Misplaced Pages

Primum Mobile

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In classical, medieval, and Renaissance astronomy , the Primum Mobile ( Latin : "first movable") was the outermost moving sphere in the geocentric model of the universe .

#596403

141-490: The concept was introduced by Ptolemy to account for the apparent daily motion of the heavens around the Earth, producing the east-to-west rising and setting of the sun and stars, and reached Western Europe via Avicenna . The Ptolemaic system presented a view of the universe in which apparent motion was taken for real – a viewpoint still maintained in common speech through such everyday terms as moonrise and sunset . Rotation of

282-767: A heliocentric frame is most useful in those cases, galactic and extragalactic astronomy is easier if the Sun is treated as neither stationary nor the center of the universe, but rather rotating around the center of our galaxy, while in turn our galaxy is also not at rest in the cosmic background . Albert Einstein and Leopold Infeld wrote in The Evolution of Physics (1938): "Can we formulate physical laws so that they are valid for all CS [ coordinate systems ], not only those moving uniformly, but also those moving quite arbitrarily, relative to each other? If this can be done, our difficulties will be over. We shall then be able to apply

423-604: A heliocentric model placing all of the then-known planets in their correct order around the Sun. The ancient Greeks believed that the motions of the planets were circular , a view that was not challenged in Western culture until the 17th century, when Johannes Kepler postulated that orbits were heliocentric and elliptical (Kepler's first law of planetary motion ). In 1687, Isaac Newton showed that elliptical orbits could be derived from his laws of gravitation. The astronomical predictions of Ptolemy's geocentric model , developed in

564-417: A perfect fourth ) and octaves . Ptolemy reviewed standard (and ancient, disused ) musical tuning practice of his day, which he then compared to his own subdivisions of the tetrachord and the octave , which he derived experimentally using a monochord / harmonic canon. The volume ends with a more speculative exposition of the relationships between harmony, the soul ( psyche ), and the planets ( harmony of

705-418: A transit of Venus for the year 1631. The change from circular orbits to elliptical planetary paths dramatically improved the accuracy of celestial observations and predictions. Because the heliocentric model devised by Copernicus was no more accurate than Ptolemy's system, new observations were needed to persuade those who still adhered to the geocentric model. However, Kepler's laws based on Brahe's data became

846-464: A 2006 survey that show currently some 20% of the U.S. population believe that the Sun goes around the Earth (geocentricism) rather than the Earth goes around the Sun (heliocentricism), while a further 9% claimed not to know. Polls conducted by Gallup in the 1990s found that 16% of Germans, 18% of Americans and 19% of Britons hold that the Sun revolves around the Earth. A study conducted in 2005 by Jon D. Miller of Northwestern University , an expert in

987-482: A Ptolemaic cosmology, the Venus epicycle can be neither completely inside nor completely outside of the orbit of the Sun. As a result, Ptolemaics abandoned the idea that the epicycle of Venus was completely inside the Sun, and later 17th-century competition between astronomical cosmologies focused on variations of Tycho Brahe 's Tychonic system (in which the Earth was still at the center of the universe, and around it revolved

1128-601: A Roman citizen, but was ethnically either a Greek or at least a Hellenized Egyptian. Astronomy was the subject to which Ptolemy devoted the most time and effort; about half of all the works that survived deal with astronomical matters, and even others such as the Geography and the Tetrabiblos have significant references to astronomy. Ptolemy's Mathēmatikē Syntaxis ( Greek : Μαθηματικὴ Σύνταξις , lit.   ' Mathematical Systematic Treatise ' ), better known as

1269-399: A belief held by some of his contemporaries "that the motion we see is due to the Earth's movement and not to that of the sky." The prevalence of this view is further confirmed by a reference from the 13th century which states: According to the geometers [or engineers] ( muhandisīn ), the Earth is in constant circular motion, and what appears to be the motion of the heavens is actually due to

1410-409: A breakthrough in scientific thought, using the newly developed mathematical discipline of differential calculus , finally replacing the previous schools of scientific thought, which had been dominated by Aristotle and Ptolemy. However, the process was gradual. Several empirical tests of Newton's theory, explaining the longer period of oscillation of a pendulum at the equator and the differing size of

1551-482: A center of the Solar System with equal validity. Relativity agrees with Newtonian predictions that regardless of whether the Sun or the Earth are chosen arbitrarily as the center of the coordinate system describing the Solar System, the paths of the planets form (roughly) ellipses with respect to the Sun, not the Earth. With respect to the average reference frame of the fixed stars , the planets do indeed move around

SECTION 10

#1732847818597

1692-470: A coherent mathematical description, which persists to the present as just intonation – the standard for comparison of consonance in the many other, less-than exact but more facile compromise tuning systems. During the Renaissance , Ptolemy's ideas inspired Kepler in his own musings on the harmony of the world ( Harmonice Mundi , Appendix to Book V). The Optica ( Koine Greek : Ὀπτικά ), known as

1833-461: A degree of latitude, would gradually become available between 1673 and 1738. In addition, stellar aberration was observed by Robert Hooke in 1674, and tested in a series of observations by Jean Picard over a period of ten years, finishing in 1680. However, it was not explained until 1729, when James Bradley provided an approximate explanation in terms of the Earth's revolution about the Sun. In 1838, astronomer Friedrich Wilhelm Bessel measured

1974-481: A different element by heat or moisture. Atmospheric explanations for many phenomena were preferred because the Eudoxan–Aristotelian model based on perfectly concentric spheres was not intended to explain changes in the brightness of the planets due to a change in distance. Eventually, perfectly concentric spheres were abandoned as it was impossible to develop a sufficiently accurate model under that ideal, with

2115-402: A handful of places. Ptolemy's real innovation, however, occurs in the second part of the book, where he provides a catalogue of 8,000 localities he collected from Marinus and others, the biggest such database from antiquity. About 6 300 of these places and geographic features have assigned coordinates so that they can be placed in a grid that spanned the globe. Latitude was measured from

2256-528: A line running from the Earth through the Sun, such as placing the center of the Venus epicycle near the Sun. In this case, if the Sun is the source of all the light, under the Ptolemaic system: If Venus is between Earth and the Sun, the phase of Venus must always be crescent or all dark. If Venus is beyond the Sun, the phase of Venus must always be gibbous or full. But Galileo saw Venus at first small and full, and later large and crescent. This showed that with

2397-492: A long exposition on the relationship between reason and sense perception in corroborating theoretical assumptions. After criticizing the approaches of his predecessors, Ptolemy argues for basing musical intervals on mathematical ratios (as opposed to the ideas advocated by followers of Aristoxenus ), backed up by empirical observation (in contrast to the excessively theoretical approach of the Pythagoreans ). Ptolemy introduces

2538-400: A long time the geocentric postulate produced more accurate results. Additionally some felt that a new, unknown theory could not subvert an accepted consensus for geocentrism. The geocentric model entered Greek astronomy and philosophy at an early point; it can be found in pre-Socratic philosophy . In the 6th century BC, Anaximander proposed a cosmology with Earth shaped like a section of

2679-541: A method for specifying the location of the Sun in three pairs of locally oriented coordinate arcs as a function of the declination of the Sun, the terrestrial latitude, and the hour. The key to the approach is to represent the solid configuration in a plane diagram that Ptolemy calls the analemma . In another work, the Phaseis ( Risings of the Fixed Stars ), Ptolemy gave a parapegma , a star calendar or almanac , based on

2820-461: A much later pseudepigraphical composition. The identity and date of the actual author of the work, referred to now as Pseudo-Ptolemy , remains the subject of conjecture. Ptolemy wrote a work entitled Harmonikon ( Greek : Ἁρμονικόν ), known as the Harmonics , on music theory and the mathematics behind musical scales in three books. Harmonics begins with a definition of harmonic theory, with

2961-446: A new model was required. The Ptolemaic order of spheres from Earth outward is: Ptolemy did not invent or work out this order, which aligns with the ancient Seven Heavens religious cosmology common to the major Eurasian religious traditions. It also follows the decreasing orbital periods of the Moon, Sun, planets and stars. Muslim astronomers generally accepted the Ptolemaic system and

SECTION 20

#1732847818597

3102-450: A pillar (a cylinder), held aloft at the center of everything. The Sun, Moon, and planets were holes in invisible wheels surrounding Earth; through the holes, humans could see concealed fire. About the same time, Pythagoras thought that the Earth was a sphere (in accordance with observations of eclipses), but not at the center; he believed that it was in motion around an unseen fire. Later these views were combined, so most educated Greeks from

3243-433: A problem which geocentrists could not easily overcome. In 1687, Isaac Newton stated the law of universal gravitation , described earlier as a hypothesis by Robert Hooke and others. His main achievement was to mathematically derive Kepler's laws of planetary motion from the law of gravitation, thus helping to prove the latter. This introduced gravitation as the force which both kept the Earth and planets moving through

3384-403: A real relativistic physics valid in all CS; a physics in which there would be no place for absolute, but only for relative, motion? This is indeed possible!" Despite giving more respectability to the geocentric view than Newtonian physics does, relativity is not geocentric. Rather, relativity states that the Sun, the Earth, the Moon, Jupiter, or any other point for that matter could be chosen as

3525-543: A temple at Canopus , around 146–147 AD, known as the Canobic Inscription . Although the inscription has not survived, someone in the sixth century transcribed it, and manuscript copies preserved it through the Middle Ages. It begins: "To the saviour god, Claudius Ptolemy (dedicates) the first principles and models of astronomy", following by a catalogue of numbers that define a system of celestial mechanics governing

3666-478: A thousand years or more". It was first translated from Arabic into Latin by Plato of Tivoli (Tiburtinus) in 1138, while he was in Spain. Much of the content of the Tetrabiblos was collected from earlier sources; Ptolemy's achievement was to order his material in a systematic way, showing how the subject could, in his view, be rationalized. It is, indeed, presented as the second part of the study of astronomy of which

3807-553: A view supported by the Stoics. Although mainly known for his contributions to astronomy and other scientific subjects, Ptolemy also engaged in epistemological and psychological discussions across his corpus. He wrote a short essay entitled On the Criterion and Hegemonikon ( Greek : Περὶ Κριτηρίου καὶ Ἡγεμονικοῡ ), which may have been one of his earliest works. Ptolemy deals specifically with how humans obtain scientific knowledge (i.e.,

3948-572: Is ancestral to the modern system of constellations but, unlike the modern system, they did not cover the whole sky (only what could be seen with the naked eye in the northern hemisphere). For over a thousand years, the Almagest was the authoritative text on astronomy across Europe, the Middle East, and North Africa. The Almagest was preserved, like many extant Greek scientific works, in Arabic manuscripts;

4089-477: Is contrary to these Scriptures of ours, that is to Catholic faith, we must either prove it as well as we can to be entirely false, or at all events we must, without the smallest hesitation, believe it to be so." To understand how just is the rule here formulated we must remember, first, that the sacred writers, or to speak more accurately, the Holy Ghost "Who spoke by them, did not intend to teach men these things (that

4230-432: Is due to any loss of light caused by its phases being compensated for by an increase in apparent size caused by its varying distance from Earth.) Objectors to heliocentrism noted that terrestrial bodies naturally tend to come to rest as near as possible to the center of the Earth. Further, barring the opportunity to fall closer the center, terrestrial bodies tend not to move unless forced by an outside object, or transformed to

4371-624: Is his Geographike Hyphegesis ( Greek : Γεωγραφικὴ Ὑφήγησις ; lit.   ' Guide to Drawing the Earth ' ), known as the Geography , a handbook on how to draw maps using geographical coordinates for parts of the Roman world known at the time. He relied on previous work by an earlier geographer, Marinus of Tyre , as well as on gazetteers of the Roman and ancient Persian Empire . He also acknowledged ancient astronomer Hipparchus for having provided

Primum Mobile - Misplaced Pages Continue

4512-578: Is of Homeric form . It was common among the Macedonian upper class at the time of Alexander the Great and there were several of this name among Alexander's army, one of whom made himself pharaoh in 323 BC: Ptolemy I Soter , the first pharaoh of the Ptolemaic Kingdom . Almost all subsequent pharaohs of Egypt, with a few exceptions, were named Ptolemy until Egypt became a Roman province in 30 BC, ending

4653-407: Is so high because several spheres are needed for each planet.) These spheres, known as crystalline spheres, all moved at different uniform speeds to create the revolution of bodies around the Earth. They were composed of an incorruptible substance called aether . Aristotle believed that the Moon was in the innermost sphere and therefore touches the realm of Earth, causing the dark spots ( maculae ) and

4794-622: Is the Geography , which is a thorough discussion on maps and the geographic knowledge of the Greco-Roman world . The third is the astrological treatise in which he attempted to adapt horoscopic astrology to the Aristotelian natural philosophy of his day. This is sometimes known as the Apotelesmatika ( Greek : Αποτελεσματικά , lit.   ' On the Effects ' ) but more commonly known as

4935-471: Is to say, the essential nature of the things of the visible universe), things in no way profitable unto salvation." Hence they did not seek to penetrate the secrets of nature, but rather described and dealt with things in more or less figurative language, or in terms which were commonly used at the time, and which in many instances are in daily use at this day, even by the most eminent men of science. Ordinary speech primarily and properly describes what comes under

5076-462: The Almagest , is the only surviving comprehensive ancient treatise on astronomy. Although Babylonian astronomers had developed arithmetical techniques for calculating and predicting astronomical phenomena, these were not based on any underlying model of the heavens; early Greek astronomers, on the other hand, provided qualitative geometrical models to "save the appearances" of celestial phenomena without

5217-562: The Tetrábiblos , from the Koine Greek meaning "Four Books", or by its Latin equivalent Quadripartite . The Catholic Church promoted his work, which included the only mathematically sound geocentric model of the Solar System , and unlike most Greek mathematicians , Ptolemy's writings (foremost the Almagest ) never ceased to be copied or commented upon, both in late antiquity and in

5358-662: The Almagest was the first, concerned with the influences of the celestial bodies in the sublunary sphere . Thus explanations of a sort are provided for the astrological effects of the planets , based upon their combined effects of heating, cooling, moistening, and drying. Ptolemy dismisses other astrological practices, such as considering the numerological significance of names, that he believed to be without sound basis, and leaves out popular topics, such as electional astrology (interpreting astrological charts to determine courses of action) and medical astrology , for similar reasons. The great respect in which later astrologers held

5499-410: The Geography is likely to be of different dates, in addition to containing many scribal errors. However, although the regional and world maps in surviving manuscripts date from c.  1300 AD (after the text was rediscovered by Maximus Planudes ), there are some scholars who think that such maps go back to Ptolemy himself. Ptolemy wrote an astrological treatise, in four parts, known by

5640-645: The Middle Ages . However, it is likely that only a few truly mastered the mathematics necessary to understand his works, as evidenced particularly by the many abridged and watered-down introductions to Ptolemy's astronomy that were popular among the Arabs and Byzantines. His work on epicycles has come to symbolize a very complex theoretical model built in order to explain a false assumption. Ptolemy's date of birth and birthplace are both unknown. The 14th-century astronomer Theodore Meliteniotes wrote that Ptolemy's birthplace

5781-784: The Optics, is a work that survives only in a somewhat poor Latin version, which, in turn, was translated from a lost Arabic version by Eugenius of Palermo ( c.  1154 ). In it, Ptolemy writes about properties of sight (not light), including reflection , refraction , and colour . The work is a significant part of the early history of optics and influenced the more famous and superior 11th-century Book of Optics by Ibn al-Haytham . Ptolemy offered explanations for many phenomena concerning illumination and colour, size, shape, movement, and binocular vision. He also divided illusions into those caused by physical or optical factors and those caused by judgmental factors. He offered an obscure explanation of

Primum Mobile - Misplaced Pages Continue

5922-659: The Qur'anic verse, "All praise belongs to God, Lord of the Worlds," emphasizing the term "Worlds." The "Maragha Revolution" refers to the Maragha school's revolution against Ptolemaic astronomy. The "Maragha school" was an astronomical tradition beginning in the Maragha observatory and continuing with astronomers from the Damascus mosque and Samarkand observatory . Like their Andalusian predecessors,

6063-457: The Tetrabiblos derived from its nature as an exposition of theory, rather than as a manual. A collection of one hundred aphorisms about astrology called the Centiloquium , ascribed to Ptolemy, was widely reproduced and commented on by Arabic, Latin, and Hebrew scholars, and often bound together in medieval manuscripts after the Tetrabiblos as a kind of summation. It is now believed to be

6204-591: The United States between 1870 and 1920, for example, various members of the Lutheran Church–Missouri Synod published articles disparaging Copernican astronomy and promoting geocentrism. However, in the 1902 Theological Quarterly , A. L. Graebner observed that the synod had no doctrinal position on geocentrism, heliocentrism, or any scientific model, unless it were to contradict Scripture. He stated that any possible declarations of geocentrists within

6345-682: The Universe with Earth at the center. Under most geocentric models, the Sun , Moon , stars , and planets all orbit Earth. The geocentric model was the predominant description of the cosmos in many European ancient civilizations, such as those of Aristotle in Classical Greece and Ptolemy in Roman Egypt, as well as during the Islamic Golden Age . Two observations supported the idea that Earth

6486-408: The aether of the higher spheres. Galileo could also see the moons of Jupiter, which he dedicated to Cosimo II de' Medici , and stated that they orbited around Jupiter, not Earth. This was a significant claim as it would mean not only that not everything revolved around Earth as stated in the Ptolemaic model, but also showed a secondary celestial body could orbit a moving celestial body, strengthening

6627-461: The equator , as it is today, but Ptolemy preferred to express it as climata , the length of the longest day rather than degrees of arc : The length of the midsummer day increases from 12h to 24h as one goes from the equator to the polar circle . One of the places Ptolemy noted specific coordinates for was the now-lost stone tower which marked the midpoint on the ancient Silk Road , and which scholars have been trying to locate ever since. In

6768-482: The geocentric model . Ptolemy argued that the Earth was a sphere in the center of the universe, from the simple observation that half the stars were above the horizon and half were below the horizon at any time (stars on rotating stellar sphere), and the assumption that the stars were all at some modest distance from the center of the universe. If the Earth were substantially displaced from the center, this division into visible and invisible stars would not be equal. In

6909-519: The harmonic canon (Greek name) or monochord (Latin name), which is an experimental musical apparatus that he used to measure relative pitches, and used to describe to his readers how to demonstrate the relations discussed in the following chapters for themselves. After the early exposition on to build and use monochord to test proposed tuning systems, Ptolemy proceeds to discuss Pythagorean tuning (and how to demonstrate that their idealized musical scale fails in practice). The Pythagoreans believed that

7050-471: The parallax of the star 61 Cygni successfully, and disproved Ptolemy's claim that parallax motion did not exist. This finally confirmed the assumptions made by Copernicus, providing accurate, dependable scientific observations, and conclusively displaying how distant stars are from Earth. A geocentric frame is useful for many everyday activities and most laboratory experiments, but is a less appropriate choice for Solar System mechanics and space travel. While

7191-527: The spherical Earth on invisible orbs, while an eighth sphere contained the fixed stars . Motion was provided to the whole system by the Primum Mobile, itself set within the Empyrean , and the fastest moving of all the spheres. The total number of celestial spheres was not fixed. In this 16th-century illustration, the firmament (sphere of fixed stars) is eighth, a "crystalline" sphere (posited to account for

SECTION 50

#1732847818597

7332-430: The "criterion" of truth), as well as with the nature and structure of the human psyche or soul, particularly its ruling faculty (i.e., the hegemonikon ). Ptolemy argues that, to arrive at the truth, one should use both reason and sense perception in ways that complement each other. On the Criterion is also noteworthy for being the only one of Ptolemy's works that is devoid of mathematics . Elsewhere, Ptolemy affirms

7473-400: The 2nd century AD, finally standardised geocentrism. His main astronomical work, the Almagest , was the culmination of centuries of work by Hellenic , Hellenistic and Babylonian astronomers. For over a millennium, European and Islamic astronomers assumed it was the correct cosmological model. Because of its influence, people sometimes wrongly think the Ptolemaic system is identical with

7614-431: The 2nd century CE, served as the basis for preparing astrological and astronomical charts for over 1,500 years. The geocentric model held sway into the early modern age, but from the late 16th century onward, it was gradually superseded by the heliocentric model of Copernicus (1473–1543), Galileo (1564–1642), and Kepler (1571–1630). There was much resistance to the transition between these two theories, since for

7755-410: The 4th century BC onwards thought that the Earth was a sphere at the center of the universe. In the 4th century BC, two influential Greek philosophers, Plato and his student Aristotle , wrote works based on the geocentric model. According to Plato, the Earth was a sphere, stationary at the center of the universe. The stars and planets were carried around the Earth on spheres or circles , arranged in

7896-532: The Earth about its axis. For example, in Joshua 10:12 , the Sun and Moon are said to stop in the sky, and in Psalms the world is described as immobile. Psalms 93:1 says in part, "the world is established, firm and secure". Contemporary advocates for such religious beliefs include Robert Sungenis (author of the 2006 book Galileo Was Wrong and the 2014 pseudo-documentary film The Principle ). These people subscribe to

8037-447: The Earth at different points in its orbit, and explained the observation that planets slowed down, stopped, and moved backward in retrograde motion , and then again reversed to resume normal, or prograde, motion. The deferent-and-epicycle model had been used by Greek astronomers for centuries along with the idea of the eccentric (a deferent whose center is slightly away from the Earth), which

8178-409: The Earth away from the center of rotation of the rest of the universe. Another sphere, the epicycle, is embedded inside the deferent sphere and is represented by the smaller dotted line to the right. A given planet then moves around the epicycle at the same time the epicycle moves along the path marked by the deferent. These combined movements cause the given planet to move closer to and further away from

8319-452: The Earth on its polar axis – as seen in a heliocentric solar system, which (while anticipated by Aristarchus ) was not to be widely accepted until well after Copernicus – leads to what earlier astronomers saw as the real movement of all the heavenly bodies around the Earth every 24 hours. Astronomers believed that the seven naked-eye planets (including the Moon and the Sun) were carried around

8460-404: The Earth's radius away from the centre of the Earth (thus closer to the surface than the center). What the principle of relativity points out is that correct mathematical calculations can be made regardless of the reference frame chosen, and these will all agree with each other as to the predictions of actual motions of bodies with respect to each other. It is not necessary to choose the object in

8601-501: The Earth. By using an equant, Ptolemy claimed to keep motion which was uniform and circular, although it departed from the Platonic ideal of uniform circular motion . The resultant system, which eventually came to be widely accepted in the west, seems unwieldy to modern astronomers; each planet required an epicycle revolving on a deferent, offset by an equant which was different for each planet. It predicted various celestial motions, including

SECTION 60

#1732847818597

8742-485: The French astronomer Delambre in the early 1800s which were repeated by R.R. Newton. Specifically, it proved Hipparchus was not the sole source of Ptolemy's catalog, as they both had claimed, and proved that Ptolemy did not simply copy Hipparchus' measurements and adjust them to account for precession of the equinoxes, as they had claimed. Scientists analyzing the charts concluded: It also confirms that Ptolemy’s Star Catalogue

8883-473: The Greek term Tetrabiblos (lit. "Four Books") or by its Latin equivalent Quadripartitum . Its original title is unknown, but may have been a term found in some Greek manuscripts, Apotelesmatiká ( biblía ), roughly meaning "(books) on the Effects" or "Outcomes", or "Prognostics". As a source of reference, the Tetrabiblos is said to have "enjoyed almost the authority of a Bible among the astrological writers of

9024-497: The Macedonian family's rule. The name Claudius is a Roman name, belonging to the gens Claudia ; the peculiar multipart form of the whole name Claudius Ptolemaeus is a Roman custom, characteristic of Roman citizens. This indicates that Ptolemy would have been a Roman citizen . Gerald Toomer, the translator of Ptolemy's Almagest into English, suggests that citizenship was probably granted to one of Ptolemy's ancestors by either

9165-440: The Maragha astronomers attempted to solve the equant problem (the circle around whose circumference a planet or the center of an epicycle was conceived to move uniformly) and produce alternative configurations to the Ptolemaic model without abandoning geocentrism. They were more successful than their Andalusian predecessors in producing non-Ptolemaic configurations which eliminated the equant and eccentrics, were more accurate than

9306-461: The Maragha school never made the paradigm shift to heliocentrism. The influence of the Maragha school on Copernicus remains speculative, since there is no documentary evidence to prove it. The possibility that Copernicus independently developed the Tusi couple remains open, since no researcher has yet demonstrated that he knew about Tusi's work or that of the Maragha school. Not all Greeks agreed with

9447-479: The Ptolemaic model in numerically predicting planetary positions, and were in better agreement with empirical observations. The most important of the Maragha astronomers included Mo'ayyeduddin Urdi (died 1266), Nasīr al-Dīn al-Tūsī (1201–1274), Qutb al-Din al-Shirazi (1236–1311), Ibn al-Shatir (1304–1375), Ali Qushji ( c.  1474 ), Al-Birjandi (died 1525), and Shams al-Din al-Khafri (died 1550). However,

9588-442: The Ptolemaic system, each planet is moved by a system of two spheres: one called its deferent; the other, its epicycle . The deferent is a circle whose center point, called the eccentric and marked in the diagram with an X, is distant from the Earth. The original purpose of the eccentric was to account for the difference in length of the seasons (northern autumn was about five days shorter than spring during this time period) by placing

9729-468: The Solar System with the largest gravitational field as the center of the coordinate system in order to predict the motions of planetary bodies, though doing so may make calculations easier to perform or interpret. A geocentric coordinate system can be more convenient when dealing only with bodies mostly influenced by the gravity of the Earth (such as artificial satellites and the Moon ), or when calculating what

9870-455: The Sun or Moon illusion (the enlarged apparent size on the horizon) based on the difficulty of looking upwards. The work is divided into three major sections. The first section (Book II) deals with direct vision from first principles and ends with a discussion of binocular vision. The second section (Books III-IV) treats reflection in plane, convex, concave, and compound mirrors. The last section (Book V) deals with refraction and includes

10011-414: The Sun) is very noticeable even with low eccentricities as possessed by the planets. To summarize, Ptolemy conceived a system that was compatible with Aristotelian philosophy and succeeded in tracking actual observations and predicting future movement mostly to within the limits of the next 1000 years of observations. The observed motions and his mechanisms for explaining them include: The geocentric model

10152-462: The Sun, but all other planets revolved around the Sun in one massive set of epicycles), or variations on the Copernican system. Johannes Kepler analysed Tycho Brahe 's famously accurate observations and afterwards constructed his three laws in 1609 and 1619, based on a heliocentric view where the planets move in elliptical paths. Using these laws, he was the first astronomer to successfully predict

10293-438: The Sun, which due to its much larger mass, moves far less than its own diameter and the gravity of which is dominant in determining the orbits of the planets (in other words, the center of mass of the Solar System is near the center of the Sun). The Earth and Moon are much closer to being a binary planet ; the center of mass around which they both rotate is still inside the Earth, but is about 4,624 km (2,873 miles) or 72.6% of

10434-402: The ability to go through lunar phases . He further described his system by explaining the natural tendencies of the terrestrial elements: earth, water, fire, air, as well as celestial aether. His system held that earth was the heaviest element, with the strongest movement towards the center, thus water formed a layer surrounding the sphere of Earth. The tendency of air and fire, on the other hand,

10575-422: The ability to make any predictions. The earliest person who attempted to merge these two approaches was Hipparchus , who produced geometric models that not only reflected the arrangement of the planets and stars but could be used to calculate celestial motions. Ptolemy, following Hipparchus, derived each of his geometrical models for the Sun, Moon, and the planets from selected astronomical observations done in

10716-479: The ancient Greek idea of uniform circular motions by hypothesizing that the planet Mercury moves in an elliptic orbit , while Alpetragius proposed a planetary model that abandoned the equant , epicycle and eccentric mechanisms, though this resulted in a system that was mathematically less accurate. His alternative system spread through most of Europe during the 13th century. Fakhr al-Din al-Razi (1149–1209), in dealing with his conception of physics and

10857-472: The appearances and disappearances of stars over the course of the solar year. The Planisphaerium ( Greek : Ἅπλωσις ἐπιφανείας σφαίρας , lit.   ' Flattening of the sphere ' ) contains 16 propositions dealing with the projection of the celestial circles onto a plane. The text is lost in Greek (except for a fragment) and survives in Arabic and Latin only. Ptolemy also erected an inscription in

10998-409: The beginning and end of retrograde motion, to within a maximum error of 10 degrees, considerably better than without the equant. The model with epicycles is in fact a very good model of an elliptical orbit with low eccentricity. The well-known ellipse shape does not appear to a noticeable extent when the eccentricity is less than 5%, but the offset distance of the "center" (in fact the focus occupied by

11139-403: The book on astrology and attributed it to Ptolemy". Historical confusion on this point can be inferred from Abu Ma'shar's subsequent remark: "It is sometimes said that the very learned man who wrote the book of astrology also wrote the book of the Almagest . The correct answer is not known." Not much positive evidence is known on the subject of Ptolemy's ancestry, apart from what can be drawn from

11280-433: The center of the universe, while the Earth and other planets revolved around it. His theory was not popular, and he had one named follower, Seleucus of Seleucia . Epicurus was the most radical. He correctly realized in the 4th century BC that the universe does not have any single center. This theory was widely accepted by the later Epicureans and was notably defended by Lucretius in his poem De rerum natura . In 1543,

11421-506: The data needed to compute the positions of the Sun, Moon and planets, the rising and setting of the stars, and eclipses of the Sun and Moon, making it a useful tool for astronomers and astrologers. The tables themselves are known through Theon of Alexandria 's version. Although Ptolemy's Handy Tables do not survive as such in Arabic or in Latin, they represent the prototype of most Arabic and Latin astronomical tables or zījes . Additionally,

11562-734: The details of his name, although modern scholars have concluded that Abu Ma'shar's account is erroneous. It is no longer doubted that the astronomer who wrote the Almagest also wrote the Tetrabiblos as its astrological counterpart. In later Arabic sources, he was often known as "the Upper Egyptian ", suggesting he may have had origins in southern Egypt . Arabic astronomers , geographers , and physicists referred to his name in Arabic as Baṭlumyus ( Arabic : بَطْلُمْيوس ). Ptolemy wrote in Koine Greek , and can be shown to have used Babylonian astronomical data . He might have been

11703-402: The earliest surviving table of refraction from air to water, for which the values (with the exception of the 60° angle of incidence) show signs of being obtained from an arithmetic progression. However, according to Mark Smith, Ptolemy's table was based in part on real experiments. Ptolemy's theory of vision consisted of rays (or flux) coming from the eye forming a cone, the vertex being within

11844-469: The elevation of the north celestial pole for a few cities. Although maps based on scientific principles had been made since the time of Eratosthenes ( c.  276  – c.  195 BC ), Ptolemy improved on map projections . The first part of the Geography is a discussion of the data and of the methods he used. Ptolemy notes the supremacy of astronomical data over land measurements or travelers' reports, though he possessed these data for only

11985-543: The emperor Claudius or the emperor Nero . The 9th century Persian astronomer Abu Ma'shar al-Balkhi mistakenly presents Ptolemy as a member of Ptolemaic Egypt's royal lineage , stating that the descendants of the Alexandrine general and Pharaoh Ptolemy I Soter were wise "and included Ptolemy the Wise, who composed the book of the Almagest ". Abu Ma'shar recorded a belief that a different member of this royal line "composed

12126-425: The empirical musical relations he identified by testing pitches against each other: He was able to accurately measure relative pitches based on the ratios of vibrating lengths two separate sides of the same single string , hence which were assured to be under equal tension, eliminating one source of error. He analyzed the empirically determined ratios of "pleasant" pairs of pitches, and then synthesised all of them into

12267-476: The equants instead of the epicycles because the former was easier to calculate, and gave the same result. It has been determined that the Copernican, Ptolemaic and even the Tychonic models provide identical results to identical inputs: they are computationally equivalent. It was not until Kepler demonstrated a physical observation that could show that the physical Sun is directly involved in determining an orbit that

12408-419: The eye, and the base defining the visual field. The rays were sensitive, and conveyed information back to the observer's intellect about the distance and orientation of surfaces. Size and shape were determined by the visual angle subtended at the eye combined with perceived distance and orientation. This was one of the early statements of size-distance invariance as a cause of perceptual size and shape constancy,

12549-501: The fixed stars due to stellar parallax . Thus if the Earth was moving, the shapes of the constellations should change considerably over the course of a year. As they did not appear to move, either the stars are much farther away than the Sun and the planets than previously conceived, making their motion undetectable, or the Earth is not moving at all. Because the stars are actually much further away than Greek astronomers postulated (making angular movement extremely small), stellar parallax

12690-495: The geocentric model, but by the 10th century texts appeared regularly whose subject matter was doubts concerning Ptolemy ( shukūk ). Several Muslim scholars questioned the Earth's apparent immobility and centrality within the universe. Some Muslim astronomers believed that the Earth rotates around its axis , such as Abu Sa'id al-Sijzi (d. circa 1020). According to al-Biruni , Sijzi invented an astrolabe called al-zūraqī based on

12831-423: The geocentric model. The Pythagorean system has already been mentioned; some Pythagoreans believed the Earth to be one of several planets going around a central fire. Hicetas and Ecphantus , two Pythagoreans of the 5th century BC, and Heraclides Ponticus in the 4th century BC, believed that the Earth rotated on its axis but remained at the center of the universe. Such a system still qualifies as geocentric. It

12972-515: The geocentric system met its first serious challenge with the publication of Copernicus ' De revolutionibus orbium coelestium ( On the Revolutions of the Heavenly Spheres ), which posited that the Earth and the other planets instead revolved around the Sun. The geocentric system was still held for many years afterwards, as at the time the Copernican system did not offer better predictions than

13113-472: The geocentric system, and it posed problems for both natural philosophy and scripture. The Copernican system was no more accurate than Ptolemy's system, because it still used circular orbits. This was not altered until Johannes Kepler postulated that they were elliptical (Kepler's first law of planetary motion ). With the invention of the telescope in 1609, observations made by Galileo Galilei (such as that Jupiter has moons) called into question some of

13254-427: The heliocentric argument that a moving Earth could retain the Moon. Galileo's observations were verified by other astronomers of the time period who quickly adopted use of the telescope, including Christoph Scheiner , Johannes Kepler , and Giovan Paulo Lembo. In December 1610, Galileo Galilei used his telescope to observe that Venus showed all phases , just like the Moon . He thought that while this observation

13395-474: The highest honour. Despite being a minority position among ancient philosophers, Ptolemy's views were shared by other mathematicians such as Hero of Alexandria . There are several characters and items named after Ptolemy, including: Geocentric In astronomy , the geocentric model (also known as geocentrism , often exemplified specifically by the Ptolemaic system ) is a superseded description of

13536-553: The history of science". One striking error noted by Newton was an autumn equinox said to have been observed by Ptolemy and "measured with the greatest care" at 2pm on 25 September 132, when the equinox should have been observed around 9:55am the day prior. In attempting to disprove Newton, Herbert Lewis also found himself agreeing that "Ptolemy was an outrageous fraud," and that "all those result capable of statistical analysis point beyond question towards fraud and against accidental error". The charges laid by Newton and others have been

13677-599: The introduction to the Handy Tables survived separately from the tables themselves (apparently part of a gathering of some of Ptolemy's shorter writings) under the title Arrangement and Calculation of the Handy Tables . The Planetary Hypotheses ( Greek : Ὑποθέσεις τῶν πλανωμένων , lit.   ' Hypotheses of the Planets ' ) is a cosmological work, probably one of the last written by Ptolemy, in two books dealing with

13818-405: The laws of nature to any CS. The struggle, so violent in the early days of science, between the views of Ptolemy and Copernicus would then be quite meaningless. Either CS could be used with equal justification. The two sentences, 'the sun is at rest and the Earth moves', or 'the sun moves and the Earth is at rest', would simply mean two different conventions concerning two different CS. Could we build

13959-473: The mathematical methods then available. However, while providing for similar explanations, the later deferent and epicycle model was already flexible enough to accommodate observations. Although the basic tenets of Greek geocentrism were established by the time of Aristotle, the details of his system did not become standard. The Ptolemaic system, developed by the Hellenistic astronomer Claudius Ptolemaeus in

14100-500: The mathematics of music should be based on only the one specific ratio of 3:2, the perfect fifth , and believed that tunings mathematically exact to their system would prove to be melodious, if only the extremely large numbers involved could be calculated (by hand). To the contrary, Ptolemy believed that musical scales and tunings should in general involve multiple different ratios arranged to fit together evenly into smaller tetrachords (combinations of four pitch ratios which together make

14241-555: The modern title is thought to be an Arabic corruption of the Greek name Hē Megistē Syntaxis (lit. "The greatest treatise"), as the work was presumably known in Late Antiquity . Because of its reputation, it was widely sought and translated twice into Latin in the 12th century , once in Sicily and again in Spain. Ptolemy's planetary models, like those of the majority of his predecessors, were geocentric and almost universally accepted until

14382-415: The motion of the Earth and not the stars. Early in the 11th century Alhazen wrote a scathing critique of Ptolemy 's model in his Doubts on Ptolemy ( c.  1028 ), which some have interpreted to imply he was criticizing Ptolemy's geocentrism, but most agree that he was actually criticizing the details of Ptolemy's model rather than his geocentrism. In the 12th century, Arzachel departed from

14523-477: The motions of the Sun, Moon, planets, and stars. In 2023, archaeologists were able to read a manuscript which gives instructions for the construction of an astronomical tool called a meteoroscope ( μετεωροσκόπιον or μετεωροσκοπεῖον ). The text, which comes from an eighth-century manuscript which also contains Ptolemy's Analemma , was identified on the basis of both its content and linguistic analysis as being by Ptolemy. Ptolemy's second most well-known work

14664-461: The observations were taken at 12:30pm. The overall quality of Ptolemy's observations has been challenged by several modern scientists, but prominently by Robert R. Newton in his 1977 book The Crime of Claudius Ptolemy , which asserted that Ptolemy fabricated many of his observations to fit his theories. Newton accused Ptolemy of systematically inventing data or doctoring the data of earlier astronomers, and labelled him "the most successful fraud in

14805-574: The order (outwards from the center): Moon, Sun, Venus, Mercury, Mars, Jupiter, Saturn, fixed stars, with the fixed stars located on the celestial sphere. In his " Myth of Er ", a section of the Republic , Plato describes the cosmos as the Spindle of Necessity , attended by the Sirens and turned by the three Fates . Eudoxus of Cnidus , who worked with Plato, developed a less mythical, more mathematical explanation of

14946-410: The perspective of an earthbound observer; it feels solid, stable, and stationary. Ancient Greek , ancient Roman , and medieval philosophers usually combined the geocentric model with a spherical Earth , in contrast to the older flat-Earth model implied in some mythology . However, the Greek astronomer and mathematician Aristarchus of Samos ( c.  310  – c.  230 BC ) developed

15087-414: The physical world in his Matalib , rejects the Aristotelian and Avicennian notion of the Earth's centrality within the universe, but instead argues that there are "a thousand thousand worlds ( alfa alfi 'awalim ) beyond this world such that each one of those worlds be bigger and more massive than this world as well as having the like of what this world has." To support his theological argument , he cites

15228-418: The planets' motion based on Plato's dictum stating that all phenomena in the heavens can be explained with uniform circular motion. Aristotle elaborated on Eudoxus' system. In the fully developed Aristotelian system, the spherical Earth is at the center of the universe, and all other heavenly bodies are attached to 47–55 transparent, rotating spheres surrounding the Earth, all concentric with it. (The number

15369-409: The public understanding of science and technology, found that about 20%, or one in five, of American adults believe that the Sun orbits the Earth. According to 2011 VTSIOM poll, 32% of Russians believe that the Sun orbits the Earth. The famous Galileo affair pitted the geocentric model against the claims of Galileo . In regards to the theological basis for such an argument, two Popes addressed

15510-548: The question of whether the use of phenomenological language would compel one to admit an error in Scripture. Both taught that it would not. Pope Leo XIII (1878–1903) wrote: we have to contend against those who, making an evil use of physical science, minutely scrutinize the Sacred Book in order to detect the writers in a mistake, and to take occasion to vilify its contents. ... There can never, indeed, be any real discrepancy between

15651-401: The radius of the sphere of the fixed stars was 20 000 times the radius of the Earth. The work is also notable for having descriptions on how to build instruments to depict the planets and their movements from a geocentric perspective, much as an orrery would have done for a heliocentric one, presumably for didactic purposes. The Analemma is a short treatise where Ptolemy provides

15792-486: The reappearance of heliocentric models during the scientific revolution . Under the scrutiny of modern scholarship, and the cross-checking of observations contained in the Almagest against figures produced through backwards extrapolation, various patterns of errors have emerged within the work. A prominent miscalculation is Ptolemy's use of measurements that he claimed were taken at noon, but which systematically produce readings now shown to be off by half an hour, as if

15933-479: The reference to "waters ... above the firmament" in Genesis 1:7) is ninth, and the Primum Mobile is tenth. Outside all is the Empyrean , the "habitation of God and all the elect ". Copernicus accepted existence of the sphere of the fixed stars, and (more ambiguously) that of the Primum Mobile, as too (initially) did Galileo – though he would later challenge its necessity in a heliocentric system. Francis Bacon

16074-405: The secondary literature, while noting that issues with the accuracy of Ptolemy's observations had long been known. Other authors have pointed out that instrument warping or atmospheric refraction may also explain some of Ptolemy's observations at a wrong time. In 2022 the first Greek fragments of Hipparchus' lost star catalog were discovered in a palimpsest and they debunked accusations made by

16215-536: The senses; and somewhat in the same way the sacred writers-as the Angelic Doctor also reminds us – "went by what sensibly appeared", or put down what God, speaking to men, signified, in the way men could understand and were accustomed to. Maurice Finocchiaro, author of a book on the Galileo affair, notes that this is "a view of the relationship between biblical interpretation and scientific investigation that corresponds to

16356-474: The size of a planet's retrograde loop (especially that of Mars) would be smaller, or sometimes larger, than expected, resulting in positional errors of as much as 30 degrees. To alleviate the problem, Ptolemy developed the equant . The equant was a point near the center of a planet's orbit where, if you were to stand there and watch, the center of the planet's epicycle would always appear to move at uniform speed; all other locations would see non-uniform speed, as on

16497-451: The sky will look like when viewed from Earth (as opposed to an imaginary observer looking down on the entire Solar System, where a different coordinate system might be more convenient). The Ptolemaic model held sway into the early modern age ; from the late 16th century onward it was gradually replaced as the consensus description by the heliocentric model . Geocentrism as a separate religious belief, however, never completely died out. In

16638-474: The spanning of more than 800 years; however, many astronomers have for centuries suspected that some of his models' parameters were adopted independently of observations. Ptolemy presented his astronomical models alongside convenient tables, which could be used to compute the future or past position of the planets. The Almagest also contains a star catalogue , which is a version of a catalogue created by Hipparchus . Its list of forty-eight constellations

16779-451: The spheres ). Although Ptolemy's Harmonics never had the influence of his Almagest or Geography , it is nonetheless a well-structured treatise and contains more methodological reflections than any other of his writings. In particular, it is a nascent form of what in the following millennium developed into the scientific method, with specific descriptions of the experimental apparatus that he built and used to test musical conjectures, and

16920-440: The structure of the universe and the laws that govern celestial motion . Ptolemy goes beyond the mathematical models of the Almagest to present a physical realization of the universe as a set of nested spheres, in which he used the epicycles of his planetary model to compute the dimensions of the universe. He estimated the Sun was at an average distance of 1 210 Earth radii (now known to actually be ~23 450 radii), while

17061-517: The subject of wide discussions and received significant push back from other scholars against the findings. Owen Gingerich , while agreeing that the Almagest contains "some remarkably fishy numbers", including in the matter of the 30-hour displaced equinox, which he noted aligned perfectly with predictions made by Hipparchus 278 years earlier, rejected the qualification of fraud. Objections were also raised by Bernard Goldstein , who questioned Newton's findings and suggested that he had misunderstood

17202-496: The supremacy of mathematical knowledge over other forms of knowledge. Like Aristotle before him, Ptolemy classifies mathematics as a type of theoretical philosophy; however, Ptolemy believes mathematics to be superior to theology or metaphysics because the latter are conjectural while only the former can secure certain knowledge. This view is contrary to the Platonic and Aristotelian traditions, where theology or metaphysics occupied

17343-453: The synod did not set the position of the church body as a whole. Articles arguing that geocentrism was the biblical perspective appeared in some early creation science newsletters pointing to some passages in the Bible , which, when taken literally, indicate that the daily apparent motions of the Sun and the Moon are due to their actual motions around the Earth rather than due to the rotation of

17484-422: The tenets of geocentrism but did not seriously threaten it. Because he observed dark "spots" on the Moon, craters, he remarked that the moon was not a perfect celestial body as had been previously conceived. This was the first detailed observation by telescope of the Moon's imperfections, which had previously been explained by Aristotle as the Moon being contaminated by Earth and its heavier elements, in contrast to

17625-505: The theologian and the physicist, as long as each confines himself within his own lines, and both are careful, as St. Augustine warns us, "not to make rash assertions, or to assert what is not known as known". If dissension should arise between them, here is the rule also laid down by St. Augustine, for the theologian: "Whatever they can really demonstrate to be true of physical nature, we must show to be capable of reconciliation with our Scriptures; and whatever they assert in their treatises which

17766-573: The third part of the Geography , Ptolemy gives instructions on how to create maps both of the whole inhabited world ( oikoumenē ) and of the Roman provinces, including the necessary topographic lists, and captions for the maps. His oikoumenē spanned 180 degrees of longitude from the Blessed Islands in the Atlantic Ocean to the middle of China , and about 80 degrees of latitude from Shetland to anti-Meroe (east coast of Africa ); Ptolemy

17907-439: The universe and also kept the atmosphere from flying away. The theory of gravity allowed scientists to rapidly construct a plausible heliocentric model for the Solar System. In his Principia , Newton explained his theory of how gravity, previously thought to be a mysterious, unexplained occult force, directed the movements of celestial bodies, and kept our Solar System in working order. His descriptions of centripetal force were

18048-523: The view that a plain reading of the Bible contains an accurate account of the manner in which the universe was created and requires a geocentric worldview. Most contemporary creationist organizations reject such perspectives. According to a report released in 2014 by the National Science Foundation , 26% of Americans surveyed believe that the Sun revolves around the Earth. Morris Berman quotes

18189-461: Was Ptolemais Hermiou , a Greek city in the Thebaid region of Egypt (now El Mansha, Sohag Governorate ). This attestation is quite late, however, and there is no evidence to support it. It is known that Ptolemy lived in or around the city of Alexandria , in the Roman province of Egypt under Roman rule . He had a Latin name, Claudius, which is generally taken to imply he was a Roman citizen . He

18330-431: Was an Alexandrian mathematician , astronomer , astrologer , geographer , and music theorist who wrote about a dozen scientific treatises , three of which were important to later Byzantine , Islamic , and Western European science. The first was his astronomical treatise now known as the Almagest , originally entitled Mathematical Treatise ( Greek : Μαθηματικὴ Σύνταξις , Mathēmatikḗ Syntaxis ). The second

18471-505: Was as sceptical of the Primum Mobile as he was of the rotation of the earth. Once Kepler had made the sun, not the Primum Mobile, the cause of planetary motion, however, the Primum Mobile gradually declined into the realm of metaphor or literary allusion. Ptolemy This is an accepted version of this page Claudius Ptolemy ( / ˈ t ɒ l ə m i / ; Ancient Greek : Πτολεμαῖος , Ptolemaios ; Latin : Claudius Ptolemaeus ; c.  100  – c.  170 AD)

18612-513: Was even older. In the illustration, the center of the deferent is not the Earth but the spot marked X, making it eccentric (from the Greek ἐκ ec- meaning "from" and κέντρον kentron meaning "center"), from which the spot takes its name. Unfortunately, the system that was available in Ptolemy's time did not quite match observations , even though it was an improvement over Hipparchus' system. Most noticeably

18753-451: Was eventually replaced by the heliocentric model . Copernican heliocentrism could remove Ptolemy's epicycles because the retrograde motion could be seen to be the result of the combination of the movements and speeds of Earth and planets. Copernicus felt strongly that equants were a violation of Aristotelian purity, and proved that replacement of the equant with a pair of new epicycles was entirely equivalent. Astronomers often continued using

18894-567: Was familiar with Greek philosophers and used Babylonian observations and Babylonian lunar theory. In half of his extant works, Ptolemy addresses a certain Syrus, a figure of whom almost nothing is known but who likely shared some of Ptolemy's astronomical interests. Ptolemy died in Alexandria c.  168 . Ptolemy's Greek name , Ptolemaeus ( Πτολεμαῖος , Ptolemaîos ), is an ancient Greek personal name . It occurs once in Greek mythology and

19035-435: Was incompatible with the Ptolemaic system, it was a natural consequence of the heliocentric system. However, Ptolemy placed Venus' deferent and epicycle entirely inside the sphere of the Sun (between the Sun and Mercury), but this was arbitrary; he could just as easily have swapped Venus and Mercury and put them on the other side of the Sun, or made any other arrangement of Venus and Mercury, as long as they were always near

19176-464: Was not based solely on data from Hipparchus’ Catalogue. ... These observations are consistent with the view that Ptolemy composed his star catalogue by combining various sources, including Hipparchus’ catalogue, his own observations and, possibly, those of other authors. The Handy Tables ( Greek : Πρόχειροι κανόνες ) are a set of astronomical tables, together with canons for their use. To facilitate astronomical calculations, Ptolemy tabulated all

19317-454: Was not detected until the 19th century . Therefore, the Greeks chose the simpler of the two explanations. Another observation used in favor of the geocentric model at the time was the apparent consistency of Venus' luminosity, which implies that it is usually about the same distance from Earth, which in turn is more consistent with geocentrism than heliocentrism. (In fact, Venus' luminous consistency

19458-401: Was revived in the Middle Ages by Jean Buridan . Heraclides Ponticus was once thought to have proposed that both Venus and Mercury went around the Sun rather than the Earth, but it is now known that he did not. Martianus Capella definitely put Mercury and Venus in orbit around the Sun. Aristarchus of Samos wrote a work, which has not survived, on heliocentrism , saying that the Sun was at

19599-463: Was the center of the Universe. First, from anywhere on Earth, the Sun appears to revolve around Earth once per day . While the Moon and the planets have their own motions, they also appear to revolve around Earth about once per day. The stars appeared to be fixed on a celestial sphere rotating once each day about an axis through the geographic poles of Earth. Second, Earth seems to be unmoving from

19740-403: Was to move upwards, away from the center, with fire being lighter than air. Beyond the layer of fire, were the solid spheres of aether in which the celestial bodies were embedded. They were also entirely composed of aether. Adherence to the geocentric model stemmed largely from several important observations. First of all, if the Earth did move, then one ought to be able to observe the shifting of

19881-499: Was well aware that he knew about only a quarter of the globe, and an erroneous extension of China southward suggests his sources did not reach all the way to the Pacific Ocean. It seems likely that the topographical tables in the second part of the work (Books 2–7) are cumulative texts, which were altered as new knowledge became available in the centuries after Ptolemy. This means that information contained in different parts of

#596403