In electricity generation , a generator is a device that converts motion-based power ( potential and kinetic energy ) or fuel-based power ( chemical energy ) into electric power for use in an external circuit . Sources of mechanical energy include steam turbines , gas turbines , water turbines , internal combustion engines , wind turbines and even hand cranks . The first electromagnetic generator, the Faraday disk , was invented in 1831 by British scientist Michael Faraday . Generators provide nearly all the power for electrical grids .
88-499: Pehuenche Hydroelectric Plant is a hydroelectric power station in Maule Region , Chile . The plant uses water from Melado River and produces 500 megawatts (670,000 hp) of electricity . The plant was built by ENDESA in 1991 (33 years ago) ( 1991 ) and is owned by Pehuenche S.A. 35°45′33″S 71°05′18″W / 35.7591°S 71.0884°W / -35.7591; -71.0884 This article about
176-737: A greenhouse gas . According to the World Commission on Dams report, where the reservoir is large compared to the generating capacity (less than 100 watts per square metre of surface area) and no clearing of the forests in the area was undertaken prior to impoundment of the reservoir, greenhouse gas emissions from the reservoir may be higher than those of a conventional oil-fired thermal generation plant. In boreal reservoirs of Canada and Northern Europe, however, greenhouse gas emissions are typically only 2% to 8% of any kind of conventional fossil-fuel thermal generation. A new class of underwater logging operation that targets drowned forests can mitigate
264-463: A low-head hydro power plant with hydrostatic head of few meters to few tens of meters can be classified either as an SHP or an LHP. The other distinction between SHP and LHP is the degree of the water flow regulation: a typical SHP primarily uses the natural water discharge with very little regulation in comparison to an LHP. Therefore, the term SHP is frequently used as a synonym for the run-of-the-river power plant . The largest power producers in
352-635: A steam power plant . The first practical design was the AVCO Mk. 25, developed in 1965. The U.S. government funded substantial development, culminating in a 25 MW demonstration plant in 1987. In the Soviet Union from 1972 until the late 1980s, the MHD plant U 25 was in regular utility operation on the Moscow power system with a rating of 25 MW, the largest MHD plant rating in the world at that time. MHD generators operated as
440-698: A topping cycle are currently (2007) less efficient than combined cycle gas turbines . Induction AC motors may be used as generators, turning mechanical energy into electric current. Induction generators operate by mechanically turning their rotor faster than the simultaneous speed, giving negative slip. A regular AC non-simultaneous motor usually can be used as a generator, without any changes to its parts. Induction generators are useful in applications like minihydro power plants, wind turbines, or in reducing high-pressure gas streams to lower pressure, because they can recover energy with relatively simple controls. They do not require another circuit to start working because
528-479: A British electrician, J. E. H. Gordon , in 1882. The first public demonstration of an "alternator system" was given by William Stanley Jr. , an employee of Westinghouse Electric in 1886. Sebastian Ziani de Ferranti established Ferranti, Thompson and Ince in 1882, to market his Ferranti-Thompson Alternator , invented with the help of renowned physicist Lord Kelvin . His early alternators produced frequencies between 100 and 300 Hz . Ferranti went on to design
616-413: A Chilean building or structure is a stub . You can help Misplaced Pages by expanding it . This article about a hydroelectric power plant is a stub . You can help Misplaced Pages by expanding it . Hydroelectric Hydroelectricity , or hydroelectric power , is electricity generated from hydropower (water power). Hydropower supplies 15% of the world's electricity , almost 4,210 TWh in 2023, which
704-421: A flood and fail. Changes in the amount of river flow will correlate with the amount of energy produced by a dam. Lower river flows will reduce the amount of live storage in a reservoir therefore reducing the amount of water that can be used for hydroelectricity. The result of diminished river flow can be power shortages in areas that depend heavily on hydroelectric power. The risk of flow shortage may increase as
792-436: A foot pump, such generators can be practically used to charge batteries, and in some cases are designed with an integral inverter. An average "healthy human" can produce a steady 75 watts (0.1 horsepower) for a full eight hour period, while a "first class athlete" can produce approximately 298 watts (0.4 horsepower) for a similar period, at the end of which an undetermined period of rest and recovery will be required. At 298 watts,
880-456: A generator and load is shown in the adjacent diagram. The generator is represented by an abstract generator consisting of an ideal voltage source and an internal impedance. The generator's V G {\displaystyle V_{\text{G}}} and R G {\displaystyle R_{\text{G}}} parameters can be determined by measuring the winding resistance (corrected to operating temperature ), and measuring
968-630: A high potential electrode. The charge was generated using either of two mechanisms: electrostatic induction or the triboelectric effect . Such generators generated very high voltage and low current . Because of their inefficiency and the difficulty of insulating machines that produced very high voltages, electrostatic generators had low power ratings, and were never used for generation of commercially significant quantities of electric power. Their only practical applications were to power early X-ray tubes , and later in some atomic particle accelerators . The operating principle of electromagnetic generators
SECTION 10
#17328561743921056-494: A hydroelectric complex is constructed, it produces no direct waste, and almost always emits considerably less greenhouse gas than fossil fuel -powered energy plants. However, when constructed in lowland rainforest areas, where part of the forest is inundated, substantial amounts of greenhouse gases may be emitted. Construction of a hydroelectric complex can have significant environmental impact, principally in loss of arable land and population displacement. They also disrupt
1144-809: A large natural height difference between two waterways, such as a waterfall or mountain lake. A tunnel is constructed to take water from the high reservoir to the generating hall built in a cavern near the lowest point of the water tunnel and a horizontal tailrace taking water away to the lower outlet waterway. A simple formula for approximating electric power production at a hydroelectric station is: P = − η ( m ˙ g Δ h ) = − η ( ( ρ V ˙ ) g Δ h ) {\displaystyle P=-\eta \ ({\dot {m}}g\ \Delta h)=-\eta \ ((\rho {\dot {V}})\ g\ \Delta h)} where Efficiency
1232-451: A larger amount of methane than those in temperate areas. Like other non-fossil fuel sources, hydropower also has no emissions of sulfur dioxide, nitrogen oxides, or other particulates. Reservoirs created by hydroelectric schemes often provide facilities for water sports , and become tourist attractions themselves. In some countries, aquaculture in reservoirs is common. Multi-use dams installed for irrigation support agriculture with
1320-446: A magnetic field produces a current which changes direction with each 180° rotation, an alternating current (AC). However many early uses of electricity required direct current (DC). In the first practical electric generators, called dynamos , the AC was converted into DC with a commutator , a set of rotating switch contacts on the armature shaft. The commutator reversed the connection of
1408-403: A million amperes , because the homopolar generator can be made to have very low internal resistance. A magnetohydrodynamic generator directly extracts electric power from moving hot gases through a magnetic field, without the use of rotating electromagnetic machinery. MHD generators were originally developed because the output of a plasma MHD generator is a flame, well able to heat the boilers of
1496-586: A positive risk adjusted return, unless appropriate risk management measures are put in place. While many hydroelectric projects supply public electricity networks, some are created to serve specific industrial enterprises. Dedicated hydroelectric projects are often built to provide the substantial amounts of electricity needed for aluminium electrolytic plants, for example. The Grand Coulee Dam switched to support Alcoa aluminium in Bellingham, Washington , United States for American World War II airplanes before it
1584-545: A relatively constant water supply. Large hydro dams can control floods, which would otherwise affect people living downstream of the project. Managing dams which are also used for other purposes, such as irrigation , is complicated. In 2021 the IEA called for "robust sustainability standards for all hydropower development with streamlined rules and regulations". Large reservoirs associated with traditional hydroelectric power stations result in submersion of extensive areas upstream of
1672-526: A result of climate change . One study from the Colorado River in the United States suggest that modest climate changes, such as an increase in temperature in 2 degree Celsius resulting in a 10% decline in precipitation, might reduce river run-off by up to 40%. Brazil in particular is vulnerable due to its heavy reliance on hydroelectricity, as increasing temperatures, lower water flow and alterations in
1760-478: A series of discoveries, the dynamo was succeeded by many later inventions, especially the AC alternator , which was capable of generating alternating current . It is commonly known to be the Synchronous Generators (SGs). The synchronous machines are directly connected to the grid and need to be properly synchronized during startup. Moreover, they are excited with special control to enhance the stability of
1848-487: A sliding magnet moves back and forth through a solenoid , a copper wire or a coil. An alternating current is induced in the wire, or loops of wire, by Faraday's law of induction each time the magnet slides through. This type of generator is used in the Faraday flashlight . Larger linear electricity generators are used in wave power schemes. Grid-connected generators deliver power at a constant frequency. For generators of
SECTION 20
#17328561743921936-434: A small DC voltage . This design was inefficient, due to self-cancelling counterflows of current in regions of the disk that were not under the influence of the magnetic field. While current was induced directly underneath the magnet, the current would circulate backwards in regions that were outside the influence of the magnetic field. This counterflow limited the power output to the pickup wires and induced waste heating of
2024-448: A small TV/radio). Even smaller turbines of 200–300 W may power a few homes in a developing country with a drop of only 1 m (3 ft). A Pico-hydro setup is typically run-of-the-river , meaning that dams are not used, but rather pipes divert some of the flow, drop this down a gradient, and through the turbine before returning it to the stream. An underground power station is generally used at large facilities and makes use of
2112-455: A source of low-cost renewable energy. Alternatively, small hydro projects may be built in isolated areas that would be uneconomic to serve from a grid, or in areas where there is no national electrical distribution network. Since small hydro projects usually have minimal reservoirs and civil construction work, they are seen as having a relatively low environmental impact compared to large hydro. This decreased environmental impact depends strongly on
2200-450: A stable power supply. Electric scooters with regenerative braking have become popular all over the world. Engineers use kinetic energy recovery systems on the scooter to reduce energy consumption and increase its range up to 40-60% by simply recovering energy using the magnetic brake, which generates electric energy for further use. Modern vehicles reach speed up to 25–30 km/h and can run up to 35–40 km. An engine-generator
2288-414: A start-up time of the order of a few minutes. Although battery power is quicker its capacity is tiny compared to hydro. It takes less than 10 minutes to bring most hydro units from cold start-up to full load; this is quicker than nuclear and almost all fossil fuel power. Power generation can also be decreased quickly when there is a surplus power generation. Hence the limited capacity of hydropower units
2376-581: A total of 1,500 terawatt-hours (TWh) of electrical energy in one full cycle" which was "about 170 times more energy than the global fleet of pumped storage hydropower plants". Battery storage capacity is not expected to overtake pumped storage during the 2020s. When used as peak power to meet demand, hydroelectricity has a higher value than baseload power and a much higher value compared to intermittent energy sources such as wind and solar. Hydroelectric stations have long economic lives, with some plants still in service after 50–100 years. Operating labor cost
2464-417: A water- or wind-powered generator to trickle-charge the batteries. A small propeller , wind turbine or turbine is connected to a low-power generator to supply currents at typical wind or cruising speeds. Recreational vehicles need an extra power supply to power their onboard accessories, including air conditioning units, and refrigerators. An RV power plug is connected to the electric generator to obtain
2552-710: A year's worth of rain fell within 24 hours (see 1975 Banqiao Dam failure ). The resulting flood resulted in the deaths of 26,000 people, and another 145,000 from epidemics. Millions were left homeless. The creation of a dam in a geologically inappropriate location may cause disasters such as 1963 disaster at Vajont Dam in Italy, where almost 2,000 people died. Electrical generator In addition to electricity- and motion-based designs, photovoltaic and fuel cell powered generators use solar power and hydrogen-based fuels, respectively, to generate electrical output. The reverse conversion of electrical energy into mechanical energy
2640-448: Is hydroelectric power on a scale serving a small community or industrial plant. The definition of a small hydro project varies but a generating capacity of up to 10 megawatts (MW) is generally accepted as the upper limit. This may be stretched to 25 MW and 30 MW in Canada and the United States. Small hydro stations may be connected to conventional electrical distribution networks as
2728-627: Is also usually low, as plants are automated and have few personnel on site during normal operation. Where a dam serves multiple purposes, a hydroelectric station may be added with relatively low construction cost, providing a useful revenue stream to offset the costs of dam operation. It has been calculated that the sale of electricity from the Three Gorges Dam will cover the construction costs after 5 to 8 years of full generation. However, some data shows that in most countries large hydropower dams will be too costly and take too long to build to deliver
Pehuenche Hydroelectric Plant - Misplaced Pages Continue
2816-562: Is an industrial facility that generates electricity . Most power stations contain one or more generators, or spinning machines converting mechanical power into three-phase electrical power . The relative motion between a magnetic field and a conductor creates an electric current . The energy source harnessed to turn the generator varies widely. Most power stations in the world burn fossil fuels such as coal , oil , and natural gas to generate electricity. Cleaner sources include nuclear power , and increasingly use renewables such as
2904-400: Is done by an electric motor , and motors and generators are very similar. Many motors can generate electricity from mechanical energy. Electromagnetic generators fall into one of two broad categories, dynamos and alternators. Mechanically, a generator consists of a rotating part and a stationary part which together form a magnetic circuit : One of these parts generates a magnetic field,
2992-466: Is highest in the winter when solar energy is at a minimum. Pico hydro is hydroelectric power generation of under 5 kW . It is useful in small, remote communities that require only a small amount of electricity. For example, the 1.1 kW Intermediate Technology Development Group Pico Hydro Project in Kenya supplies 57 homes with very small electric loads (e.g., a couple of lights and a phone charger, or
3080-445: Is initially produced during construction of the project, and some methane is given off annually by reservoirs, hydro has one of the lowest lifecycle greenhouse gas emissions for electricity generation. The low greenhouse gas impact of hydroelectricity is found especially in temperate climates . Greater greenhouse gas emission impacts are found in the tropical regions because the reservoirs of power stations in tropical regions produce
3168-471: Is more than all other renewable sources combined and also more than nuclear power . Hydropower can provide large amounts of low-carbon electricity on demand, making it a key element for creating secure and clean electricity supply systems. A hydroelectric power station that has a dam and reservoir is a flexible source, since the amount of electricity produced can be increased or decreased in seconds or minutes in response to varying electricity demand. Once
3256-462: Is not an energy source, and appears as a negative number in listings. Run-of-the-river hydroelectric stations are those with small or no reservoir capacity, so that only the water coming from upstream is available for generation at that moment, and any oversupply must pass unused. A constant supply of water from a lake or existing reservoir upstream is a significant advantage in choosing sites for run-of-the-river. A tidal power station makes use of
3344-452: Is not generally used to produce base power except for vacating the flood pool or meeting downstream needs. Instead, it can serve as backup for non-hydro generators. The major advantage of conventional hydroelectric dams with reservoirs is their ability to store water at low cost for dispatch later as high value clean electricity. In 2021, the IEA estimated that the "reservoirs of all existing conventional hydropower plants combined can store
3432-410: Is often higher (that is, closer to 1) with larger and more modern turbines. Annual electric energy production depends on the available water supply. In some installations, the water flow rate can vary by a factor of 10:1 over the course of a year. Hydropower is a flexible source of electricity since stations can be ramped up and down very quickly to adapt to changing energy demands. Hydro turbines have
3520-497: Is provided by one or more electromagnets, which are usually called field coils. Large power generation dynamos are now rarely seen due to the now nearly universal use of alternating current for power distribution. Before the adoption of AC, very large direct-current dynamos were the only means of power generation and distribution. AC has come to dominate due to the ability of AC to be easily transformed to and from very high voltages to permit low losses over large distances. Through
3608-415: Is self- excited , i.e. its field electromagnets are powered by the machine's own output. Other types of DC generators use a separate source of direct current to energise their field magnets. A homopolar generator is a DC electrical generator comprising an electrically conductive disc or cylinder rotating in a plane perpendicular to a uniform static magnetic field. A potential difference is created between
Pehuenche Hydroelectric Plant - Misplaced Pages Continue
3696-405: Is the ability to independently supply electricity, allowing the units to serve as backup power sources. A generator can also be driven by human muscle power (for instance, in field radio station equipment). Human powered electric generators are commercially available, and have been the project of some DIY enthusiasts. Typically operated by means of pedal power, a converted bicycle trainer, or
3784-485: Is the combination of an electrical generator and an engine ( prime mover ) mounted together to form a single piece of self-contained equipment. The engines used are usually piston engines, but gas turbines can also be used, and there are even hybrid diesel-gas units, called dual-fuel units. Many different versions of engine-generators are available – ranging from very small portable petrol powered sets to large turbine installations. The primary advantage of engine-generators
3872-657: The Bonneville Dam in 1937 and being recognized by the Flood Control Act of 1936 as the premier federal flood control agency. Hydroelectric power stations continued to become larger throughout the 20th century. Hydropower was referred to as "white coal". Hoover Dam 's initial 1,345 MW power station was the world's largest hydroelectric power station in 1936; it was eclipsed by the 6,809 MW Grand Coulee Dam in 1942. The Itaipu Dam opened in 1984 in South America as
3960-781: The Deptford Power Station for the London Electric Supply Corporation in 1887 using an alternating current system. On its completion in 1891, it was the first truly modern power station, supplying high-voltage AC power that was then "stepped down" for consumer use on each street. This basic system remains in use today around the world. After 1891, polyphase alternators were introduced to supply currents of multiple differing phases. Later alternators were designed for varying alternating-current frequencies between sixteen and about one hundred hertz, for use with arc lighting, incandescent lighting and electric motors. As
4048-778: The International Exhibition of Hydropower and Tourism , with over one million visitors 1925. By 1920, when 40% of the power produced in the United States was hydroelectric, the Federal Power Act was enacted into law. The Act created the Federal Power Commission to regulate hydroelectric power stations on federal land and water. As the power stations became larger, their associated dams developed additional purposes, including flood control , irrigation and navigation . Federal funding became necessary for large-scale development, and federally owned corporations, such as
4136-605: The Tennessee Valley Authority (1933) and the Bonneville Power Administration (1937) were created. Additionally, the Bureau of Reclamation which had begun a series of western US irrigation projects in the early 20th century, was now constructing large hydroelectric projects such as the 1928 Hoover Dam . The United States Army Corps of Engineers was also involved in hydroelectric development, completing
4224-569: The Vulcan Street Plant , began operating September 30, 1882, in Appleton, Wisconsin , with an output of about 12.5 kilowatts. By 1886 there were 45 hydroelectric power stations in the United States and Canada; and by 1889 there were 200 in the United States alone. At the beginning of the 20th century, many small hydroelectric power stations were being constructed by commercial companies in mountains near metropolitan areas. Grenoble , France held
4312-506: The potential energy of dammed water driving a water turbine and generator . The power extracted from the water depends on the volume and on the difference in height between the source and the water's outflow. This height difference is called the head . A large pipe (the " penstock ") delivers water from the reservoir to the turbine. This method produces electricity to supply high peak demands by moving water between reservoirs at different elevations. At times of low electrical demand,
4400-668: The Air ), medical and other needs in remote stations and towns. A tachogenerator is an electromechanical device which produces an output voltage proportional to its shaft speed. It may be used for a speed indicator or in a feedback speed control system. Tachogenerators are frequently used to power tachometers to measure the speeds of electric motors, engines, and the equipment they power. Generators generate voltage roughly proportional to shaft speed. With precise construction and design, generators can be built to produce very precise voltages for certain ranges of shaft speeds. An equivalent circuit of
4488-463: The IEA released a main-case forecast of 141 GW generated by hydropower over 2022–2027, which is slightly lower than deployment achieved from 2017–2022. Because environmental permitting and construction times are long, they estimate hydropower potential will remain limited, with only an additional 40 GW deemed possible in the accelerated case. In 2021 the IEA said that major modernisation refurbishments are required. Most hydroelectric power comes from
SECTION 50
#17328561743924576-464: The ability to transport particles heavier than itself downstream. This has a negative effect on dams and subsequently their power stations, particularly those on rivers or within catchment areas with high siltation. Siltation can fill a reservoir and reduce its capacity to control floods along with causing additional horizontal pressure on the upstream portion of the dam. Eventually, some reservoirs can become full of sediment and useless or over-top during
4664-473: The armature winding to the circuit every 180° rotation of the shaft, creating a pulsing DC current. One of the first dynamos was built by Hippolyte Pixii in 1832. The dynamo was the first electrical generator capable of delivering power for industry. The Woolrich Electrical Generator of 1844, now in Thinktank, Birmingham Science Museum , is the earliest electrical generator used in an industrial process. It
4752-436: The armature winding. When the generator first starts to turn, the small amount of remanent magnetism present in the iron core provides a magnetic field to get it started, generating a small current in the armature. This flows through the field coils, creating a larger magnetic field which generates a larger armature current. This "bootstrap" process continues until the magnetic field in the core levels off due to saturation and
4840-402: The assistance of power electronic devices, these can regulate the output frequency to a desired value over a wider range of generator shaft speeds. Alternatively, a standard generator can be used with no attempt to regulate frequency, and the resulting power converted to the desired output frequency with a rectifier and converter combination. Allowing a wider range of prime mover speeds can improve
4928-458: The average "healthy human" becomes exhausted within 10 minutes. The net electrical power that can be produced will be less, due to the efficiency of the generator. Portable radio receivers with a crank are made to reduce battery purchase requirements, see clockwork radio . During the mid 20th century, pedal powered radios were used throughout the Australian outback , to provide schooling ( School of
5016-595: The balance between stream flow and power production. Micro hydro means hydroelectric power installations that typically produce up to 100 kW of power. These installations can provide power to an isolated home or small community, or are sometimes connected to electric power networks. There are many of these installations around the world, particularly in developing nations as they can provide an economical source of energy without purchase of fuel. Micro hydro systems complement photovoltaic solar energy systems because in many areas water flow, and thus available hydro power,
5104-409: The bicycle's tire on an as-needed basis, and hub dynamos which are directly attached to the bicycle's drive train. The name is conventional as they are small permanent-magnet alternators, not self-excited DC machines as are dynamos . Some electric bicycles are capable of regenerative braking , where the drive motor is used as a generator to recover some energy during braking. Sailing boats may use
5192-597: The center of the disc and the rim (or ends of the cylinder), the electrical polarity depending on the direction of rotation and the orientation of the field. It is also known as a unipolar generator , acyclic generator , disk dynamo , or Faraday disc . The voltage is typically low, on the order of a few volts in the case of small demonstration models, but large research generators can produce hundreds of volts, and some systems have multiple generators in series to produce an even larger voltage. They are unusual in that they can produce tremendous electric current, some more than
5280-436: The copper disc. Later homopolar generators would solve this problem by using an array of magnets arranged around the disc perimeter to maintain a steady field effect in one current-flow direction. Another disadvantage was that the output voltage was very low, due to the single current path through the magnetic flux. Experimenters found that using multiple turns of wire in a coil could produce higher, more useful voltages. Since
5368-404: The daily rise and fall of ocean water due to tides; such sources are highly predictable, and if conditions permit construction of reservoirs, can also be dispatchable to generate power during high demand periods. Less common types of hydro schemes use water's kinetic energy or undammed sources such as undershot water wheels . Tidal power is viable in a relatively small number of locations around
SECTION 60
#17328561743925456-505: The dams, sometimes destroying biologically rich and productive lowland and riverine valley forests, marshland and grasslands. Damming interrupts the flow of rivers and can harm local ecosystems, and building large dams and reservoirs often involves displacing people and wildlife. The loss of land is often exacerbated by habitat fragmentation of surrounding areas caused by the reservoir. Hydroelectric projects can be disruptive to surrounding aquatic ecosystems both upstream and downstream of
5544-690: The effect of forest decay. Another disadvantage of hydroelectric dams is the need to relocate the people living where the reservoirs are planned. In 2000, the World Commission on Dams estimated that dams had physically displaced 40–80 million people worldwide. Because large conventional dammed-hydro facilities hold back large volumes of water, a failure due to poor construction, natural disasters or sabotage can be catastrophic to downriver settlements and infrastructure. During Typhoon Nina in 1975 Banqiao Dam in Southern China failed when more than
5632-399: The excess generation capacity is used to pump water into the higher reservoir, thus providing demand side response . When the demand becomes greater, water is released back into the lower reservoir through a turbine. In 2021 pumped-storage schemes provided almost 85% of the world's 190 GW of grid energy storage and improve the daily capacity factor of the generation system. Pumped storage
5720-413: The first major industrial uses of electricity. For example, in the 1870s Siemens used electromagnetic dynamos to power electric arc furnaces for the production of metals and other materials. The dynamo machine that was developed consisted of a stationary structure, which provides the magnetic field, and a set of rotating windings which turn within that field. On larger machines the constant magnetic field
5808-476: The generator reaches a steady state power output. Very large power station generators often utilize a separate smaller generator to excite the field coils of the larger. In the event of a severe widespread power outage where islanding of power stations has occurred, the stations may need to perform a black start to excite the fields of their largest generators, in order to restore customer power service. A dynamo uses commutators to produce direct current. It
5896-492: The largest amount for the region since 1990. Meanwhile, globally, hydropower generation increased by 70 TWh (up 2%) in 2022 and remains the largest renewable energy source, surpassing all other technologies combined. Hydropower has been used since ancient times to grind flour and perform other tasks. In the late 18th century hydraulic power provided the energy source needed for the start of the Industrial Revolution . In
5984-731: The largest, producing 14 GW , but was surpassed in 2008 by the Three Gorges Dam in China at 22.5 GW . Hydroelectricity would eventually supply some countries, including Norway , Democratic Republic of the Congo , Paraguay and Brazil , with over 85% of their electricity. In 2021 the International Energy Agency (IEA) said that more efforts are needed to help limit climate change . Some countries have highly developed their hydropower potential and have very little room for growth: Switzerland produces 88% of its potential and Mexico 80%. In 2022,
6072-609: The late 19th century, the electrical generator was developed and could now be coupled with hydraulics. The growing demand arising from the Industrial Revolution would drive development as well. In 1878, the world's first hydroelectric power scheme was developed at Cragside in Northumberland , England, by William Armstrong . It was used to power a single arc lamp in his art gallery. The old Schoelkopf Power Station No. 1 , US, near Niagara Falls , began to produce electricity in 1881. The first Edison hydroelectric power station,
6160-488: The mid-1700s, French engineer Bernard Forest de Bélidor published Architecture Hydraulique , which described vertical- and horizontal-axis hydraulic machines, and in 1771 Richard Arkwright 's combination of water power , the water frame , and continuous production played a significant part in the development of the factory system, with modern employment practices. In the 1840s, hydraulic power networks were developed to generate and transmit hydro power to end users. By
6248-651: The natural ecology of the river involved, affecting habitats and ecosystems, and siltation and erosion patterns. While dams can ameliorate the risks of flooding, dam failure can be catastrophic. In 2021, global installed hydropower electrical capacity reached almost 1,400 GW, the highest among all renewable energy technologies. Hydroelectricity plays a leading role in countries like Brazil, Norway and China. but there are geographical limits and environmental issues. Tidal power can be used in coastal regions. China added 24 GW in 2022, accounting for nearly three-quarters of global hydropower capacity additions. Europe added 2 GW,
6336-467: The other has a wire winding in which the changing field induces an electric current: The armature can be on either the rotor or the stator, depending on the design, with the field coil or magnet on the other part. Before the connection between magnetism and electricity was discovered, electrostatic generators were invented. They operated on electrostatic principles, by using moving electrically charged belts, plates and disks that carried charge to
6424-413: The output voltage is proportional to the number of turns, generators could be easily designed to produce any desired voltage by varying the number of turns. Wire windings became a basic feature of all subsequent generator designs. Independently of Faraday, Ányos Jedlik started experimenting in 1827 with the electromagnetic rotating devices which he called electromagnetic self-rotors . In the prototype of
6512-443: The overall energy production of an installation, at the cost of more complex generators and controls. For example, where a wind turbine operating at fixed frequency might be required to spill energy at high wind speeds, a variable speed system can allow recovery of energy contained during periods of high wind speed. A power station , also known as a power plant or powerhouse and sometimes generating station or generating plant ,
6600-633: The plant site. Generation of hydroelectric power changes the downstream river environment. Water exiting a turbine usually contains very little suspended sediment, which can lead to scouring of river beds and loss of riverbanks. The turbines also will kill large portions of the fauna passing through, for instance 70% of the eel passing a turbine will perish immediately. Since turbine gates are often opened intermittently, rapid or even daily fluctuations in river flow are observed. Drought and seasonal changes in rainfall can severely limit hydropower. Water may also be lost by evaporation. When water flows it has
6688-472: The power system. Alternating current generating systems were known in simple forms from Michael Faraday 's original discovery of the magnetic induction of electric current . Faraday himself built an early alternator. His machine was a "rotating rectangle", whose operation was heteropolar : each active conductor passed successively through regions where the magnetic field was in opposite directions. Large two-phase alternating current generators were built by
6776-450: The rainfall regime, could reduce total energy production by 7% annually by the end of the century. Lower positive impacts are found in the tropical regions. In lowland rainforest areas, where inundation of a part of the forest is necessary, it has been noted that the reservoirs of power plants produce substantial amounts of methane . This is due to plant material in flooded areas decaying in an anaerobic environment and forming methane,
6864-399: The requirements for larger scale power generation increased, a new limitation rose: the magnetic fields available from permanent magnets. Diverting a small amount of the power generated by the generator to an electromagnetic field coil allowed the generator to produce substantially more power. This concept was dubbed self-excitation . The field coils are connected in series or parallel with
6952-449: The single-pole electric starter (finished between 1852 and 1854) both the stationary and the revolving parts were electromagnetic. It was also the discovery of the principle of dynamo self-excitation , which replaced permanent magnet designs. He also may have formulated the concept of the dynamo in 1861 (before Siemens and Wheatstone ) but did not patent it as he thought he was not the first to realize this. A coil of wire rotating in
7040-510: The stator field. Wheatstone's design was similar to Siemens', with the difference that in the Siemens design the stator electromagnets were in series with the rotor, but in Wheatstone's design they were in parallel. The use of electromagnets rather than permanent magnets greatly increased the power output of a dynamo and enabled high power generation for the first time. This invention led directly to
7128-611: The sun , wind , waves and running water . Motor vehicles require electrical energy to power their instrumentation, keep the engine itself operating, and recharge their batteries. Until about the 1960s motor vehicles tended to use DC generators (dynamos) with electromechanical regulators. Following the historical trend above and for many of the same reasons, these have now been replaced by alternators with built-in rectifier circuits. Bicycles require energy to power running lights and other equipment. There are two common kinds of generator in use on bicycles: bottle dynamos which engage
7216-476: The synchronous or induction type, the primer mover speed turning the generator shaft must be at a particular speed (or narrow range of speed) to deliver power at the required utility frequency. Mechanical speed-regulating devices may waste a significant fraction of the input energy to maintain a required fixed frequency. Where it is impractical or undesired to tightly regulate the speed of the prime mover, doubly fed electric machines may be used as generators. With
7304-421: The turning magnetic field is provided by induction from the one they have. They also do not require speed governor equipment as they inherently operate at the connected grid frequency. An induction generator must be powered with a leading voltage; this is usually done by connection to an electrical grid, or by powering themselves with phase correcting capacitors. In the simplest form of linear electric generator,
7392-524: The world are hydroelectric power stations, with some hydroelectric facilities capable of generating more than double the installed capacities of the current largest nuclear power stations . Although no official definition exists for the capacity range of large hydroelectric power stations, facilities from over a few hundred megawatts are generally considered large hydroelectric facilities. Currently, only seven facilities over 10 GW ( 10,000 MW ) are in operation worldwide, see table below. Small hydro
7480-539: The world. The classification of hydropower plants starts with two top-level categories: The classification of a plant as an SHP or LHP is primarily based on its nameplate capacity , the threshold varies by the country, but in any case a plant with the capacity of 50 MW or more is considered an LHP. As an example, for China, SHP power is below 25 MW, for India - below 15 MW, most of Europe - below 10 MW. The SHP and LHP categories are further subdivided into many subcategories that are not mutually exclusive. For example,
7568-573: Was allowed to provide irrigation and power to citizens (in addition to aluminium power) after the war. In Suriname , the Brokopondo Reservoir was constructed to provide electricity for the Alcoa aluminium industry. New Zealand 's Manapouri Power Station was constructed to supply electricity to the aluminium smelter at Tiwai Point . Since hydroelectric dams do not use fuel, power generation does not produce carbon dioxide . While carbon dioxide
7656-427: Was discovered in the years of 1831–1832 by Michael Faraday . The principle, later called Faraday's law , is that an electromotive force is generated in an electrical conductor which encircles a varying magnetic flux . Faraday also built the first electromagnetic generator, called the Faraday disk ; a type of homopolar generator , using a copper disc rotating between the poles of a horseshoe magnet . It produced
7744-590: Was used by the firm of Elkingtons for commercial electroplating . The modern dynamo, fit for use in industrial applications, was invented independently by Sir Charles Wheatstone , Werner von Siemens and Samuel Alfred Varley . Varley took out a patent on 24 December 1866, while Siemens and Wheatstone both announced their discoveries on 17 January 1867 by delivering papers at the Royal Society . The "dynamo-electric machine" employed self-powering electromagnetic field coils rather than permanent magnets to create
#391608