Misplaced Pages

Rancholabrean

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The Cretaceous ( IPA : / k r ɪ ˈ t eɪ ʃ ə s / krih- TAY -shəss ) is a geological period that lasted from about 145 to 66 million years ago (Mya). It is the third and final period of the Mesozoic Era , as well as the longest. At around 79   million years, it is the ninth and longest geological period of the entire Phanerozoic . The name is derived from the Latin creta , ' chalk ', which is abundant in the latter half of the period. It is usually abbreviated K , for its German translation Kreide .

#911088

125-731: The Rancholabrean North American Land Mammal Age on the geologic timescale is the North American faunal stage according to the North American Land Mammal Ages chronology (NALMA), Named after the famed Rancho La Brea fossil site (more commonly known as the La Brea tar pits ) in Los Angeles, California, the Rancholabrean is characterized by the presence of the genus Bison , which appeared in northwestern North America during

250-538: A Berriasian–Barremian warm-dry phase, an Aptian–Santonian warm-wet phase, and a Campanian–Maastrichtian cool-dry phase. As in the Cenozoic, the 400,000 year eccentricity cycle was the dominant orbital cycle governing carbon flux between different reservoirs and influencing global climate. The location of the Intertropical Convergence Zone (ITCZ) was roughly the same as in the present. The cooling trend of

375-577: A formal proposal to the ICS for the establishment of the Anthropocene Series/Epoch. Nevertheless, the definition of the Anthropocene as a geologic time period rather than a geologic event remains controversial and difficult. An international working group of the ICS on pre-Cryogenian chronostratigraphic subdivision have outlined a template to improve the pre-Cryogenian geologic time scale based on

500-461: A geochronologic unit can be changed (and is more often subject to change) when refined by geochronometry while the equivalent chronostratigraphic unit (the revision of which is less frequent) remains unchanged. For example, in early 2022, the boundary between the Ediacaran and Cambrian periods (geochronologic units) was revised from 541 Ma to 538.8 Ma but the rock definition of the boundary (GSSP) at

625-551: A known geological context. The geological history of Mars has been divided into two alternate time scales. The first time scale for Mars was developed by studying the impact crater densities on the Martian surface. Through this method four periods have been defined, the Pre-Noachian (~4,500–4,100 Ma), Noachian (~4,100–3,700 Ma), Hesperian (~3,700–3,000 Ma), and Amazonian (~3,000 Ma to present). Cretaceous The Cretaceous

750-617: A machine-readable Resource Description Framework / Web Ontology Language representation of the time scale, which is available through the Commission for the Management and Application of Geoscience Information GeoSciML project as a service and at a SPARQL end-point. Some other planets and satellites in the Solar System have sufficiently rigid structures to have preserved records of their own histories, for example, Venus , Mars and

875-471: A relative interval of geologic time. A chronostratigraphic unit is a body of rock, layered or unlayered, that is defined between specified stratigraphic horizons which represent specified intervals of geologic time. They include all rocks representative of a specific interval of geologic time, and only this time span. Eonothem, erathem, system, series, subseries, stage, and substage are the hierarchical chronostratigraphic units. A geochronologic unit

1000-429: A specific and reliable order. This allows for a correlation of strata even when the horizon between them is not continuous. The geologic time scale is divided into chronostratigraphic units and their corresponding geochronologic units. The subdivisions Early and Late are used as the geochronologic equivalents of the chronostratigraphic Lower and Upper , e.g., Early Triassic Period (geochronologic unit)

1125-660: A straight shell, flourished in the seas along with reef-building rudist clams. Inoceramids were also particularly notable among Cretaceous bivalves, and they have been used to identify major biotic turnovers such as at the Turonian-Coniacian boundary. Predatory gastropods with drilling habits were widespread. Globotruncanid foraminifera and echinoderms such as sea urchins and starfish (sea stars) thrived. Ostracods were abundant in Cretaceous marine settings; ostracod species characterised by high male sexual investment had

1250-532: A system/series (early/middle/late); however, the International Commission on Stratigraphy advocates for all new series and subseries to be named for a geographic feature in the vicinity of its stratotype or type locality . The name of stages should also be derived from a geographic feature in the locality of its stratotype or type locality. Informally, the time before the Cambrian is often referred to as

1375-458: A wider sense, correlating strata across national and continental boundaries based on their similarity to each other. Many of the names below erathem/era rank in use on the modern ICC/GTS were determined during the early to mid-19th century. During the 19th century, the debate regarding Earth's age was renewed, with geologists estimating ages based on denudation rates and sedimentary thicknesses or ocean chemistry, and physicists determining ages for

SECTION 10

#1732845563912

1500-551: A ~0.6 °C increase in temperature. The latter warming interval, occurring at the very end of the Cretaceous, was triggered by the activity of the Deccan Traps. The LKEPCI lasted into the Late Palaeocene , when it gave way to another supergreenhouse interval. The production of large quantities of magma, variously attributed to mantle plumes or to extensional tectonics , further pushed sea levels up, so that large areas of

1625-494: Is a numeric-only, chronologic reference point used to define the base of geochronologic units prior to the Cryogenian. These points are arbitrarily defined. They are used where GSSPs have not yet been established. Research is ongoing to define GSSPs for the base of all units that are currently defined by GSSAs. The standard international units of the geologic time scale are published by the International Commission on Stratigraphy on

1750-479: Is a subdivision of geologic time. It is a numeric representation of an intangible property (time). These units are arranged in a hierarchy: eon, era, period, epoch, subepoch, age, and subage. Geochronology is the scientific branch of geology that aims to determine the age of rocks, fossils, and sediments either through absolute (e.g., radiometric dating ) or relative means (e.g., stratigraphic position , paleomagnetism , stable isotope ratios ). Geochronometry

1875-475: Is a way of representing deep time based on events that have occurred throughout Earth's history , a time span of about 4.54 ± 0.05 Ga (4.54 billion years). It chronologically organises strata, and subsequently time, by observing fundamental changes in stratigraphy that correspond to major geological or paleontological events. For example, the Cretaceous–Paleogene extinction event , marks

2000-603: Is found in England, northern France, the low countries , northern Germany , Denmark and in the subsurface of the southern part of the North Sea . Chalk is not easily consolidated and the Chalk Group still consists of loose sediments in many places. The group also has other limestones and arenites . Among the fossils it contains are sea urchins , belemnites , ammonites and sea reptiles such as Mosasaurus . In southern Europe,

2125-509: Is now used worldwide. In many parts of the world, alternative local subdivisions are still in use. From youngest to oldest, the subdivisions of the Cretaceous period are: The lower boundary of the Cretaceous is currently undefined, and the Jurassic–Cretaceous boundary is currently the only system boundary to lack a defined Global Boundary Stratotype Section and Point (GSSP). Placing a GSSP for this boundary has been difficult because of

2250-773: Is preceded by the Irvingtonian NALMA stage, and it is succeeded by the Santarosean age. The Rancholabrean ended around 14-12,000 years ago at the end of the Pleistocene. The Rancholabrean can be further divided into the substages of the Sheridanian : Upper boundary source of the base of the Holocene (approximate) On other continents, the Rancholabrean shares this time period with the Oldenburgian of European Land Mammal Ages , and

2375-401: Is the field of geochronology that numerically quantifies geologic time. A Global Boundary Stratotype Section and Point (GSSP) is an internationally agreed-upon reference point on a stratigraphic section that defines the lower boundaries of stages on the geologic time scale. (Recently this has been used to define the base of a system) A Global Standard Stratigraphic Age (GSSA)

2500-663: Is the responsibility of the International Commission on Stratigraphy (ICS), a constituent body of the International Union of Geological Sciences (IUGS), whose primary objective is to precisely define global chronostratigraphic units of the International Chronostratigraphic Chart (ICC) that are used to define divisions of geologic time. The chronostratigraphic divisions are in turn used to define geochronologic units. The geologic time scale

2625-573: Is used in place of Lower Triassic System (chronostratigraphic unit). Rocks representing a given chronostratigraphic unit are that chronostratigraphic unit, and the time they were laid down in is the geochronologic unit, e.g., the rocks that represent the Silurian System are the Silurian System and they were deposited during the Silurian Period. This definition means the numeric age of

SECTION 20

#1732845563912

2750-646: The Anthropocene is a proposed epoch/series for the most recent time in Earth's history. While still informal, it is a widely used term to denote the present geologic time interval, in which many conditions and processes on Earth are profoundly altered by human impact. As of April 2022 the Anthropocene has not been ratified by the ICS; however, in May 2019 the Anthropocene Working Group voted in favour of submitting

2875-529: The Brothers of Purity , who wrote on the processes of stratification over the passage of time in their treatises . Their work likely inspired that of the 11th-century Persian polymath Avicenna (Ibn Sînâ, 980–1037) who wrote in The Book of Healing (1027) on the concept of stratification and superposition, pre-dating Nicolas Steno by more than six centuries. Avicenna also recognised fossils as "petrifications of

3000-688: The Illinoian (globally known as the Penultimate Glacial Period or Marine Isotope Stage 6) around 190-130,000 years ago, before becoming established across North America during the Sangamonian (globally known as the Last Interglacial ) around 130-115,000 years ago. The age of the Rancho is usually considered to overlap the late Middle Pleistocene and Late Pleistocene epochs. The Rancholabrean

3125-680: The Mancos Shale of western North America. These shales are an important source rock for oil and gas , for example in the subsurface of the North Sea. In northwestern Europe, chalk deposits from the Upper Cretaceous are characteristic for the Chalk Group , which forms the white cliffs of Dover on the south coast of England and similar cliffs on the French Normandian coast. The group

3250-684: The North American Cordillera , as the Nevadan orogeny was followed by the Sevier and Laramide orogenies . Gondwana had begun to break up during the Jurassic Period, but its fragmentation accelerated during the Cretaceous and was largely complete by the end of the period. South America , Antarctica , and Australia rifted away from Africa (though India and Madagascar remained attached to each other until around 80 million years ago); thus,

3375-530: The Precambrian or pre-Cambrian (Supereon). While a modern geological time scale was not formulated until 1911 by Arthur Holmes , the broader concept that rocks and time are related can be traced back to (at least) the philosophers of Ancient Greece . Xenophanes of Colophon (c. 570–487  BCE ) observed rock beds with fossils of shells located above the sea-level, viewed them as once living organisms, and used this to imply an unstable relationship in which

3500-543: The Selli Event . Early Aptian tropical sea surface temperatures (SSTs) were 27–32 °C, based on TEX 86 measurements from the equatorial Pacific. During the Aptian, Milankovitch cycles governed the occurrence of anoxic events by modulating the intensity of the hydrological cycle and terrestrial runoff. The early Aptian was also notable for its millennial scale hyperarid events in the mid-latitudes of Asia. The BAWI itself

3625-613: The Terrain Crétacé , using strata in the Paris Basin and named for the extensive beds of chalk ( calcium carbonate deposited by the shells of marine invertebrates , principally coccoliths ), found in the upper Cretaceous of Western Europe . The name Cretaceous was derived from the Latin creta , meaning chalk . The twofold division of the Cretaceous was implemented by Conybeare and Phillips in 1822. Alcide d'Orbigny in 1840 divided

3750-707: The Turonian Age, based on isotopic evidence. However, this has subsequently been suggested to be the result of inconsistent isotopic proxies, with evidence of polar rainforests during this time interval at 82° S. Rafting by ice of stones into marine environments occurred during much of the Cretaceous, but evidence of deposition directly from glaciers is limited to the Early Cretaceous of the Eromanga Basin in southern Australia . Flowering plants (angiosperms) make up around 90% of living plant species today. Prior to

3875-475: The tuatara ) disappeared from North America and Europe after the Early Cretaceous , and were absent from North Africa and northern South America by the early Late Cretaceous . The cause of the decline of Rhynchocephalia remains unclear, but has often been suggested to be due to competition with advanced lizards and mammals. They appear to have remained diverse in high-latitude southern South America during

Rancholabrean - Misplaced Pages Continue

4000-964: The Albian regularly expanded northward in tandem with expansions of subtropical high pressure belts. The Cedar Mountain Formation's Soap Wash flora indicates a mean annual temperature of between 19 and 26 °C in Utah at the Albian-Cenomanian boundary. Tropical SSTs during the Cenomanian-Turonian Thermal Maximum were at least 30 °C, though one study estimated them as high as between 33 and 42 °C. An intermediate estimate of ~33-34 °C has also been given. Meanwhile, deep ocean temperatures were as much as 15 to 20 °C (27 to 36 °F) warmer than today's; one study estimated that deep ocean temperatures were between 12 and 20 °C during

4125-565: The Cenozoic Era   —   the ichthyosaurs , last remaining temnospondyls ( Koolasuchus ), and nonmammalian cynodonts ( Tritylodontidae )   —   were already extinct millions of years before the event occurred. Coccolithophorids and molluscs , including ammonites , rudists , freshwater snails , and mussels , as well as organisms whose food chain included these shell builders, became extinct or suffered heavy losses. For example, ammonites are thought to have been

4250-668: The Commission on Stratigraphy (applied in 1965) to become a member commission of IUGS led to the founding of the ICS. One of the primary objectives of the ICS is "the establishment, publication and revision of the ICS International Chronostratigraphic Chart which is the standard, reference global Geological Time Scale to include the ratified Commission decisions". Following on from Holmes, several A Geological Time Scale books were published in 1982, 1989, 2004, 2008, 2012, 2016, and 2020. However, since 2013,

4375-621: The Coniacian through the Maastrichtian. During the Cretaceous, the late- Paleozoic -to-early-Mesozoic supercontinent of Pangaea completed its tectonic breakup into the present-day continents , although their positions were substantially different at the time. As the Atlantic Ocean widened, the convergent-margin mountain building ( orogenies ) that had begun during the Jurassic continued in

4500-557: The Cretaceous is sharply defined, being placed at an iridium -rich layer found worldwide that is believed to be associated with the Chicxulub impact crater , with its boundaries circumscribing parts of the Yucatán Peninsula and extending into the Gulf of Mexico . This layer has been dated at 66.043 Mya. At the end of the Cretaceous, the impact of a large body with the Earth may have been

4625-555: The Cretaceous is usually a marine system consisting of competent limestone beds or incompetent marls . Because the Alpine mountain chains did not yet exist in the Cretaceous, these deposits formed on the southern edge of the European continental shelf , at the margin of the Tethys Ocean . During the Cretaceous, the present North American continent was isolated from the other continents. In

4750-527: The Cretaceous seas. Stagnation of deep sea currents in middle Cretaceous times caused anoxic conditions in the sea water leaving the deposited organic matter undecomposed. Half of the world's petroleum reserves were laid down at this time in the anoxic conditions of what would become the Persian Gulf and the Gulf of Mexico. In many places around the world, dark anoxic shales were formed during this interval, such as

4875-464: The Earth's Moon . Dominantly fluid planets, such as the giant planets , do not comparably preserve their history. Apart from the Late Heavy Bombardment , events on other planets probably had little direct influence on the Earth, and events on Earth had correspondingly little effect on those planets. Construction of a time scale that links the planets is, therefore, of only limited relevance to

5000-515: The Earth's time scale, except in a Solar System context. The existence, timing, and terrestrial effects of the Late Heavy Bombardment are still a matter of debate. The geologic history of Earth's Moon has been divided into a time scale based on geomorphological markers, namely impact cratering , volcanism , and erosion . This process of dividing the Moon's history in this manner means that

5125-770: The French Cretaceous into five étages (stages): the Neocomian , Aptian, Albian, Turonian, and Senonian, later adding the Urgonian between Neocomian and Aptian and the Cenomanian between the Albian and Turonian. The Cretaceous is divided into Early and Late Cretaceous epochs , or Lower and Upper Cretaceous series . In older literature, the Cretaceous is sometimes divided into three series: Neocomian (lower/early), Gallic (middle) and Senonian (upper/late). A subdivision into 12 stages , all originating from European stratigraphy,

Rancholabrean - Misplaced Pages Continue

5250-447: The ICS has taken responsibility for producing and distributing the ICC citing the commercial nature, independent creation, and lack of oversight by the ICS on the prior published GTS versions (GTS books prior to 2013) although these versions were published in close association with the ICS. Subsequent Geologic Time Scale books (2016 and 2020 ) are commercial publications with no oversight from

5375-404: The ICS, and do not entirely conform to the chart produced by the ICS. The ICS produced GTS charts are versioned (year/month) beginning at v2013/01. At least one new version is published each year incorporating any changes ratified by the ICS since the prior version. The following five timelines show the geologic time scale to scale. The first shows the entire time from the formation of the Earth to

5500-415: The ICS. While some regional terms are still in use, the table of geologic time conforms to the nomenclature , ages, and colour codes set forth by the International Commission on Stratigraphy in the official International Chronostratigraphic Chart. The International Commission on Stratigraphy also provide an online interactive version of this chart. The interactive version is based on a service delivering

5625-665: The International Chronostratigraphic Chart; however, regional terms are still in use in some areas. The numeric values on the International Chronostratigrahpic Chart are represented by the unit Ma (megaannum, for 'million years '). For example, 201.4 ± 0.2 Ma, the lower boundary of the Jurassic Period, is defined as 201,400,000 years old with an uncertainty of 200,000 years. Other SI prefix units commonly used by geologists are Ga (gigaannum, billion years), and ka (kiloannum, thousand years), with

5750-420: The Jurassic, the North Atlantic already opened, leaving a proto-ocean between Europe and North America. From north to south across the continent, the Western Interior Seaway started forming. This inland sea separated the elevated areas of Laramidia in the west and Appalachia in the east. Three dinosaur clades found in Laramidia (troodontids, therizinosaurids and oviraptorosaurs) are absent from Appalachia from

5875-415: The LKEPCI. During this period of relatively cool temperatures, the ITCZ became narrower, while the strength of both summer and winter monsoons in East Asia was directly correlated to atmospheric CO 2 concentrations. Laramidia likewise had a seasonal, monsoonal climate. The Maastrichtian was a time of chaotic, highly variable climate. Two upticks in global temperatures are known to have occurred during

6000-416: The Late Cretaceous, where lizards remained rare, with their remains outnumbering terrestrial lizards 200:1. Choristoderes , a group of freshwater aquatic reptiles that first appeared during the preceding Jurassic, underwent a major evolutionary radiation in Asia during the Early Cretaceous, which represents the high point of choristoderan diversity, including long necked forms such as Hyphalosaurus and

6125-399: The Late Cretaceous-Early Palaeogene Cool Interval (LKEPCI). Tropical SSTs declined from around 35 °C in the early Campanian to around 28 °C in the Maastrichtian. Deep ocean temperatures declined to 9 to 12 °C, though the shallow temperature gradient between tropical and polar seas remained. Regional conditions in the Western Interior Seaway changed little between the MKH and

6250-486: The MKH. Mean annual temperatures at the poles during the MKH exceeded 14 °C. Such hot temperatures during the MKH resulted in a very gentle temperature gradient from the equator to the poles; the latitudinal temperature gradient during the Cenomanian-Turonian Thermal Maximum was 0.54 °C per ° latitude for the Southern Hemisphere and 0.49 °C per ° latitude for the Northern Hemisphere, in contrast to present day values of 1.07 and 0.69 °C per ° latitude for

6375-412: The MKH. The poles were so warm that ectothermic reptiles were able to inhabit them. Beginning in the Santonian, near the end of the MKH, the global climate began to cool, with this cooling trend continuing across the Campanian. This period of cooling, driven by falling levels of atmospheric carbon dioxide, caused the end of the MKH and the transition into a cooler climatic interval, known formally as

SECTION 50

#1732845563912

6500-404: The Maastrichtian, bucking the trend of overall cooler temperatures during the LKEPCI. Between 70 and 69 Ma and 66–65 Ma, isotopic ratios indicate elevated atmospheric CO 2 pressures with levels of 1000–1400 ppmV and mean annual temperatures in west Texas between 21 and 23 °C (70 and 73 °F). Atmospheric CO 2 and temperature relations indicate a doubling of pCO 2 was accompanied by

6625-419: The South Atlantic and Indian Oceans were newly formed. Such active rifting lifted great undersea mountain chains along the welts, raising eustatic sea levels worldwide. To the north of Africa the Tethys Sea continued to narrow. During most of the Late Cretaceous, North America would be divided in two by the Western Interior Seaway , a large interior sea, separating Laramidia to the west and Appalachia to

6750-514: The Southern and Northern hemispheres, respectively. This meant weaker global winds, which drive the ocean currents, and resulted in less upwelling and more stagnant oceans than today. This is evidenced by widespread black shale deposition and frequent anoxic events . Tropical SSTs during the late Albian most likely averaged around 30 °C. Despite this high SST, seawater was not hypersaline at this time, as this would have required significantly higher temperatures still. On land, arid zones in

6875-403: The Tethys to the Arctic Ocean and enabling biotic exchange between the two oceans. At the peak of the Cretaceous transgression , one-third of Earth's present land area was submerged. The Cretaceous is justly famous for its chalk ; indeed, more chalk formed in the Cretaceous than in any other period in the Phanerozoic . Mid-ocean ridge activity—or rather, the circulation of seawater through

7000-445: The action of gravity. However, it is now known that not all sedimentary layers are deposited purely horizontally, but this principle is still a useful concept. The principle of lateral continuity that states layers of sediments extend laterally in all directions until either thinning out or being cut off by a different rock layer, i.e. they are laterally continuous. Layers do not extend indefinitely; their limits are controlled by

7125-505: The age of rocks). It is used primarily by Earth scientists (including geologists , paleontologists , geophysicists , geochemists , and paleoclimatologists ) to describe the timing and relationships of events in geologic history. The time scale has been developed through the study of rock layers and the observation of their relationships and identifying features such as lithologies , paleomagnetic properties, and fossils . The definition of standardised international units of geologic time

7250-409: The amount and type of sediment in a sedimentary basin , and the geometry of that basin. The principle of cross-cutting relationships that states a rock that cuts across another rock must be younger than the rock it cuts across. The law of included fragments that states small fragments of one type of rock that are embedded in a second type of rock must have formed first, and were included when

7375-425: The ancestors of modern-day birds also diversified. They inhabited every continent, and were even found in cold polar latitudes. Pterosaurs were common in the early and middle Cretaceous, but as the Cretaceous proceeded they declined for poorly understood reasons (once thought to be due to competition with early birds , but now it is understood avian adaptive radiation is not consistent with pterosaur decline ). By

7500-456: The base of the Cambrian, and thus the boundary between the Ediacaran and Cambrian systems (chronostratigraphic units) has not been changed; rather, the absolute age has merely been refined. Chronostratigraphy is the element of stratigraphy that deals with the relation between rock bodies and the relative measurement of geological time. It is the process where distinct strata between defined stratigraphic horizons are assigned to represent

7625-414: The bodies of plants and animals", with the 13th-century Dominican bishop Albertus Magnus (c. 1200–1280) extending this into a theory of a petrifying fluid. These works appeared to have little influence on scholars in Medieval Europe who looked to the Bible to explain the origins of fossils and sea-level changes, often attributing these to the ' Deluge ', including Ristoro d'Arezzo in 1282. It

SECTION 60

#1732845563912

7750-408: The continental crust were covered with shallow seas. The Tethys Sea connecting the tropical oceans east to west also helped to warm the global climate. Warm-adapted plant fossils are known from localities as far north as Alaska and Greenland , while dinosaur fossils have been found within 15 degrees of the Cretaceous south pole . It was suggested that there was Antarctic marine glaciation in

7875-520: The cooling of the Earth or the Sun using basic thermodynamics or orbital physics. These estimations varied from 15,000 million years to 0.075 million years depending on method and author, but the estimations of Lord Kelvin and Clarence King were held in high regard at the time due to their pre-eminence in physics and geology. All of these early geochronometric determinations would later prove to be incorrect. The discovery of radioactive decay by Henri Becquerel , Marie Curie , and Pierre Curie laid

8000-406: The developments in mass spectrometry pioneered by Francis William Aston , Arthur Jeffrey Dempster , and Alfred O. C. Nier during the early to mid- 20th century would finally allow for the accurate determination of radiometric ages, with Holmes publishing several revisions to his geological time-scale with his final version in 1960. The establishment of the IUGS in 1961 and acceptance of

8125-404: The different layers of stone unless they had been upon the shore and had been covered over by earth newly thrown up by the sea which then became petrified? And if the above-mentioned Deluge had carried them to these places from the sea, you would find the shells at the edge of one layer of rock only, not at the edge of many where may be counted the winters of the years during which the sea multiplied

8250-544: The early and mid-Cretaceous (becoming extinct during the late Cretaceous Cenomanian-Turonian anoxic event ), plesiosaurs throughout the entire period, and mosasaurs appearing in the Late Cretaceous. Sea turtles in the form of Cheloniidae and Panchelonioidea lived during the period and survived the extinction event. Panchelonioidea is today represented by a single species; the leatherback sea turtle . The Hesperornithiformes were flightless, marine diving birds that swam like grebes . Baculites , an ammonite genus with

8375-437: The east, then receded late in the period, leaving thick marine deposits sandwiched between coal beds. Bivalve palaeobiogeography also indicates that Africa was split in half by a shallow sea during the Coniacian and Santonian, connecting the Tethys with the South Atlantic by way of the central Sahara and Central Africa, which were then underwater. Yet another shallow seaway ran between what is now Norway and Greenland, connecting

8500-535: The end of the AACS, which ended around 111 Ma with the Paquier/Urbino Thermal Maximum, giving way to the Mid-Cretaceous Hothouse (MKH), which lasted from the early Albian until the early Campanian. Faster rates of seafloor spreading and entry of carbon dioxide into the atmosphere are believed to have initiated this period of extreme warmth, along with high flood basalt activity. The MKH was punctuated by multiple thermal maxima of extreme warmth. The Leenhardt Thermal Event (LTE) occurred around 110 Ma, followed shortly by

8625-448: The end of the Cretaceous. The high sea level and warm climate of the Cretaceous meant large areas of the continents were covered by warm, shallow seas, providing habitat for many marine organisms. The Cretaceous was named for the extensive chalk deposits of this age in Europe, but in many parts of the world, the deposits from the Cretaceous are of marine limestone , a rock type that is formed under warm, shallow marine conditions. Due to

8750-411: The end of the period only three highly specialized families remained; Pteranodontidae , Nyctosauridae , and Azhdarchidae . The Liaoning lagerstätte ( Yixian Formation ) in China is an important site, full of preserved remains of numerous types of small dinosaurs, birds and mammals, that provides a glimpse of life in the Early Cretaceous. The coelurosaur dinosaurs found there represent types of

8875-407: The enlarged ridges—enriched the oceans in calcium ; this made the oceans more saturated, as well as increased the bioavailability of the element for calcareous nanoplankton . These widespread carbonates and other sedimentary deposits make the Cretaceous rock record especially fine. Famous formations from North America include the rich marine fossils of Kansas 's Smoky Hill Chalk Member and

9000-528: The extinction fed on insects , larvae , worms , and snails, which in turn fed on dead plant and animal matter. Scientists theorise that these organisms survived the collapse of plant-based food chains because they fed on detritus . In stream communities , few groups of animals became extinct. Stream communities rely less on food from living plants and more on detritus that washes in from land. This particular ecological niche buffered them from extinction. Similar, but more complex patterns have been found in

9125-612: The first records of the gharial-like Neochoristodera , which appear to have evolved in the regional absence of aquatic neosuchian crocodyliformes. During the Late Cretaceous the neochoristodere Champsosaurus was widely distributed across western North America. Due to the extreme climatic warmth in the Arctic, choristoderans were able to colonise it too during the Late Cretaceous. In the seas, rays , modern sharks and teleosts became common. Marine reptiles included ichthyosaurs in

9250-414: The foundational principles of determining the correlation of strata relative to geologic time. Over the course of the 18th-century geologists realised that: The apparent, earliest formal division of the geologic record with respect to time was introduced during the era of Biblical models by Thomas Burnet who applied a two-fold terminology to mountains by identifying " montes primarii " for rock formed at

9375-427: The genus Berriasella , but its use as a stratigraphic indicator has been questioned, as its first appearance does not correlate with that of C. alpina . The boundary is officially considered by the International Commission on Stratigraphy to be approximately 145 million years ago, but other estimates have been proposed based on U-Pb geochronology, ranging as young as 140 million years ago. The upper boundary of

9500-458: The geologic time scale of Earth. This table is arranged with the most recent geologic periods at the top, and the oldest at the bottom. The height of each table entry does not correspond to the duration of each subdivision of time. As such, this table is not to scale and does not accurately represent the relative time-spans of each geochronologic unit. While the Phanerozoic Eon looks longer than

9625-492: The ground work for radiometric dating, but the knowledge and tools required for accurate determination of radiometric ages would not be in place until the mid-1950s. Early attempts at determining ages of uranium minerals and rocks by Ernest Rutherford , Bertram Boltwood , Robert Strutt , and Arthur Holmes, would culminate in what are considered the first international geological time scales by Holmes in 1911 and 1913. The discovery of isotopes in 1913 by Frederick Soddy , and

9750-620: The group Maniraptora , which includes modern birds and their closest non-avian relatives, such as dromaeosaurs , oviraptorosaurs , therizinosaurs , troodontids along with other avialans . Fossils of these dinosaurs from the Liaoning lagerstätte are notable for the presence of hair-like feathers . Insects diversified during the Cretaceous, and the oldest known ants , termites and some lepidopterans , akin to butterflies and moths , appeared. Aphids , grasshoppers and gall wasps appeared. Rhynchocephalians (which today only includes

9875-412: The high sea level, there was extensive space for such sedimentation . Because of the relatively young age and great thickness of the system, Cretaceous rocks are evident in many areas worldwide. Chalk is a rock type characteristic for (but not restricted to) the Cretaceous. It consists of coccoliths , microscopically small calcite skeletons of coccolithophores , a type of algae that prospered in

10000-546: The highest rates of extinction and turnover. Thylacocephala , a class of crustaceans, went extinct in the Late Cretaceous. The first radiation of the diatoms (generally siliceous shelled, rather than calcareous ) in the oceans occurred during the Cretaceous; freshwater diatoms did not appear until the Miocene . Calcareous nannoplankton were important components of the marine microbiota and important as biostratigraphic markers and recorders of environmental change. The Cretaceous

10125-464: The impact of a large asteroid that formed the Chicxulub crater in the Gulf of Mexico. The end of the Cretaceous is defined by the abrupt Cretaceous–Paleogene boundary (K–Pg boundary), a geologic signature associated with the mass extinction that lies between the Mesozoic and Cenozoic Eras . The Cretaceous as a separate period was first defined by Belgian geologist Jean d'Omalius d'Halloy in 1822 as

10250-792: The last epoch of the Jurassic, the Tithonian, continued into the Berriasian, the first age of the Cretaceous. The North Atlantic seaway opened and enabled the flow of cool water from the Boreal Ocean into the Tethys. There is evidence that snowfalls were common in the higher latitudes during this age, and the tropics became wetter than during the Triassic and Jurassic. Glaciation was restricted to high- latitude mountains, though seasonal snow may have existed farther from

10375-564: The late Valanginian (~ 134 million years ago) found in Israel and Italy, initially at low abundance. Molecular clock estimates conflict with fossil estimates, suggesting the diversification of crown-group angiosperms during the Late Triassic or the Jurassic, but such estimates are difficult to reconcile with the heavily sampled pollen record and the distinctive tricolpate to tricolporoidate (triple grooved) pollen of eudicot angiosperms. Among

10500-465: The late Cretaceous, and all else that depended on them suffered, as well. Herbivorous animals, which depended on plants and plankton as their food, died out as their food sources became scarce; consequently, the top predators , such as Tyrannosaurus rex , also perished. Yet only three major groups of tetrapods disappeared completely; the nonavian dinosaurs , the plesiosaurs and the pterosaurs . The other Cretaceous groups that did not survive into

10625-563: The latest Albian. Approximately 94 Ma, the Cenomanian-Turonian Thermal Maximum occurred, with this hyperthermal being the most extreme hothouse interval of the Cretaceous and being associated with a sea level highstand. Temperatures cooled down slightly over the next few million years, but then another thermal maximum, the Coniacian Thermal Maximum, happened, with this thermal event being dated to around 87 Ma. Atmospheric CO 2 levels may have varied by thousands of ppm throughout

10750-489: The latter Lujanian of the South American Land Mammal Ages . Geologic timescale The geologic time scale or geological time scale ( GTS ) is a representation of time based on the rock record of Earth . It is a system of chronological dating that uses chronostratigraphy (the process of relating strata to time) and geochronology (a scientific branch of geology that aims to determine

10875-913: The latter often represented in calibrated units ( before present ). The names of geologic time units are defined for chronostratigraphic units with the corresponding geochronologic unit sharing the same name with a change to the suffix (e.g. Phanerozoic Eonothem becomes the Phanerozoic Eon). Names of erathems in the Phanerozoic were chosen to reflect major changes in the history of life on Earth: Paleozoic (old life), Mesozoic (middle life), and Cenozoic (new life). Names of systems are diverse in origin, with some indicating chronologic position (e.g., Paleogene), while others are named for lithology (e.g., Cretaceous), geography (e.g., Permian ), or are tribal (e.g., Ordovician ) in origin. Most currently recognised series and subseries are named for their position within

11000-561: The layers of sand and mud brought down by the neighboring rivers and spread them over its shores. And if you wish to say that there must have been many deluges in order to produce these layers and the shells among them it would then become necessary for you to affirm that such a deluge took place every year. These views of da Vinci remained unpublished, and thus lacked influence at the time; however, questions of fossils and their significance were pursued and, while views against Genesis were not readily accepted and dissent from religious doctrine

11125-537: The litho- and biostratigraphic differences around the world in time equivalent rocks. The ICS has long worked to reconcile conflicting terminology by standardising globally significant and identifiable stratigraphic horizons that can be used to define the lower boundaries of chronostratigraphic units. Defining chronostratigraphic units in such a manner allows for the use of global, standardised nomenclature. The International Chronostratigraphic Chart represents this ongoing effort. Several key principles are used to determine

11250-607: The lower boundary of the Paleogene System/Period and thus the boundary between the Cretaceous and Paleogene systems/periods. For divisions prior to the Cryogenian , arbitrary numeric boundary definitions ( Global Standard Stratigraphic Ages , GSSAs) are used to divide geologic time. Proposals have been made to better reconcile these divisions with the rock record. Historically, regional geologic time scales were used due to

11375-674: The l’Arboudeyesse Thermal Event (ATE) a million years later. Following these two hyperthermals was the Amadeus Thermal Maximum around 106 Ma, during the middle Albian. Then, around a million years after that, occurred the Petite Verol Thermal Event (PVTE). Afterwards, around 102.5 Ma, the Event 6 Thermal Event (EV6) took place; this event was itself followed by the Breistroffer Thermal Maximum around 101 Ma, during

11500-508: The middle Cretaceous, becoming the dominant group of land plants by the end of the period, coincident with the decline of previously dominant groups such as conifers. The oldest known fossils of grasses are from the Albian , with the family having diversified into modern groups by the end of the Cretaceous. The oldest large angiosperm trees are known from the Turonian (c. 90 Mya) of New Jersey, with

11625-617: The middle of the Cretaceous. During the Early Cretaceous, flowering plants appeared and began to rapidly diversify, becoming the dominant group of plants across the Earth by the end of the Cretaceous, coincident with the decline and extinction of previously widespread gymnosperm groups. The Cretaceous (along with the Mesozoic) ended with the Cretaceous–Paleogene extinction event , a large mass extinction in which many groups, including non-avian dinosaurs, pterosaurs , and large marine reptiles , died out, widely thought to have been caused by

11750-408: The most promising candidates for fixing the Jurassic–Cretaceous boundary. In particular, the first appearance Calpionella alpina , coinciding with the base of the eponymous Alpina subzone, has been proposed as the definition of the base of the Cretaceous. The working definition for the boundary has often been placed as the first appearance of the ammonite Strambergella jacobi , formerly placed in

11875-824: The oceans. Extinction was more severe among animals living in the water column than among animals living on or in the seafloor. Animals in the water column are almost entirely dependent on primary production from living phytoplankton, while animals living on or in the ocean floor feed on detritus or can switch to detritus feeding. The largest air-breathing survivors of the event, crocodilians and champsosaurs , were semiaquatic and had access to detritus. Modern crocodilians can live as scavengers and can survive for months without food and go into hibernation when conditions are unfavorable, and their young are small, grow slowly, and feed largely on invertebrates and dead organisms or fragments of organisms for their first few years. These characteristics have been linked to crocodilian survival at

12000-629: The oldest records of Angiosperm macrofossils are Montsechia from the Barremian aged Las Hoyas beds of Spain and Archaefructus from the Barremian-Aptian boundary Yixian Formation in China. Tricolpate pollen distinctive of eudicots first appears in the Late Barremian, while the earliest remains of monocots are known from the Aptian. Flowering plants underwent a rapid radiation beginning during

12125-408: The pertinent time span. As of April 2022 these proposed changes have not been accepted by the ICS. The proposed changes (changes from the current scale [v2023/09]) are italicised: Proposed pre-Cambrian timeline (GTS2012), shown to scale: Current ICC pre-Cambrian timeline (v2023/09), shown to scale: The following table summarises the major events and characteristics of the divisions making up

12250-452: The poles. Many of the dominant taxonomic groups present in modern times can be ultimately traced back to origins in the Cretaceous. During this time, new groups of mammals and birds appeared, including the earliest relatives of placentals & marsupials ( Eutheria and Metatheria respectively), and the earliest crown group birds. Acanthomorph fish, the most diverse group of modern vertebrates, appeared in aquatic habitats around

12375-508: The poles. After the end of the first age, however, temperatures began to increase again, with a number of thermal excursions, such as the middle Valanginian Weissert Thermal Excursion (WTX), which was caused by the Paraná-Etendeka Large Igneous Province's activity. It was followed by the middle Hauterivian Faraoni Thermal Excursion (FTX) and the early Barremian Hauptblatterton Thermal Event (HTE). The HTE marked

12500-452: The present, but this gives little space for the most recent eon. The second timeline shows an expanded view of the most recent eon. In a similar way, the most recent era is expanded in the third timeline, the most recent period is expanded in the fourth timeline, and the most recent epoch is expanded in the fifth timeline. Horizontal scale is Millions of years (above timelines) / Thousands of years (below timeline) First suggested in 2000,

12625-412: The principal food of mosasaurs , a group of giant marine lizards related to snakes that became extinct at the boundary. Omnivores , insectivores , and carrion -eaters survived the extinction event, perhaps because of the increased availability of their food sources. At the end of the Cretaceous, there seem to have been no purely herbivorous or carnivorous mammals . Mammals and birds that survived

12750-485: The principles of superposition, original horizontality, lateral continuity, and cross-cutting relationships. From this Steno reasoned that strata were laid down in succession and inferred relative time (in Steno's belief, time from Creation ). While Steno's principles were simple and attracted much attention, applying them proved challenging. These basic principles, albeit with improved and more nuanced interpretations, still form

12875-547: The punctuation mark at the end of a progressive decline in biodiversity during the Maastrichtian age. The result was the extinction of three-quarters of Earth's plant and animal species. The impact created the sharp break known as the K–Pg boundary (formerly known as the K–T boundary). Earth's biodiversity required substantial time to recover from this event, despite the probable existence of an abundance of vacant ecological niches . Despite

13000-521: The relative relationships of rocks and thus their chronostratigraphic position. The law of superposition that states that in undeformed stratigraphic sequences the oldest strata will lie at the bottom of the sequence, while newer material stacks upon the surface. In practice, this means a younger rock will lie on top of an older rock unless there is evidence to suggest otherwise. The principle of original horizontality that states layers of sediments will originally be deposited horizontally under

13125-467: The rest, it merely spans ~539 million years (~12% of Earth's history), whilst the previous three eons collectively span ~3,461 million years (~76% of Earth's history). This bias toward the most recent eon is in part due to the relative lack of information about events that occurred during the first three eons compared to the current eon (the Phanerozoic). The use of subseries/subepochs has been ratified by

13250-744: The rise of angiosperms, during the Jurassic and the Early Cretaceous, the higher flora was dominated by gymnosperm groups, including cycads , conifers , ginkgophytes , gnetophytes and close relatives, as well as the extinct Bennettitales . Other groups of plants included pteridosperms or "seed ferns", a collective term that refers to disparate groups of extinct seed plants with fern-like foliage, including groups such as Corystospermaceae and Caytoniales . The exact origins of angiosperms are uncertain, although molecular evidence suggests that they are not closely related to any living group of gymnosperms. The earliest widely accepted evidence of flowering plants are monosulcate (single-grooved) pollen grains from

13375-630: The rock record to bring it in line with the post-Tonian geologic time scale. This work assessed the geologic history of the currently defined eons and eras of the pre-Cambrian, and the proposals in the "Geological Time Scale" books 2004, 2012, and 2020. Their recommend revisions of the pre-Cryogenian geologic time scale were (changes from the current scale [v2023/09] are italicised): Proposed pre-Cambrian timeline (Shield et al. 2021, ICS working group on pre-Cryogenian chronostratigraphy), shown to scale: Current ICC pre-Cambrian timeline (v2023/09), shown to scale: The book, Geologic Time Scale 2012,

13500-474: The sea had at times transgressed over the land and at other times had regressed . This view was shared by a few of Xenophanes's contemporaries and those that followed, including Aristotle (384–322 BCE) who (with additional observations) reasoned that the positions of land and sea had changed over long periods of time. The concept of deep time was also recognised by Chinese naturalist Shen Kuo (1031–1095) and Islamic scientist -philosophers, notably

13625-544: The second rock was forming. The relationships of unconformities which are geologic features representing a gap in the geologic record. Unconformities are formed during periods of erosion or non-deposition, indicating non-continuous sediment deposition. Observing the type and relationships of unconformities in strata allows geologist to understand the relative timing the strata. The principle of faunal succession (where applicable) that states rock strata contain distinctive sets of fossils that succeed each other vertically in

13750-447: The severity of the K-Pg extinction event, there were significant variations in the rate of extinction between and within different clades . Species that depended on photosynthesis declined or became extinct as atmospheric particles blocked solar energy . As is the case today, photosynthesizing organisms, such as phytoplankton and land plants , formed the primary part of the food chain in

13875-422: The strong regionality of most biostratigraphic markers, and the lack of any chemostratigraphic events, such as isotope excursions (large sudden changes in ratios of isotopes ) that could be used to define or correlate a boundary. Calpionellids , an enigmatic group of planktonic protists with urn-shaped calcitic tests briefly abundant during the latest Jurassic to earliest Cretaceous, have been suggested as

14000-611: The terrestrial fauna of the late Cretaceous Hell Creek Formation . Other important Cretaceous exposures occur in Europe (e.g., the Weald ) and China (the Yixian Formation ). In the area that is now India, massive lava beds called the Deccan Traps were erupted in the very late Cretaceous and early Paleocene. Palynological evidence indicates the Cretaceous climate had three broad phases:

14125-537: The time during which the rocks were laid down, and the collection of rocks themselves (i.e., it was correct to say Tertiary rocks, and Tertiary Period). Only the Quaternary division is retained in the modern geologic time scale, while the Tertiary division was in use until the early 21st century. The Neptunism and Plutonism theories would compete into the early 19th century with a key driver for resolution of this debate being

14250-730: The time of the 'Deluge', and younger " monticulos secundarios" formed later from the debris of the " primarii" . Anton Moro (1687–1784) also used primary and secondary divisions for rock units but his mechanism was volcanic. In this early version of the Plutonism theory, the interior of Earth was seen as hot, and this drove the creation of primary igneous and metamorphic rocks and secondary rocks formed contorted and fossiliferous sediments. These primary and secondary divisions were expanded on by Giovanni Targioni Tozzetti (1712–1783) and Giovanni Arduino (1713–1795) to include tertiary and quaternary divisions. These divisions were used to describe both

14375-562: The time scale boundaries do not imply fundamental changes in geological processes, unlike Earth's geologic time scale. Five geologic systems/periods ( Pre-Nectarian , Nectarian , Imbrian , Eratosthenian , Copernican ), with the Imbrian divided into two series/epochs (Early and Late) were defined in the latest Lunar geologic time scale. The Moon is unique in the Solar System in that it is the only other body from which humans have rock samples with

14500-483: The trunk having a preserved diameter of 1.8 metres (5.9 ft) and an estimated height of 50 metres (160 ft). During the Cretaceous, ferns in the order Polypodiales , which make up 80% of living fern species, would also begin to diversify. On land, mammals were generally small sized, but a very relevant component of the fauna , with cimolodont multituberculates outnumbering dinosaurs in some sites. Neither true marsupials nor placentals existed until

14625-751: The ultimate end of the Tithonian-early Barremian Cool Interval (TEBCI). During this interval, precession was the dominant orbital driver of environmental changes in the Vocontian Basin. For much of the TEBCI, northern Gondwana experienced a monsoonal climate. A shallow thermocline existed in the mid-latitude Tethys. The TEBCI was followed by the Barremian-Aptian Warm Interval (BAWI). This hot climatic interval coincides with Manihiki and Ontong Java Plateau volcanism and with

14750-628: The very end, but a variety of non-marsupial metatherians and non-placental eutherians had already begun to diversify greatly, ranging as carnivores ( Deltatheroida ), aquatic foragers ( Stagodontidae ) and herbivores ( Schowalteria , Zhelestidae ). Various "archaic" groups like eutriconodonts were common in the Early Cretaceous, but by the Late Cretaceous northern mammalian faunas were dominated by multituberculates and therians , with dryolestoids dominating South America . The apex predators were archosaurian reptiles , especially dinosaurs , which were at their most diverse stage. Avians such as

14875-526: The work of James Hutton (1726–1797), in particular his Theory of the Earth , first presented before the Royal Society of Edinburgh in 1785. Hutton's theory would later become known as uniformitarianism , popularised by John Playfair (1748–1819) and later Charles Lyell (1797–1875) in his Principles of Geology . Their theories strongly contested the 6,000 year age of the Earth as suggested determined by James Ussher via Biblical chronology that

15000-432: Was a period with a relatively warm climate , resulting in high eustatic sea levels that created numerous shallow inland seas . These oceans and seas were populated with now- extinct marine reptiles , ammonites , and rudists , while dinosaurs continued to dominate on land. The world was largely ice-free, although there is some evidence of brief periods of glaciation during the cooler first half, and forests extended to

15125-429: Was accepted at the time by western religion. Instead, using geological evidence, they contested Earth to be much older, cementing the concept of deep time. During the early 19th century William Smith , Georges Cuvier , Jean d'Omalius d'Halloy , and Alexandre Brongniart pioneered the systematic division of rocks by stratigraphy and fossil assemblages. These geologists began to use the local names given to rock units in

15250-630: Was followed by the Aptian-Albian Cold Snap (AACS) that began about 118 Ma. A short, relatively minor ice age may have occurred during this so-called "cold snap", as evidenced by glacial dropstones in the western parts of the Tethys Ocean and the expansion of calcareous nannofossils that dwelt in cold water into lower latitudes. The AACS is associated with an arid period in the Iberian Peninsula . Temperatures increased drastically after

15375-415: Was in some places unwise, scholars such as Girolamo Fracastoro shared da Vinci's views, and found the attribution of fossils to the 'Deluge' absurd. Niels Stensen, more commonly known as Nicolas Steno (1638–1686), is credited with establishing four of the guiding principles of stratigraphy. In De solido intra solidum naturaliter contento dissertationis prodromus Steno states: Respectively, these are

15500-535: Was not until the Italian Renaissance when Leonardo da Vinci (1452–1519) would reinvigorate the relationships between stratification, relative sea-level change, and time, denouncing attribution of fossils to the 'Deluge': Of the stupidity and ignorance of those who imagine that these creatures were carried to such places distant from the sea by the Deluge...Why do we find so many fragments and whole shells between

15625-476: Was the last commercial publication of an international chronostratigraphic chart that was closely associated with the ICS. It included a proposal to substantially revise the pre-Cryogenian time scale to reflect important events such as the formation of the Solar System and the Great Oxidation Event , among others, while at the same time maintaining most of the previous chronostratigraphic nomenclature for

#911088