Rover Environmental Monitoring Station ( REMS ) is a weather station on Mars for Curiosity rover contributed by Spain and Finland . REMS measures humidity , pressure , temperature , wind speeds , and ultraviolet radiation on Mars. This Spanish project is led by the Spanish Astrobiology Center and includes the Finnish Meteorological Institute as a partner, contributing pressure and humidity sensors.
51-606: All sensors are located around three elements: two booms attached to the rover Remote Sensing Mast (RSM), the Ultraviolet Sensor (UVS) assembly located on the rover top deck, and the Instrument Control Unit (ICU) inside the rover. Goals include understanding Martian general circulation, microscale weather systems, local hydrological cycle, destructive potential of UV radiation, and subsurface habitability based on ground-atmosphere interaction. By August 18, 2012, REMS
102-498: A block is always a multiple of 16, and is often a multiple of 128, but is otherwise arbitrary. Characters required for a given script may be spread out over several different, potentially disjunct blocks within the codespace. Each code point is assigned a classification, listed as the code point's General Category property. Here, at the uppermost level code points are categorized as one of Letter, Mark, Number, Punctuation, Symbol, Separator, or Other. Under each category, each code point
153-710: A calendar year and with rare cases where the scheduled release had to be postponed. For instance, in April 2020, a month after version 13.0 was published, the Unicode Consortium announced they had changed the intended release date for version 14.0, pushing it back six months to September 2021 due to the COVID-19 pandemic . Unicode 16.0, the latest version, was released on 10 September 2024. It added 5,185 characters and seven new scripts: Garay , Gurung Khema , Kirat Rai , Ol Onal , Sunuwar , Todhri , and Tulu-Tigalari . Thus far,
204-432: A comprehensive catalog of character properties, including those needed for supporting bidirectional text , as well as visual charts and reference data sets to aid implementers. Previously, The Unicode Standard was sold as a print volume containing the complete core specification, standard annexes, and code charts. However, version 5.0, published in 2006, was the last version printed this way. Starting with version 5.2, only
255-566: A full semantic duplicate of the Latin alphabet, because legacy CJK encodings contained both "fullwidth" (matching the width of CJK characters) and "halfwidth" (matching ordinary Latin script) characters. The Unicode Bulldog Award is given to people deemed to be influential in Unicode's development, with recipients including Tatsuo Kobayashi , Thomas Milo, Roozbeh Pournader , Ken Lunde , and Michael Everson . The origins of Unicode can be traced back to
306-442: A large number of scripts, and not with all of the scripts supported being treated in a consistent manner. The philosophy that underpins Unicode seeks to encode the underlying characters— graphemes and grapheme-like units—rather than graphical distinctions considered mere variant glyphs thereof, that are instead best handled by the typeface , through the use of markup , or by some other means. In particularly complex cases, such as
357-530: A low-surrogate code point forms a surrogate pair in UTF-16 in order to represent code points greater than U+FFFF . In principle, these code points cannot otherwise be used, though in practice this rule is often ignored, especially when not using UTF-16. A small set of code points are guaranteed never to be assigned to characters, although third-parties may make independent use of them at their discretion. There are 66 of these noncharacters : U+FDD0 – U+FDEF and
408-469: A power of 1000 are preferred, which excludes the hectopascal from use. Many countries also use millibars. In practically all other fields, the kilopascal is used instead. Decimal multiples and submultiples are formed using standard SI units . Unicode Unicode , formally The Unicode Standard , is a text encoding standard maintained by the Unicode Consortium designed to support
459-526: A project run by Deborah Anderson at the University of California, Berkeley was founded in 2002 with the goal of funding proposals for scripts not yet encoded in the standard. The project has become a major source of proposed additions to the standard in recent years. The Unicode Consortium together with the ISO have developed a shared repertoire following the initial publication of The Unicode Standard : Unicode and
510-399: A properly engineered design, 16 bits per character are more than sufficient for this purpose. This design decision was made based on the assumption that only scripts and characters in "modern" use would require encoding: Unicode gives higher priority to ensuring utility for the future than to preserving past antiquities. Unicode aims in the first instance at the characters published in
561-558: A total of 168 scripts are included in the latest version of Unicode (covering alphabets , abugidas and syllabaries ), although there are still scripts that are not yet encoded, particularly those mainly used in historical, liturgical, and academic contexts. Further additions of characters to the already encoded scripts, as well as symbols, in particular for mathematics and music (in the form of notes and rhythmic symbols), also occur. The Unicode Roadmap Committee ( Michael Everson , Rick McGowan, Ken Whistler, V.S. Umamaheswaran) maintain
SECTION 10
#1732852301877612-648: A universal encoding than the original Unicode architecture envisioned. Version 1.0 of Microsoft's TrueType specification, published in 1992, used the name "Apple Unicode" instead of "Unicode" for the Platform ID in the naming table. The Unicode Consortium is a nonprofit organization that coordinates Unicode's development. Full members include most of the main computer software and hardware companies (and few others) with any interest in text-processing standards, including Adobe , Apple , Google , IBM , Meta (previously as Facebook), Microsoft , Netflix , and SAP . Over
663-521: Is 101,325 Pascals or 14.7 PSI. The air temperature, wind speed and direction sensor for InSight Mars lander (planned for 2018 launch) is based on REMS, also contributed by Spain. Pascal (unit) The pascal (symbol: Pa ) is the unit of pressure in the International System of Units (SI) . It is also used to quantify internal pressure , stress , Young's modulus , and ultimate tensile strength . The unit, named after Blaise Pascal ,
714-453: Is an SI coherent derived unit defined as one newton per square metre (N/m ). It is also equivalent to 10 barye (10 Ba) in the CGS system. Common multiple units of the pascal are the hectopascal (1 hPa = 100 Pa), which is equal to one millibar , and the kilopascal (1 kPa = 1000 Pa), which is equal to one centibar. The unit of measurement called standard atmosphere (atm)
765-567: Is defined as 101 325 Pa . Meteorological observations typically report atmospheric pressure in hectopascals per the recommendation of the World Meteorological Organization , thus a standard atmosphere (atm) or typical sea-level air pressure is about 1013 hPa. Reports in the United States typically use inches of mercury or millibars (hectopascals). In Canada, these reports are given in kilopascals. The unit
816-413: Is intended to suggest a unique, unified, universal encoding". In this document, entitled Unicode 88 , Becker outlined a scheme using 16-bit characters: Unicode is intended to address the need for a workable, reliable world text encoding. Unicode could be roughly described as "wide-body ASCII " that has been stretched to 16 bits to encompass the characters of all the world's living languages. In
867-504: Is measured at 50 Pa. In medicine, blood pressure is measured in millimeters of mercury (mmHg, very close to one Torr ). The normal adult blood pressure is less than 120 mmHg systolic BP (SBP) and less than 80 mmHg diastolic BP (DBP). Convert mmHg to SI units as follows: 1 mmHg = 0.133 32 kPa . Hence normal blood pressure in SI units is less than 16.0 kPa SBP and less than 10.7 kPa DBP. These values are similar to
918-405: Is named after Blaise Pascal , noted for his contributions to hydrodynamics and hydrostatics, and experiments with a barometer . The name pascal was adopted for the SI unit newton per square metre (N/m ) by the 14th General Conference on Weights and Measures in 1971. The pascal can be expressed using SI derived units , or alternatively solely SI base units , as: where N is the newton , m
969-453: Is not padded. There are a total of 2 + (2 − 2 ) = 1 112 064 valid code points within the codespace. (This number arises from the limitations of the UTF-16 character encoding, which can encode the 2 code points in the range U+0000 through U+FFFF except for the 2 code points in the range U+D800 through U+DFFF , which are used as surrogate pairs to encode the 2 code points in
1020-480: Is projected to include 4301 new unified CJK characters . The Unicode Standard defines a codespace : a sequence of integers called code points in the range from 0 to 1 114 111 , notated according to the standard as U+0000 – U+10FFFF . The codespace is a systematic, architecture-independent representation of The Unicode Standard ; actual text is processed as binary data via one of several Unicode encodings, such as UTF-8 . In this normative notation,
1071-439: Is the metre , kg is the kilogram , s is the second , and J is the joule . One pascal is the pressure exerted by a force of one newton perpendicularly upon an area of one square metre. The unit of measurement called an atmosphere or a standard atmosphere (atm) is 101 325 Pa (101.325 kPa). This value is often used as a reference pressure and specified as such in some national and international standards, such as
SECTION 20
#17328523018771122-400: Is then further subcategorized. In most cases, other properties must be used to adequately describe all the characteristics of any given code point. The 1024 points in the range U+D800 – U+DBFF are known as high-surrogate code points, and code points in the range U+DC00 – U+DFFF ( 1024 code points) are known as low-surrogate code points. A high-surrogate code point followed by
1173-502: Is used to encode the vast majority of text on the Internet, including most web pages , and relevant Unicode support has become a common consideration in contemporary software development. The Unicode character repertoire is synchronized with ISO/IEC 10646 , each being code-for-code identical with one another. However, The Unicode Standard is more than just a repertoire within which characters are assigned. To aid developers and designers,
1224-420: Is used to measure sound pressure . Loudness is the subjective experience of sound pressure and is measured as a sound pressure level (SPL) on a logarithmic scale of the sound pressure relative to some reference pressure. For sound in air, a pressure of 20 μPa is considered to be at the threshold of hearing for humans and is a common reference pressure, so that its SPL is zero. The airtightness of buildings
1275-465: The CJK Compatibility block, but these exist only for backward-compatibility with some older ideographic character-sets and are therefore deprecated . The pascal (Pa) or kilopascal (kPa) as a unit of pressure measurement is widely used throughout the world and has largely replaced the pounds per square inch (psi) unit, except in some countries that still use the imperial measurement system or
1326-521: The International Organization for Standardization 's ISO 2787 (pneumatic tools and compressors), ISO 2533 (aerospace) and ISO 5024 (petroleum). In contrast, International Union of Pure and Applied Chemistry (IUPAC) recommends the use of 100 kPa as a standard pressure when reporting the properties of substances. Unicode has dedicated code-points U+33A9 ㎩ SQUARE PA and U+33AA ㎪ SQUARE KPA in
1377-563: The US customary system , including the United States. Geophysicists use the gigapascal (GPa) in measuring or calculating tectonic stresses and pressures within the Earth . Medical elastography measures tissue stiffness non-invasively with ultrasound or magnetic resonance imaging , and often displays the Young's modulus or shear modulus of tissue in kilopascals. In materials science and engineering ,
1428-574: The 1980s, to a group of individuals with connections to Xerox 's Character Code Standard (XCCS). In 1987, Xerox employee Joe Becker , along with Apple employees Lee Collins and Mark Davis , started investigating the practicalities of creating a universal character set. With additional input from Peter Fenwick and Dave Opstad , Becker published a draft proposal for an "international/multilingual text character encoding system in August 1988, tentatively called Unicode". He explained that "the name 'Unicode'
1479-564: The ISO's Universal Coded Character Set (UCS) use identical character names and code points. However, the Unicode versions do differ from their ISO equivalents in two significant ways. While the UCS is a simple character map, Unicode specifies the rules, algorithms, and properties necessary to achieve interoperability between different platforms and languages. Thus, The Unicode Standard includes more information, covering in-depth topics such as bitwise encoding, collation , and rendering. It also provides
1530-539: The continued development thereof conducted by the Consortium as a part of the standard. Moreover, the widespread adoption of Unicode was in large part responsible for the initial popularization of emoji outside of Japan. Unicode is ultimately capable of encoding more than 1.1 million characters. Unicode has largely supplanted the previous environment of a myriad of incompatible character sets , each used within different locales and on different computer architectures. Unicode
1581-496: The core specification, published as a print-on-demand paperback, may be purchased. The full text, on the other hand, is published as a free PDF on the Unicode website. A practical reason for this publication method highlights the second significant difference between the UCS and Unicode—the frequency with which updated versions are released and new characters added. The Unicode Standard has regularly released annual expanded versions, occasionally with more than one version released in
Rover Environmental Monitoring Station - Misplaced Pages Continue
1632-470: The discretion of the software actually rendering the text, such as a web browser or word processor . However, partially with the intent of encouraging rapid adoption, the simplicity of this original model has become somewhat more elaborate over time, and various pragmatic concessions have been made over the course of the standard's development. The first 256 code points mirror the ISO/IEC 8859-1 standard, with
1683-401: The following versions of The Unicode Standard have been published. Update versions, which do not include any changes to character repertoire, are signified by the third number (e.g., "version 4.0.1") and are omitted in the table below. The Unicode Consortium normally releases a new version of The Unicode Standard once a year. Version 17.0, the next major version,
1734-516: The group. By the end of 1990, most of the work of remapping existing standards had been completed, and a final review draft of Unicode was ready. The Unicode Consortium was incorporated in California on 3 January 1991, and the first volume of The Unicode Standard was published that October. The second volume, now adding Han ideographs, was published in June 1992. In 1996, a surrogate character mechanism
1785-549: The intent of trivializing the conversion of text already written in Western European scripts. To preserve the distinctions made by different legacy encodings, therefore allowing for conversion between them and Unicode without any loss of information, many characters nearly identical to others , in both appearance and intended function, were given distinct code points. For example, the Halfwidth and Fullwidth Forms block encompasses
1836-403: The last two code points in each of the 17 planes (e.g. U+FFFE , U+FFFF , U+1FFFE , U+1FFFF , ..., U+10FFFE , U+10FFFF ). The set of noncharacters is stable, and no new noncharacters will ever be defined. Like surrogates, the rule that these cannot be used is often ignored, although the operation of the byte order mark assumes that U+FFFE will never be the first code point in
1887-625: The list of scripts that are candidates or potential candidates for encoding and their tentative code block assignments on the Unicode Roadmap page of the Unicode Consortium website. For some scripts on the Roadmap, such as Jurchen and Khitan large script , encoding proposals have been made and they are working their way through the approval process. For other scripts, such as Numidian and Rongorongo , no proposal has yet been made, and they await agreement on character repertoire and other details from
1938-675: The modern text (e.g. in the union of all newspapers and magazines printed in the world in 1988), whose number is undoubtedly far below 2 = 16,384. Beyond those modern-use characters, all others may be defined to be obsolete or rare; these are better candidates for private-use registration than for congesting the public list of generally useful Unicode. In early 1989, the Unicode working group expanded to include Ken Whistler and Mike Kernaghan of Metaphor, Karen Smith-Yoshimura and Joan Aliprand of Research Libraries Group , and Glenn Wright of Sun Microsystems . In 1990, Michel Suignard and Asmus Freytag of Microsoft and NeXT 's Rick McGowan had also joined
1989-483: The pascal measures the stiffness , tensile strength and compressive strength of materials. In engineering the megapascal (MPa) is the preferred unit for these uses, because the pascal represents a very small quantity. The pascal is also equivalent to the SI unit of energy density , the joule per cubic metre. This applies not only to the thermodynamics of pressurised gases, but also to the energy density of electric , magnetic , and gravitational fields. The pascal
2040-567: The pressure of water column of average human height; so pressure has to be measured on arm roughly at the level of the heart. The units of atmospheric pressure commonly used in meteorology were formerly the bar (100,000 Pa), which is close to the average air pressure on Earth, and the millibar. Since the introduction of SI units , meteorologists generally measure pressures in hectopascals (hPa) unit, equal to 100 pascals or 1 millibar. Exceptions include Canada, which uses kilopascals (kPa). In many other fields of science, prefixes that are
2091-807: The range U+10000 through U+10FFFF .) The Unicode codespace is divided into 17 planes , numbered 0 to 16. Plane 0 is the Basic Multilingual Plane (BMP), and contains the most commonly used characters. All code points in the BMP are accessed as a single code unit in UTF-16 encoding and can be encoded in one, two or three bytes in UTF-8. Code points in planes 1 through 16 (the supplementary planes ) are accessed as surrogate pairs in UTF-16 and encoded in four bytes in UTF-8 . Within each plane, characters are allocated within named blocks of related characters. The size of
Rover Environmental Monitoring Station - Misplaced Pages Continue
2142-429: The standard also provides charts and reference data, as well as annexes explaining concepts germane to various scripts, providing guidance for their implementation. Topics covered by these annexes include character normalization , character composition and decomposition, collation , and directionality . Unicode text is processed and stored as binary data using one of several encodings , which define how to translate
2193-453: The standard's abstracted codes for characters into sequences of bytes. The Unicode Standard itself defines three encodings: UTF-8 , UTF-16 , and UTF-32 , though several others exist. Of these, UTF-8 is the most widely used by a large margin, in part due to its backwards-compatibility with ASCII . Unicode was originally designed with the intent of transcending limitations present in all text encodings designed up to that point: each encoding
2244-459: The treatment of orthographical variants in Han characters , there is considerable disagreement regarding which differences justify their own encodings, and which are only graphical variants of other characters. At the most abstract level, Unicode assigns a unique number called a code point to each character. Many issues of visual representation—including size, shape, and style—are intended to be up to
2295-418: The two-character prefix U+ always precedes a written code point, and the code points themselves are written as hexadecimal numbers. At least four hexadecimal digits are always written, with leading zeros prepended as needed. For example, the code point U+00F7 ÷ DIVISION SIGN is padded with two leading zeros, but U+13254 𓉔 EGYPTIAN HIEROGLYPH O004 ( [REDACTED] )
2346-435: The use of text in all of the world's writing systems that can be digitized. Version 16.0 of the standard defines 154 998 characters and 168 scripts used in various ordinary, literary, academic, and technical contexts. Many common characters, including numerals, punctuation, and other symbols, are unified within the standard and are not treated as specific to any given writing system. Unicode encodes 3790 emoji , with
2397-607: The user communities involved. Some modern invented scripts which have not yet been included in Unicode (e.g., Tengwar ) or which do not qualify for inclusion in Unicode due to lack of real-world use (e.g., Klingon ) are listed in the ConScript Unicode Registry , along with unofficial but widely used Private Use Areas code assignments. There is also a Medieval Unicode Font Initiative focused on special Latin medieval characters. Part of these proposals has been already included in Unicode. The Script Encoding Initiative,
2448-635: The years several countries or government agencies have been members of the Unicode Consortium. Presently only the Ministry of Endowments and Religious Affairs (Oman) is a full member with voting rights. The Consortium has the ambitious goal of eventually replacing existing character encoding schemes with Unicode and its standard Unicode Transformation Format (UTF) schemes, as many of the existing schemes are limited in size and scope and are incompatible with multilingual environments. Unicode currently covers most major writing systems in use today. As of 2024 ,
2499-491: Was implemented in Unicode 2.0, so that Unicode was no longer restricted to 16 bits. This increased the Unicode codespace to over a million code points, which allowed for the encoding of many historic scripts, such as Egyptian hieroglyphs , and thousands of rarely used or obsolete characters that had not been anticipated for inclusion in the standard. Among these characters are various rarely used CJK characters—many mainly being used in proper names, making them far more necessary for
2550-439: Was relied upon for use in its own context, but with no particular expectation of compatibility with any other. Indeed, any two encodings chosen were often totally unworkable when used together, with text encoded in one interpreted as garbage characters by the other. Most encodings had only been designed to facilitate interoperation between a handful of scripts—often primarily between a given script and Latin characters —not between
2601-626: Was turned on and its data was being returned to Earth. The temperature at that time: 37 degrees Fahrenheit (2.8 degrees Celsius). On August 21, 2012, one of two anemometers returned data with errors. After testing it was concluded that it was broken, probably hit by a rock on descent. Martian winds can still be detected with the other sensor. Reports are posted on the Center for Astrobiology website and Twitter daily. Parts of REMS The pressure sensor can detect pressures from 1 to 1150 Pa ( Pascal ) (0.000145038 PSI to 0.1667934 PSI). For comparison, 1 atmosphere
SECTION 50
#1732852301877#876123