are deployed while in orbit, and can automatically or manually align on a star. In 1991, NASA began upgrading the inertial measurement units with an inertial navigation system (INS), which provided more accurate location information. In 1993, NASA flew a GPS receiver for the first time aboard STS-51 . In 1997, Honeywell began developing an integrated GPS/INS to replace
SECTION 60
#17328519698769858-415: The ISS crew. ARISS is an international working group, consisting of delegations from nine countries including several in Europe, as well as Japan, Russia, Canada, and the United States. In areas where radio equipment cannot be used, speakerphones connect students to ground stations which then connect the calls to the space station. First Orbit is a 2011 feature-length documentary film about Vostok 1 ,
10017-606: The ISS was given additional roles of serving commercial, diplomatic, and educational purposes. The ISS provides a platform to conduct scientific research, with power, data, cooling, and crew available to support experiments. Small uncrewed spacecraft can also provide platforms for experiments, especially those involving zero gravity and exposure to space, but space stations offer a long-term environment where studies can be performed potentially for decades, combined with ready access by human researchers. The ISS simplifies individual experiments by allowing groups of experiments to share
10176-464: The Integrated Truss Structure with the installation of the fourth and final set of solar arrays. The final section of Kibō was delivered in July 2009 on STS-127 , followed by the Russian Poisk module. The US Tranquility module was delivered in February 2010 during STS-130 , alongside the Cupola , followed by the penultimate Russian module, Rassvet , in May 2010. Rassvet was delivered by Space Shuttle Atlantis on STS-132 in exchange for
10335-405: The KSC. The Space Shuttle was prepared for launch primarily in the VAB at the KSC. The SRBs were assembled and attached to the external tank on the MLP. The orbiter vehicle was prepared at the Orbiter Processing Facility (OPF) and transferred to the VAB, where a crane was used to rotate it to the vertical orientation and mate it to the external tank. Once the entire stack was assembled, the MLP
10494-476: The RS-25 experienced multiple nozzle failures, as well as broken turbine blades. Despite the problems during testing, NASA ordered the nine RS-25 engines needed for its three orbiters under construction in May 1978. NASA experienced significant delays in the development of the Space Shuttle's thermal protection system . Previous NASA spacecraft had used ablative heat shields, but those could not be reused. NASA chose to use ceramic tiles for thermal protection, as
10653-432: The Russian Proton delivery of the US-funded Zarya module in 1998. The last pressurised module of the USOS, Leonardo , was brought to the station in February 2011 on the final flight of Discovery , STS-133 . Russia's new primary research module Nauka docked in July 2021, along with the European Robotic Arm which can relocate itself to different parts of the Russian modules of the station. Russia's latest addition,
10812-412: The Russian State Archive. Nespoli is credited as the director of photography for this documentary film, as he recorded the majority of the footage himself during Expedition 26 / 27 . The film was streamed in a global YouTube premiere in 2011 under a free licence through the website firstorbit.org . In May 2013, commander Chris Hadfield shot a music video of David Bowie 's " Space Oddity " on board
10971-505: The SRBs provided structural support for the orbiter vehicle and ET, as they were the only system that was connected to the mobile launcher platform (MLP). At the time of launch, the SRBs were armed at T−5 minutes, and could only be electrically ignited once the RS-25 engines had ignited and were without issue. They each provided 12,500 kN (2,800,000 lbf) of thrust, which was later improved to 13,300 kN (3,000,000 lbf) beginning on STS-8 . After expending their fuel,
11130-558: The SRBs were jettisoned approximately two minutes after launch at an altitude of approximately 46 km (150,000 ft). Following separation, they deployed drogue and main parachutes, landed in the ocean, and were recovered by the crews aboard the ships MV Freedom Star and MV Liberty Star . Once they were returned to Cape Canaveral, they were cleaned and disassembled. The rocket motor, igniter, and nozzle were then shipped to Thiokol to be refurbished and reused on subsequent flights. The SRBs underwent several redesigns throughout
11289-409: The Salyut and Mir space stations. In 1984 the ESA was invited to participate in Space Station Freedom , and the ESA approved the Columbus laboratory by 1987. The Japanese Experiment Module (JEM), or Kibō , was announced in 1985, as part of the Freedom space station in response to a NASA request in 1982. In early 1985, science ministers from the European Space Agency (ESA) countries approved
11448-496: The Solar system, including the Moon and Mars." A crewed mission to Mars may be a multinational effort involving space agencies and countries outside the current ISS partnership. In 2010, ESA Director-General Jean-Jacques Dordain stated his agency was ready to propose to the other four partners that China, India, and South Korea be invited to join the ISS partnership. NASA chief Charles Bolden stated in February 2011, "Any mission to Mars
11607-509: The Soviet Union. The first ISS module was launched in 1998. Major modules have been launched by Proton and Soyuz rockets and by the Space Shuttle launch system. The first long-term residents, Expedition 1 , arrived on 2 November 2000. Since then, the station has been continuously occupied for 24 years and 26 days, the longest continuous human presence in space. As of March 2024 , 279 individuals from 22 countries have visited
11766-399: The Space Shuttle through ascent, orbit, and reentry, but could not support an entire mission. The five GPCs were separated in three separate bays within the mid-deck to provide redundancy in the event of a cooling fan failure. After achieving orbit, the crew would switch some of the GPCs functions from guidance, navigation, and control (GNC) to systems management (SM) and payload (PL) to support
11925-519: The Space Shuttle to launch large satellites, and required it to be capable of lifting 29,000 kg (65,000 lb) to an eastward LEO or 18,000 kg (40,000 lb) into a polar orbit . The satellite designs also required that the Space Shuttle have a 4.6 by 18 m (15 by 60 ft) payload bay. NASA evaluated the F-1 and J-2 engines from the Saturn rockets , and determined that they were insufficient for
12084-578: The Spacelab module through a 2.7 or 5.8 m (8.72 or 18.88 ft) tunnel that connected to the airlock. The Spacelab equipment was primarily stored in pallets, which provided storage for both experiments as well as computer and power equipment. Spacelab hardware was flown on 28 missions through 1999 and studied subjects including astronomy, microgravity, radar, and life sciences. Spacelab hardware also supported missions such as Hubble Space Telescope (HST) servicing and space station resupply. The Spacelab module
12243-519: The Student Signatures in Space (S3) program. The unique project provided elementary schools (selected on a rotating basis) with special posters to be autographed by students, then scanned onto disks and carried aboard a NASA Space Shuttle mission. It was the Discovery's last solo spaceflight. All later missions by Discovery were International Space Station missions. Astronaut John Grunsfeld, who
12402-567: The aft seating location, and also controlled the data on the HUD. In 1998, Atlantis was upgraded with the Multifunction Electronic Display System (MEDS), which was a glass cockpit upgrade to the flight instruments that replaced the eight MCDS display units with 11 multifunction colored digital screens. MEDS was flown for the first time in May 2000 on STS-101 , and the other orbiter vehicles were upgraded to it. The aft section of
12561-401: The associated propellant tanks. The AJ10 engines used monomethylhydrazine (MMH) oxidized by dinitrogen tetroxide (N 2 O 4 ). The pods carried a maximum of 2,140 kg (4,718 lb) of MMH and 3,526 kg (7,773 lb) of N 2 O 4 . The OMS engines were used after main engine cut-off (MECO) for orbital insertion. Throughout the flight, they were used for orbit changes, as well as
12720-549: The built-in hold at T−9 minutes, the countdown was automatically controlled by the Ground Launch Sequencer (GLS) at the LCC, which stopped the countdown if it sensed a critical problem with any of the Space Shuttle's onboard systems. At T−3 minutes 45 seconds, the engines began conducting gimbal tests, which were concluded at T−2 minutes 15 seconds. The ground Launch Processing System handed off
12879-461: The bulk of the ET, and was 29 m (96.7 ft) tall. The orbiter vehicle was attached to the ET at two umbilical plates, which contained five propellant and two electrical umbilicals, and forward and aft structural attachments. The exterior of the ET was covered in orange spray-on foam to allow it to survive the heat of ascent. The ET provided propellant to the Space Shuttle Main Engines from liftoff until main engine cutoff. The ET separated from
13038-582: The connection of two modules built on different continents, by nations that were once bitter rivals was a significant milestone, these two initial modules lacked life support systems and the ISS remained unmanned for the next two years. At the time, the Russian station Mir was still inhabited. The turning point arrived in July 2000 with the launch of the Zvezda module. Equipped with living quarters and life-support systems, Zvezda enabled continuous human presence aboard
13197-489: The contract to build the orbiter to North American Rockwell. In August 1973, the external tank contract to Martin Marietta , and in November the solid-rocket booster contract to Morton Thiokol . On June 4, 1974, Rockwell began construction on the first orbiter, OV-101, dubbed Constitution, later to be renamed Enterprise . Enterprise was designed as a test vehicle, and did not include engines or heat shielding. Construction
13356-477: The control to the orbiter vehicle's GPCs at T−31 seconds. At T−16 seconds, the GPCs armed the SRBs, the sound suppression system (SPS) began to drench the MLP and SRB trenches with 1,100,000 L (300,000 U.S. gal) of water to protect the orbiter vehicle from damage by acoustical energy and rocket exhaust reflected from the flame trench and MLP during lift-off. At T−10 seconds, hydrogen igniters were activated under each engine bell to quell
13515-421: The deorbit burn prior to reentry. Each OMS engine produced 27,080 N (6,087 lbf) of thrust, and the entire system could provide 305 m/s (1,000 ft/s) of velocity change . The orbiter was protected from heat during reentry by the thermal protection system (TPS), a thermal soaking protective layer around the orbiter. In contrast with previous US spacecraft, which had used ablative heat shields,
13674-460: The development of a space shuttle to bring people and cargo to low Earth orbit (LEO), as well as a space tug for transfers between orbits and the Moon, and a reusable nuclear upper stage for deep space travel. After the release of the Space Shuttle Task Group report, many aerospace engineers favored the Class III, fully reusable design because of perceived savings in hardware costs. Max Faget ,
13833-461: The diagnosis and treatment of medical conditions in space. Usually, there is no physician on board the ISS and diagnosis of medical conditions is a challenge. It is anticipated that remotely guided ultrasound scans will have application on Earth in emergency and rural care situations where access to a trained physician is difficult. In August 2020, scientists reported that bacteria from Earth, particularly Deinococcus radiodurans bacteria, which
13992-603: The ease of refurbishing them for reuse after they landed in the ocean. In January 1972, President Richard Nixon approved the Shuttle, and NASA decided on its final design in March. The development of the Space Shuttle Main Engine (SSME) remained the responsibility of Rocketdyne, and the contract was issued in July 1971, and updated SSME specifications were submitted to Rocketdyne in that April. That August, NASA awarded
14151-479: The effects of aerodynamic and thermal stresses during launch and reentry. The beginning of the development of the RS-25 Space Shuttle Main Engine was delayed for nine months while Pratt & Whitney challenged the contract that had been issued to Rocketdyne. The first engine was completed in March 1975, after issues with developing the first throttleable, reusable engine. During engine testing,
14310-405: The effects of long-term space exposure on the human body, including muscle atrophy , bone loss , and fluid shift. These data will be used to determine whether high duration human spaceflight and space colonisation are feasible. In 2006, data on bone loss and muscular atrophy suggested that there would be a significant risk of fractures and movement problems if astronauts landed on a planet after
14469-499: The engines during powered flight and fly the orbiter during unpowered flight. Both seats also had rudder controls, to allow rudder movement in flight and nose-wheel steering on the ground. The orbiter vehicles were originally installed with the Multifunction CRT Display System (MCDS) to display and control flight information. The MCDS displayed the flight information at the commander and pilot seats, as well as at
14628-682: The evolution, development, growth and internal processes of plants and animals. In response to some of the data, NASA wants to investigate microgravity 's effects on the growth of three-dimensional, human-like tissues and the unusual protein crystals that can be formed in space. Investigating the physics of fluids in microgravity will provide better models of the behaviour of fluids. Because fluids can be almost completely combined in microgravity, physicists investigate fluids that do not mix well on Earth. Examining reactions that are slowed by low gravity and low temperatures will improve our understanding of superconductivity . The study of materials science
14787-592: The feasibility of reusable boosters. This became the basis for the aerospaceplane , a fully reusable spacecraft that was never developed beyond the initial design phase in 1962–1963. Beginning in the early 1950s, NASA and the Air Force collaborated on developing lifting bodies to test aircraft that primarily generated lift from their fuselages instead of wings, and tested the NASA M2-F1 , Northrop M2-F2 , Northrop M2-F3 , Northrop HL-10 , Martin Marietta X-24A , and
14946-649: The final decision to scrub a launch was announced. In addition to the weather at the launch site, conditions had to be acceptable at one of the Transatlantic Abort Landing sites and the SRB recovery area. The mission crew and the Launch Control Center (LCC) personnel completed systems checks throughout the countdown. Two built-in holds at T−20 minutes and T−9 minutes provided scheduled breaks to address any issues and additional preparation. After
15105-431: The first crewed space flight around the Earth. By matching the orbit of the ISS to that of Vostok 1 as closely as possible, in terms of ground path and time of day, documentary filmmaker Christopher Riley and ESA astronaut Paolo Nespoli were able to film the view that Yuri Gagarin saw on his pioneering orbital space flight. This new footage was cut together with the original Vostok 1 mission audio recordings sourced from
15264-518: The first four Shuttle missions, astronauts wore modified U.S. Air Force high-altitude full-pressure suits, which included a full-pressure helmet during ascent and descent. From the fifth flight, STS-5 , until the loss of Challenger , the crew wore one-piece light blue nomex flight suits and partial-pressure helmets. After the Challenger disaster, the crew members wore the Launch Entry Suit (LES),
15423-476: The first time NASA performed a crewed first-flight of a spacecraft. On April 12, 1981, the Space Shuttle launched for the first time, and was piloted by John Young and Robert Crippen . During the two-day mission, Young and Crippen tested equipment on board the shuttle, and found several of the ceramic tiles had fallen off the top side of the Columbia . NASA coordinated with the Air Force to use satellites to image
15582-624: The flight deck contained windows looking into the payload bay, as well as an RHC to control the Remote Manipulator System during cargo operations. Additionally, the aft flight deck had monitors for a closed-circuit television to view the cargo bay. The mid-deck contained the crew equipment storage, sleeping area, galley, medical equipment, and hygiene stations for the crew. The crew used modular lockers to store equipment that could be scaled depending on their needs, as well as permanently installed floor compartments. The mid-deck contained
15741-491: The forward separation motors and the parachute systems that were used during recovery. The rocket nozzles could gimbal up to 8° to allow for in-flight adjustments. The rocket motors were each filled with a total 500,000 kg (1,106,640 lb) of solid rocket propellant ( APCP + PBAN ), and joined in the Vehicle Assembly Building (VAB) at KSC. In addition to providing thrust during the first stage of launch,
15900-451: The ground. The new transmitter replaced one that failed in 1998. The SSAT weighs 3.9 kilograms (8.6 lb) and is 14 by 8 by 2 + 3 ⁄ 4 inches (356 by 203 by 70 mm). A spare solid state recorder was also installed to allow efficient handling of high-volume data. Prior to the second servicing mission, Hubble used three 1970s-style reel-to-reel tape recorders. During the second servicing mission, one of these mechanical recorders
16059-402: The inner leading edge and 45° at the outer leading edge. Each wing had an inboard and outboard elevon to provide flight control during reentry, along with a flap located between the wings, below the engines to control pitch . The orbiter's vertical stabilizer was swept backwards at 45° and contained a rudder that could split to act as a speed brake . The vertical stabilizer also contained
16218-504: The largest solid-propellant motors ever flown. Each SRB was 45 m (149.2 ft) tall and 3.7 m (12.2 ft) wide, weighed 68,000 kg (150,000 lb), and had a steel exterior approximately 13 mm (.5 in) thick. The SRB's subcomponents were the solid-propellant motor, nose cone, and rocket nozzle. The solid-propellant motor comprised the majority of the SRB's structure. Its casing consisted of 11 steel sections which made up its four main segments. The nose cone housed
16377-510: The late 1950s, the Air Force began developing the partially reusable X-20 Dyna-Soar . The Air Force collaborated with NASA on the Dyna-Soar and began training six pilots in June 1961. The rising costs of development and the prioritization of Project Gemini led to the cancellation of the Dyna-Soar program in December 1963. In addition to the Dyna-Soar, the Air Force had conducted a study in 1957 to test
16536-486: The launch pad, the Space Shuttle was used to verify the proper positioning of the launch complex hardware. Enterprise was taken back to California in August 1979, and later served in the development of the SLC-6 at Vandenberg AFB in 1984. On November 24, 1980, Columbia was mated with its external tank and solid-rocket boosters, and was moved to LC-39 on December 29. The first Space Shuttle mission, STS-1 , would be
16695-437: The mission specialists who were specifically trained for their intended missions and systems. Early in the Space Shuttle program, NASA flew with payload specialists, who were typically systems specialists who worked for the company paying for the payload's deployment or operations. The final payload specialist, Gregory B. Jarvis , flew on STS-51-L , and future non-pilots were designated as mission specialists. An astronaut flew as
16854-434: The operational mission. The Space Shuttle was not launched if its flight would run from December to January, as its flight software would have required the orbiter vehicle's computers to be reset at the year change. In 2007, NASA engineers devised a solution so Space Shuttle flights could cross the year-end boundary. Space Shuttle missions typically brought a portable general support computer (PGSC) that could integrate with
17013-424: The optimal design for a reusable spacecraft, and issued study contracts to General Dynamics , Lockheed , McDonnell Douglas , and North American Rockwell . In July 1969, the Space Shuttle Task Group issued a report that determined the Shuttle would support short-duration crewed missions and space station, as well as the capabilities to launch, service, and retrieve satellites. The report also created three classes of
17172-436: The orange foam itself was sufficiently protected, and the ET was no longer covered in latex paint beginning on STS-3. A light-weight tank (LWT) was first flown on STS-6, which reduced tank weight by 4,700 kg (10,300 lb). The LWT's weight was reduced by removing components from the hydrogen tank and reducing the thickness of some skin panels. In 1998, a super light-weight ET (SLWT) first flew on STS-91 . The SLWT used
17331-437: The orbiter vehicle 18 seconds after engine cutoff and could be triggered automatically or manually. At the time of separation, the orbiter vehicle retracted its umbilical plates, and the umbilical cords were sealed to prevent excess propellant from venting into the orbiter vehicle. After the bolts attached at the structural attachments were sheared, the ET separated from the orbiter vehicle. At the time of separation, gaseous oxygen
17490-467: The orbiter vehicle and would be removed and replaced in between flights. The RS-25 is a staged-combustion cycle cryogenic engine that used liquid oxygen and hydrogen and had a higher chamber pressure than any previous liquid-fueled rocket. The original main combustion chamber operated at a maximum pressure of 226.5 bar (3,285 psi). The engine nozzle is 287 cm (113 in) tall and has an interior diameter of 229 cm (90.3 in). The nozzle
17649-500: The orbiter vehicle's computers and communication suite, as well as monitor scientific and payload data. Early missions brought the Grid Compass , one of the first laptop computers, as the PGSC, but later missions brought Apple and Intel laptops. The payload bay comprised most of the orbiter vehicle's fuselage , and provided the cargo-carrying space for the Space Shuttle's payloads. It
17808-535: The orbiter vehicle's heat, and were opened upon reaching orbit for heat rejection. The orbiter could be used in conjunction with a variety of add-on components depending on the mission. This included orbital laboratories, boosters for launching payloads farther into space, the Remote Manipulator System (RMS), and optionally the EDO pallet to extend the mission duration. To limit the fuel consumption while
17967-512: The orbiter was docked at the ISS, the Station-to-Shuttle Power Transfer System (SSPTS) was developed to convert and transfer station power to the orbiter. The SSPTS was first used on STS-118, and was installed on Discovery and Endeavour . The Remote Manipulator System (RMS), also known as Canadarm, was a mechanical arm attached to the cargo bay. It could be used to grasp and manipulate payloads, as well as serve as
18126-592: The originally specified thrust at 100%, but had the RS-25 operate at higher thrust. RS-25 upgrade versions were denoted as Block I and Block II. 109% thrust level was achieved with the Block II engines in 2001, which reduced the chamber pressure to 207.5 bars (3,010 psi), as it had a larger throat area. The normal maximum throttle was 104 percent, with 106% or 109% used for mission aborts. The Orbital Maneuvering System (OMS) consisted of two aft-mounted AJ10-190 engines and
18285-405: The program's lifetime. STS-6 and STS-7 used SRBs 2,300 kg (5,000 lb) lighter due to walls that were 0.10 mm (.004 in) thinner, but were determined to be too thin to fly safely. Subsequent flights until STS-26 used cases that were 0.076 mm (.003 in) thinner than the standard-weight cases, which reduced 1,800 kg (4,000 lb). After the Challenger disaster as
18444-400: The propellant for the Space Shuttle Main Engines, and connected the orbiter vehicle with the solid rocket boosters. The ET was 47 m (153.8 ft) tall and 8.4 m (27.6 ft) in diameter, and contained separate tanks for liquid oxygen and liquid hydrogen. The liquid oxygen tank was housed in the nose of the ET, and was 15 m (49.3 ft) tall. The liquid hydrogen tank comprised
18603-461: The requirements of the Space Shuttle; in July 1971, it issued a contract to Rocketdyne to begin development on the RS-25 engine. NASA reviewed 29 potential designs for the Space Shuttle and determined that a design with two side boosters should be used, and the boosters should be reusable to reduce costs. NASA and the Air Force elected to use solid-propellant boosters because of the lower costs and
18762-682: The reusability of the orbiter required a multi-use heat shield. During reentry, the TPS experienced temperatures up to 1,600 °C (3,000 °F), but had to keep the orbiter vehicle's aluminum skin temperature below 180 °C (350 °F). The TPS primarily consisted of four types of tiles. The nose cone and leading edges of the wings experienced temperatures above 1,300 °C (2,300 °F), and were protected by reinforced carbon-carbon tiles (RCC). Thicker RCC tiles were developed and installed in 1998 to prevent damage from micrometeoroid and orbital debris , and were further improved after RCC damage caused in
18921-593: The rising costs or they would cancel the entire project outright. Simultaneously, the USSR was conducting planning for the Mir-2 space station, and had begun constructing modules for the new station by the mid-1980s. However the collapse of the Soviet Union required these plans to be greatly downscaled, and soon Mir-2 was in danger of never being launched at all. With both space station projects in jeopardy, American and Russian officials met and proposed they be combined. The ISS
19080-412: The routinely scheduled launches of resupply craft allows new hardware to be launched with relative ease. Crews fly expeditions of several months' duration, providing approximately 160 person-hours per week of labour with a crew of six. However, a considerable amount of crew time is taken up by station maintenance. Perhaps the most notable ISS experiment is the Alpha Magnetic Spectrometer (AMS), which
19239-420: The same launches and crew time. Research is conducted in a wide variety of fields, including astrobiology , astronomy , physical sciences , materials science , space weather , meteorology , and human research including space medicine and the life sciences . Scientists on Earth have timely access to the data and can suggest experimental modifications to the crew. If follow-on experiments are necessary,
19398-529: The shuttle could then be constructed of lightweight aluminum , and the tiles could be individually replaced as needed. Construction began on Columbia on March 27, 1975, and it was delivered to the KSC on March 25, 1979. At the time of its arrival at the KSC, Columbia still had 6,000 of its 30,000 tiles remaining to be installed. However, many of the tiles that had been originally installed had to be replaced, requiring two years of installation before Columbia could fly. On January 5, 1979, NASA commissioned
19557-509: The space station. The ISS is expected to have additional modules (the Axiom Orbital Segment , for example) and will be in service until the end of 2030, after which it is planned to be de-orbited by a dedicated NASA spacecraft. As the space race drew to a close in the early 1970s, the US and USSR began to contemplate a variety of potential collaborations in outer space. This culminated in
19716-424: The stagnant gas inside the cones before ignition. Failure to burn these gases could trip the onboard sensors and create the possibility of an overpressure and explosion of the vehicle during the firing phase. The hydrogen tank's prevalves were opened at T−9.5 seconds in preparation for engine start. International Space Station The International Space Station ( ISS ) is a large space station that
19875-460: The station via its eight docking and berthing ports . The ISS maintains an orbit with an average altitude of 400 kilometres (250 mi) and circles the Earth in roughly 93 minutes, completing 15.5 orbits per day. The ISS programme combines two prior plans to construct crewed Earth-orbiting stations: Space Station Freedom planned by the United States, and the Mir-2 station, planned by
20034-566: The station with Ku band communications, additional attitude control needed for the additional mass of the USOS, and additional solar arrays. Over the next two years, the station continued to expand. A Soyuz-U rocket delivered the Pirs docking compartment . The Space Shuttles Discovery , Atlantis , and Endeavour delivered the American Destiny laboratory and Quest airlock , in addition to
20193-558: The station's main robot arm, the Canadarm2 , and several more segments of the Integrated Truss Structure. Tragedy struck in 2003 with the loss of the Space Shuttle Columbia , which grounded the rest of the Shuttle fleet, halting construction of the ISS. Assembly resumed in 2006 with the arrival of STS-115 with Atlantis , which delivered the station's second set of solar arrays. Several more truss segments and
20352-506: The station, which was released on YouTube. It was the first music video filmed in space. In November 2017, while participating in Expedition 52 / 53 on the ISS, Paolo Nespoli made two recordings of his spoken voice (one in English and the other in his native Italian), for use on Misplaced Pages articles. These were the first content made in space specifically for Misplaced Pages. In November 2021,
20511-409: The station. The first crew, Expedition 1 , arrived that November aboard Soyuz TM-31 . The ISS grew steadily over the following years, with modules delivered by both Russian rockets and the Space Shuttle. Expedition 1 arrived midway between the Space Shuttle flights of missions STS-92 and STS-97 . These two flights each added segments of the station's Integrated Truss Structure , which provided
20670-410: The telescope's very precise pointing requirements, and the telescope's flight rules dictated that NASA consider a "call-up" mission before a fourth gyroscope failed. Four new gyros were installed during the first servicing mission ( STS-61 ) in December 1993 and all six gyros were working during the second servicing mission ( STS-82 ) in February 1997. Since then, a gyro failed in 1997, another in 1998 and
20829-418: The underside of Columbia , and determined there was no damage. Columbia reentered the atmosphere and landed at Edwards AFB on April 14. NASA conducted three additional test flights with Columbia in 1981 and 1982. On July 4, 1982, STS-4 , flown by Ken Mattingly and Henry Hartsfield , landed on a concrete runway at Edwards AFB. President Ronald Reagan and his wife Nancy met the crew, and delivered
20988-785: The universe. Examples of Earth-viewing remote sensing experiments that have flown on the ISS are the Orbiting Carbon Observatory 3 , ISS-RapidScat , ECOSTRESS , the Global Ecosystem Dynamics Investigation , and the Cloud Aerosol Transport System . ISS-based astronomy telescopes and experiments include SOLAR , the Neutron Star Interior Composition Explorer , the Calorimetric Electron Telescope ,
21147-467: The upper parts of the orbiter vehicle were coated in tiles of white low-temperature reusable surface insulation with similar composition, which provided protection for temperatures below 650 °C (1,200 °F). The payload bay doors and parts of the upper wing surfaces were coated in reusable Nomex felt surface insulation or in beta cloth , as the temperature there remained below 370 °C (700 °F). The Space Shuttle external tank (ET) carried
21306-412: Was assembled and is maintained in low Earth orbit by a collaboration of five space agencies and their contractors: NASA (United States), Roscosmos (Russia), ESA (Europe), JAXA (Japan), and CSA (Canada). The ISS is the largest space station ever built. Its primary purpose is to perform microgravity and space environment experiments. Operationally, the station is divided into two sections:
21465-512: Was 1,323 days. Space Shuttle components include the Orbiter Vehicle (OV) with three clustered Rocketdyne RS-25 main engines, a pair of recoverable solid rocket boosters (SRBs), and the expendable external tank (ET) containing liquid hydrogen and liquid oxygen . The Space Shuttle was launched vertically , like a conventional rocket, with the two SRBs operating in parallel with the orbiter's three main engines , which were fueled from
21624-462: Was 18 m (60 ft) long and 4.6 m (15 ft) wide, and could accommodate cylindrical payloads up to 4.6 m (15 ft) in diameter. Two payload bay doors hinged on either side of the bay, and provided a relatively airtight seal to protect payloads from heating during launch and reentry. Payloads were secured in the payload bay to the attachment points on the longerons . The payload bay doors served an additional function as radiators for
21783-490: Was 20 times faster and had six times the memory of the DF-224 computer previously used on Hubble. It weighs 32.0 kilograms (70.5 lb) and is 18.8 by 18 by 13 inches (478 by 457 by 330 mm) in size. The FGS installed was a refurbished unit that was returned from Servicing Mission 2. It weighs 217 kilograms (478 lb) and is 5.5 by 4 by 2 feet (1.68 by 1.22 by 0.61 m) in size. A voltage/temperature improvement kit (VIK)
21942-490: Was Space Shuttle-specific software that provided control through all phases of flight. During ascent, maneuvering, reentry, and landing, the four PASS GPCs functioned identically to produce quadruple redundancy and would error check their results. In case of a software error that would cause erroneous reports from the four PASS GPCs, a fifth GPC ran the Backup Flight System, which used a different program and could control
22101-618: Was a modified airport jet bridge that was used to assist astronauts to egress from the orbiter after landing, where they would undergo their post-mission medical checkups. The Astrovan transported astronauts from the crew quarters in the Operations and Checkout Building to the launch pad on launch day. The NASA Railroad comprised three locomotives that transported SRB segments from the Florida East Coast Railway in Titusville to
22260-547: Was also installed to protect spacecraft batteries from overcharging and overheating when the spacecraft goes into safe mode . The VIK modifies the charge cutoff voltage to a lower level to prevent battery overcharging and associated overheating. The VIK weighs about 1.4 kilograms (3.1 lb). The repair mission also installed a new S-Band Single Access Transmitter (SSAT). Hubble has two identical SSATs onboard and can operate with only one. The SSATs send data from Hubble through NASA's Tracking Data Relay Satellite System (TDRSS) to
22419-462: Was carried for 5.6 km (3.5 mi) to Launch Complex 39 by one of the crawler-transporters . After the Space Shuttle arrived at one of the two launchpads, it would connect to the Fixed and Rotation Service Structures, which provided servicing capabilities, payload insertion, and crew transportation. The crew was transported to the launch pad at T−3 hours and entered the orbiter vehicle, which
22578-565: Was closed at T−2 hours. Liquid oxygen and hydrogen were loaded into the external tank via umbilicals that attached to the orbiter vehicle, which began at T−5 hours 35 minutes. At T−3 hours 45 minutes, the hydrogen fast-fill was complete, followed 15 minutes later by the oxygen tank fill. Both tanks were slowly filled up until the launch as the oxygen and hydrogen evaporated. The launch commit criteria considered precipitation, temperatures, cloud cover, lightning forecast, wind, and humidity. The Space Shuttle
22737-660: Was completed on September 17, 1976, and Enterprise was moved to the Edwards Air Force Base to begin testing. Rockwell constructed the Main Propulsion Test Article (MPTA)-098 , which was a structural truss mounted to the ET with three RS-25 engines attached. It was tested at the National Space Technology Laboratory (NSTL) to ensure that the engines could safely run through the launch profile. Rockwell conducted mechanical and thermal stress tests on Structural Test Article (STA)-099 to determine
22896-535: Was entirely reliant on its main computer, the Data Processing System (DPS). The DPS controlled the flight controls and thrusters on the orbiter, as well as the ET and SRBs during launch. The DPS consisted of five general-purpose computers (GPC), two magnetic tape mass memory units (MMUs), and the associated sensors to monitor the Space Shuttle components. The original GPC used was the IBM AP-101B , which used
23055-657: Was equipped with an avionics system to provide information and control during atmospheric flight. Its avionics suite contained three microwave scanning beam landing systems , three gyroscopes , three TACANs , three accelerometers , two radar altimeters , two barometric altimeters , three attitude indicators , two Mach indicators , and two Mode C transponders . During reentry, the crew deployed two air data probes once they were traveling slower than Mach 5. The orbiter had three inertial measuring units (IMU) that it used for guidance and navigation during all phases of flight. The orbiter contains two star trackers to align
23214-634: Was first flown in 1975, and was used for the ALT and ferrying the orbiter from Edwards AFB to the KSC on all missions prior to 1991. A second SCA (N911NA) was acquired in 1988, and was first used to transport Endeavour from the factory to the KSC. Following the retirement of the Space Shuttle, N905NA was put on display at the JSC, and N911NA was put on display at the Joe Davies Heritage Airpark in Palmdale, California . The Crew Transport Vehicle (CTV)
23373-403: Was later improved to 270,000 kg (586,000 lb). The Spacelab module was a European-funded pressurized laboratory that was carried within the payload bay and allowed for scientific research while in orbit. The Spacelab module contained two 2.7 m (9 ft) segments that were mounted in the aft end of the payload bay to maintain the center of gravity during flight. Astronauts entered
23532-406: Was located below the flight deck and was where the galley and crew bunks were set up, as well as three or four crew member seats. The mid-deck contained the airlock, which could support two astronauts on an extravehicular activity (EVA), as well as access to pressurized research modules. An equipment bay was below the mid-deck, which stored environmental control and waste management systems. On
23691-591: Was moved to the Marshall Space Flight Center (MSFC) on March 13, 1978. Enterprise underwent shake tests in the Mated Vertical Ground Vibration Test, where it was attached to an external tank and solid rocket boosters, and underwent vibrations to simulate the stresses of launch. In April 1979, Enterprise was taken to the KSC, where it was attached to an external tank and solid rocket boosters, and moved to LC-39 . Once installed at
23850-587: Was never used). The Johnson Space Center (JSC) served as the central point for all Shuttle operations and the MSFC was responsible for the main engines, external tank, and solid rocket boosters. The John C. Stennis Space Center handled main engine testing, and the Goddard Space Flight Center managed the global tracking network. The orbiter had design elements and capabilities of both a rocket and an aircraft to allow it to launch vertically and then land as
24009-422: Was not launched under conditions where it could have been struck by lightning , as its exhaust plume could have triggered lightning by providing a current path to ground after launch, which occurred on Apollo 12 . The NASA Anvil Rule for a Shuttle launch stated that an anvil cloud could not appear within a distance of 19 km (10 nmi). The Shuttle Launch Weather Officer monitored conditions until
24168-522: Was one of the mission specialists on this mission, brought a " Planet Mars Flag " aboard Discovery . NASA began a tradition of playing music to astronauts during the Gemini program , which was first used to wake up a flight crew during Apollo 15 . Each track is specially chosen, often by their families, and usually has a special meaning to an individual member of the crew, or is applicable to their daily activities. Space Shuttle The Space Shuttle
24327-401: Was originally intended to be a laboratory, observatory, and factory while providing transportation, maintenance, and a low Earth orbit staging base for possible future missions to the Moon, Mars, and asteroids. However, not all of the uses envisioned in the initial memorandum of understanding between NASA and Roscosmos have been realised. In the 2010 United States National Space Policy ,
24486-501: Was replaced with a digital solid state recorder. During this mission a second mechanical recorder was replaced by a second solid state recorder. The new recorder could hold approximately 10 times as much data as the old unit (12 gigabytes instead of 1.2 gigabytes). The recorder weighs 11.3 kilograms (25 lb) and is 12 by 9 by 7 inches in size. Finally, the EVA crew replaced the telescope's outer insulation that had degraded. The insulation
24645-418: Was tested on STS-2 and STS-3, and the first full mission was on STS-9. Three RS-25 engines, also known as the Space Shuttle Main Engines (SSME), were mounted on the orbiter's aft fuselage in a triangular pattern. The engine nozzles could gimbal ±10.5° in pitch, and ±8.5° in yaw during ascent to change the direction of their thrust to steer the Shuttle. The titanium alloy reusable engines were independent of
24804-465: Was the Hubble Servicing Mission 3A . STS-103 had four scheduled Extravehicular Activity (EVA) days where four crew members worked in pairs on alternating days to renew and refurbish the telescope. NASA officials decided to move up part of the servicing mission that had been scheduled for June 2000 after three of the telescope's six gyroscopes failed. Three gyroscopes must be working to meet
24963-534: Was the Skylab-Salyut Space Laboratory, which proposed docking the Skylab B to a Soviet Salyut space station. Falling budgets and rising Cold War tensions in the late 1970s saw these concepts fall by the wayside, along with another plan to have the Space Shuttle dock with a Salyut space station. In the early 1980s, NASA planned to launch a modular space station called Freedom as a counterpart to
25122-444: Was the top level of the crew compartment and contained the flight controls for the orbiter. The commander sat in the front left seat, and the pilot sat in the front right seat, with two to four additional seats set up for additional crew members. The instrument panels contained over 2,100 displays and controls, and the commander and pilot were both equipped with a heads-up display (HUD) and a Rotational Hand Controller (RHC) to gimbal
25281-547: Was vented from the nose to cause the ET to tumble, ensuring that it would break up upon reentry. The ET was the only major component of the Space Shuttle system that was not reused, and it would travel along a ballistic trajectory into the Indian or Pacific Ocean. For the first two missions, STS-1 and STS-2 , the ET was covered in 270 kg (595 lb) of white fire-retardant latex paint to provide protection against damage from ultraviolet radiation. Further research determined that
#875124