Misplaced Pages

Rorschach Performance Assessment System

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The Rorschach Performance Assessment System (R-PAS) is a scoring and interpretive method to be used with the Rorschach inkblot test. This system is being developed by several members of the Rorschach Research Council, a group established by John Exner to advance the research on the Comprehensive System, the most widely used scoring system for the Rorschach. Following Exner's death, the council admitted that the current Comprehensive System scoring was in need of revision. R-PAS was developed as an empirically based revision of the Exner Comprehensive System.

#243756

48-521: The R-PAS is an empirically based, and internationally normed scoring system that is easier to use than Exner's Comprehensive System. The R-PAS manual is intended to be a comprehensive tool for administering, scoring, and interpreting the Rorschach. The manual consists of two chapters that are basics of scoring and interpretation, aimed for use for novice Rorschach users, followed by numerous chapters containing more detailed and technical information. The manual

96-543: A calculator , this raw data may indicate the particular items that each customer buys, when they buy them, and at what price; as well, an analyst or manager could calculate the average total sales per customer or the average expenditure per day of the week by hour. This processed and analyzed data provides information for the manager, that the manager could then use to help her determine, for example, how many cashiers to hire and at what times. Such information could then become data for further processing, for example as part of

144-406: A computer program or used in manual procedures such as analyzing statistics from a survey . The term "raw data" can refer to the binary data on electronic storage devices, such as hard disk drives (also referred to as "low-level data"). Data has two ways of being created or made. The first is what is called 'captured data', and is found through purposeful investigation or analysis. The second

192-410: A point-of-sale terminal (POS terminal, a computerized cash register ) in a busy supermarket collects huge volumes of raw data each day about customers' purchases. However, this list of grocery items and their prices and the time and date of purchase does not yield much information until it is processed. Once processed and analyzed by a software program or even by a researcher using a pen and paper and

240-404: A constant that is a function of the sample size N : There is the additional requirement that the midpoint of the range ( 1 , N ) {\displaystyle (1,N)} , corresponding to the median , occur at p = 0.5 {\displaystyle p=0.5} : and our revised function now has just one degree of freedom, looking like this: The second way in which

288-400: A data input sheet might contain dates as raw data in many forms: "31st January 1999", "31/01/1999", "31/1/99", "31 Jan", or "today". Once captured, this raw data may be processed stored as a normalized format, perhaps a Julian date , to make it easier for computers and humans to interpret during later processing. Raw data (sometimes colloquially called "sources" data or "eggy" data, the latter

336-725: A decade, a total of 15 adult samples were used to provide a normative basis for the R-PAS. The protocols represent data gathered in the United States , Europe , Israel , Argentina and Brazil . The R-PAS includes new variables not from the Comprehensive System including Complexity, Space Integration, Space Reversal, Oral Dependency Language, the Mutuality of Autonomy scale, the Ego Impairment Index, and Aggressive Content. All of

384-410: A limit is too high or low. In finance, value at risk is a standard measure to assess (in a model-dependent way) the quantity under which the value of the portfolio is not expected to sink within a given period of time and given a confidence value. There are many formulas or algorithms for a percentile score. Hyndman and Fan identified nine and most statistical and spreadsheet software use one of

432-502: A one-to-one correspondence in the wider region. One author has suggested a choice of C = 1 2 ( 1 + ξ ) {\displaystyle C={\tfrac {1}{2}}(1+\xi )} where ξ is the shape of the Generalized extreme value distribution which is the extreme value limit of the sampled distribution. (Sources: Matlab "prctile" function, ) where Furthermore, let The inverse relationship

480-562: A predictive marketing campaign. As a result of processing, raw data sometimes ends up being put in a database , which enables the raw data to become accessible for further processing and analysis in any number of different ways. Tim Berners-Lee (inventor of the World Wide Web ) argues that sharing raw data is important for society. Inspired by a post by Rufus Pollock of the Open Knowledge Foundation his call to action

528-588: A reference to the data being "uncooked", that is, "unprocessed", like a raw egg ) are the data input to processing. A distinction is made between data and information , to the effect that information is the end product of data processing. Raw data that has undergone processing are sometimes referred to as "cooked" data in a colloquial sense. Although raw data has the potential to be transformed into " information ," extraction, organization, analysis, and formatting for presentation are required before raw data can be transformed into usable information. For example,

SECTION 10

#1733105227244

576-432: A reflection of someone's task performance and supplements the actual responses given. This allows generalizations to be made between someone's responses to the cards and their actual behavior. The R-PAS also recognized that scoring on many of the Rorschach variables differed across countries. Therefore, starting in 1997, Rorschach protocols from researchers around the world were compiled. After compiling protocols for over

624-482: A scientist sets up a computerized thermometer which records the temperature of a chemical mixture in a test tube every minute, the list of temperature readings for every minute, as printed out on a spreadsheet or viewed on a computer screen are "raw data". Raw data have not been subjected to processing, "cleaning" by researchers to remove outliers , obvious instrument reading errors or data entry errors, or any analysis (e.g., determining central tendency aspects such as

672-400: A score from the distribution, although compared to interpolation methods, results can be a bit crude. The Nearest-Rank Methods table shows the computational steps for exclusive and inclusive methods. Interpolation methods, as the name implies, can return a score that is between scores in the distribution. Algorithms used by statistical programs typically use interpolation methods, for example,

720-406: A score, expressed in percent , which represents the fraction of scores in its distribution that are less than it, an exclusive definition. Percentile scores and percentile ranks are often used in the reporting of test scores from norm-referenced tests , but, as just noted, they are not the same. For percentile ranks, a score is given and a percentage is computed. Percentile ranks are exclusive: if

768-567: Is "Raw Data Now" , meaning that everyone should demand that governments and businesses share the data they collect as raw data. He points out that "data drives a huge amount of what happens in our lives… because somebody takes the data and does something with it." To Berners-Lee, it is essentially from this sharing of raw data, that advances in science will emerge. Advocates of open data argue that once citizens and civil society organizations have access to data from businesses and governments, it will enable citizens and NGOs to do their own analysis of

816-399: Is also known as the first quartile ( Q 1 ), the 50th percentile as the median or second quartile ( Q 2 ), and the 75th percentile as the third quartile ( Q 3 ). For example, the 50th percentile (median) is the score below (or at or below , depending on the definition) which 50% of the scores in the distribution are found. A related quantity is the percentile rank of

864-668: Is called 'exhaust data', and is gathered usually by machines or terminals as a secondary function. For example, cash registers, smartphones, and speedometers serve a main function but may collect data as a secondary task. Exhaustive data is usually too large or of little use to process and becomes 'transient' or thrown away. In computing , raw data may have the following attributes: it may possibly contain human, machine, or instrument errors, it may not be validated; it might be in different area ( colloquial ) formats; uncoded or unformatted; or some entries might be "suspect" (e.g., outliers ), requiring confirmation or citation . For example,

912-404: Is no standard definition of percentile; however, all definitions yield similar results when the number of observations is very large and the probability distribution is continuous. In the limit, as the sample size approaches infinity, the 100 p percentile (0< p <1) approximates the inverse of the cumulative distribution function (CDF) thus formed, evaluated at p , as p approximates

960-436: Is plotted along an axis scaled to standard deviations , or sigma ( σ {\displaystyle \sigma } ) units. Mathematically, the normal distribution extends to negative infinity on the left and positive infinity on the right. Note, however, that only a very small proportion of individuals in a population will fall outside the −3 σ to +3 σ range. For example, with human heights very few people are above

1008-500: Is restricted to a narrower region: [Source: Some software packages, including NumPy and Microsoft Excel (up to and including version 2013 by means of the PERCENTILE.INC function). Noted as an alternative by NIST . ] Note that the x ↔ p {\displaystyle x\leftrightarrow p} relationship is one-to-one for p ∈ [ 0 , 1 ] {\displaystyle p\in [0,1]} ,

SECTION 20

#1733105227244

1056-410: Is supplemented by a website in which additional information and resources are available to aid administration of the Rorschach. R-optimized procedures of administration instruct examiners to ask the respondents to provide two or three responses for each of the 10 Rorschach cards. Examiners may use “prompts” to encourage examinees to give more responses or “pulls” to ask examinees to give the card back to

1104-440: Is to use linear interpolation between adjacent ranks. All of the following variants have the following in common. Given the order statistics we seek a linear interpolation function that passes through the points ( v i , i ) {\displaystyle (v_{i},i)} . This is simply accomplished by where ⌊ x ⌋ {\displaystyle \lfloor x\rfloor } uses

1152-490: Is undefined, it does not need to be because it is multiplied by x mod 1 = 0 {\displaystyle x{\bmod {1}}=0} .) As we can see, x is the continuous version of the subscript i , linearly interpolating v between adjacent nodes. There are two ways in which the variant approaches differ. The first is in the linear relationship between the rank x , the percent rank P = 100 p {\displaystyle P=100p} , and

1200-468: The average or median result). As well, raw data have not been subject to any other manipulation by a software program or a human researcher, analyst or technician. They are also referred to as primary data. Raw data is a relative term (see data ), because even once raw data have been "cleaned" and processed by one team of researchers, another team may consider these processed data to be "raw data" for another stage of research. Raw data can be inputted to

1248-450: The floor function to represent the integral part of positive x , whereas x mod 1 {\displaystyle x{\bmod {1}}} uses the mod function to represent its fractional part (the remainder after division by 1). (Note that, though at the endpoint x = N {\displaystyle x=N} , v ⌊ x ⌋ + 1 {\displaystyle v_{\lfloor x\rfloor +1}}

1296-407: The "INC" version, the second variant, does not; in fact, any number smaller than 1 N + 1 {\displaystyle {\frac {1}{N+1}}} is also excluded and would cause an error.) The inverse is restricted to a narrower region: In addition to the percentile function, there is also a weighted percentile , where the percentage in the total weight is counted instead of

1344-403: The +3 σ height level. Percentiles represent the area under the normal curve, increasing from left to right. Each standard deviation represents a fixed percentile. Thus, rounding to two decimal places, −3 σ is the 0.13th percentile, −2 σ the 2.28th percentile, −1 σ the 15.87th percentile, 0 σ the 50th percentile (both the mean and median of the distribution), +1 σ the 84.13th percentile, +2 σ

1392-405: The 95th or 98th percentile usually cuts off the top 5% or 2% of bandwidth peaks in each month, and then bills at the nearest rate. In this way, infrequent peaks are ignored, and the customer is charged in a fairer way. The reason this statistic is so useful in measuring data throughput is that it gives a very accurate picture of the cost of the bandwidth. The 95th percentile says that 95% of the time,

1440-400: The 97.72nd percentile, and +3 σ the 99.87th percentile. This is related to the 68–95–99.7 rule or the three-sigma rule. Note that in theory the 0th percentile falls at negative infinity and the 100th percentile at positive infinity, although in many practical applications, such as test results, natural lower and/or upper limits are enforced. When ISPs bill "burstable" internet bandwidth ,

1488-543: The CDF. This can be seen as a consequence of the Glivenko–Cantelli theorem . Some methods for calculating the percentiles are given below. The methods given in the calculation methods section (below) are approximations for use in small-sample statistics. In general terms, for very large populations following a normal distribution , percentiles may often be represented by reference to a normal curve plot. The normal distribution

Rorschach Performance Assessment System - Misplaced Pages Continue

1536-462: The argument the R-PAS fails to meet the necessary criteria for admissibility according to the Frye and Daubert guidelines. Some of the major concerns regarding the R-PAS include its psychometric properties, lack of current normative data, and the absence of independent groups completing research in the area. There is not consensus regarding the admissibility of the R-PAS in court, however, as others would argue

1584-412: The criteria are met. Percentile In statistics , a k -th percentile , also known as percentile score or centile , is a score below which a given percentage k of scores in its frequency distribution falls (" exclusive " definition) or a score at or below which a given percentage falls (" inclusive " definition). Percentiles are expressed in the same unit of measurement as

1632-455: The examiner. This procedure is meant to increase the stability of the administration and attempt to eliminate the extremes of responding; too few responses or too many responses. The authors did not create new variables or indices to be coded, but systematically reviewed variables that had been used in past systems. While all of these codes have been used in the past, many have been renamed to be more face valid and readily understood. Scoring of

1680-429: The indices has been updated (e.g. utilizing percentiles and Standard Scores ) to make the Rorschach more in line with other popular personality measures . In addition to providing coding guidelines to score examinee responses, the R-PAS provides a system to code an examinee's behavior during Rorschach administration. These behavioral codes are included as it is believed that the behaviors exhibited during testing are

1728-430: The input scores, not in percent ; for example, if the scores refer to human weight , the corresponding percentiles will be expressed in kilograms or pounds. In the limit of an infinite sample size , the percentile approximates the percentile function , the inverse of the cumulative distribution function . Percentiles are a type of quantiles , obtained adopting a subdivision into 100 groups. The 25th percentile

1776-408: The list such that no more than P percent of the data is strictly less than the value and at least P percent of the data is less than or equal to that value. This is obtained by first calculating the ordinal rank and then taking the value from the ordered list that corresponds to that rank. The ordinal rank n is calculated using this formula An alternative to rounding used in many applications

1824-446: The methods they describe. Algorithms either return the value of a score that exists in the set of scores (nearest-rank methods) or interpolate between existing scores and are either exclusive or inclusive. The figure shows a 10-score distribution, illustrates the percentile scores that result from these different algorithms, and serves as an introduction to the examples given subsequently. The simplest are nearest-rank methods that return

1872-500: The only one of the three variants with this property; hence the "INC" suffix, for inclusive , on the Excel function. (The primary variant recommended by NIST . Adopted by Microsoft Excel since 2010 by means of PERCENTIL.EXC function. However, as the "EXC" suffix indicates, the Excel version excludes both endpoints of the range of p , i.e., p ∈ ( 0 , 1 ) {\displaystyle p\in (0,1)} , whereas

1920-415: The percentile rank for a specified score is 90%, then 90% of the scores were lower. In contrast, for percentiles a percentage is given and a corresponding score is determined, which can be either exclusive or inclusive. The score for a specified percentage (e.g., 90th) indicates a score below which (exclusive definition) or at or below which (inclusive definition) other scores in the distribution fall. There

1968-464: The percentile.exc and percentile.inc functions in Microsoft Excel. The Interpolated Methods table shows the computational steps. One definition of percentile, often given in texts, is that the P -th percentile ( 0 < P ≤ 100 ) {\displaystyle (0<P\leq 100)} of a list of N ordered values (sorted from least to greatest) is the smallest value in

Rorschach Performance Assessment System - Misplaced Pages Continue

2016-416: The same responses similarly. In the study, 50 records of responses to Rorschach cards were randomly selected and given to two different raters to be coded. The coded responses were compared and the results indicate an average intraclass correlation of 0.88 and median of 0.92 across all of the variables. The findings indicate good to excellent inter-rater reliability which is consistent with previous findings for

2064-415: The sum of the weights. Then the formulas above are generalized by taking or and The 50% weighted percentile is known as the weighted median . Raw score Raw data , also known as primary data , are data (e.g., numbers, instrument readings, figures, etc.) collected from a source. In the context of examinations, the raw data might be described as a raw score (after test scores ). If

2112-406: The total number. There is no standard function for a weighted percentile. One method extends the above approach in a natural way. Suppose we have positive weights w 1 , w 2 , w 3 , … , w N {\displaystyle w_{1},w_{2},w_{3},\dots ,w_{N}} associated, respectively, with our N sorted sample values. Let

2160-406: The usage is below this amount: so, the remaining 5% of the time, the usage is above that amount. Physicians will often use infant and children's weight and height to assess their growth in comparison to national averages and percentiles which are found in growth charts . The 85th percentile speed of traffic on a road is often used as a guideline in setting speed limits and assessing whether such

2208-400: The variables selected for the R-PAS have been used by others in the past, either as part of previous systems for using the Rorschach, or as stand-alone independently coded variables. Prior research on these variables have shown correlation coefficients around approximately 0.9. Preliminary data used to evaluate the reliability of the R-PAS scoring system shows that two different raters scored

2256-523: The variables used in the scoring. There are advantages to using the R-PAS in forensic evaluations, and authors have described appropriated and inappropriate use of it in court. Some advantages to its use include incremental validity over self-report measures, protection against inaccurate symptom presentation, information regarding states and traits, adjustments for abnormal response records, accurate pathology interpretations, organization of results, and easily understood interpretations. However, some present

2304-404: The variants differ is in the definition of the function near the margins of the [ 0 , 1 ] {\displaystyle [0,1]} range of p : f ( p , N ) {\displaystyle f(p,N)} should produce, or be forced to produce, a result in the range [ 1 , N ] {\displaystyle [1,N]} , which may mean the absence of

#243756