A combustor is a component or area of a gas turbine , ramjet , or scramjet engine where combustion takes place. It is also known as a burner , burner can , combustion chamber or flame holder . In a gas turbine engine, the combustor or combustion chamber is fed high-pressure air by the compression system. The combustor then heats this air at constant pressure as the fuel/air mix burns. As it burns the fuel/air mix heats and rapidly expands. The burned mix is exhausted from the combustor through the nozzle guide vanes to the turbine. In the case of ramjet or scramjet engines, the exhaust is directly fed out through the nozzle.
98-671: The Klimov TV3-117 is a Soviet gas turbine aero engine . It is used in most medium lift, utility, and attack helicopters designed by the Mil and Kamov design bureaus. The TV3-117 turboshaft engine was developed in 1974. Later the Klimov TV3-117 was installed on 95% of all helicopters designed by Mil and Kamov Engineering Centre. The engine has been produced in many variants. Data from Brassey's World Aircraft & Systems Directory 1999/2000 Comparable engines Related lists Gas turbine A gas turbine or gas turbine engine
196-415: A turbojet , driving the fan of a turbofan , rotor or accessory of a turboshaft , and gear reduction and propeller of a turboprop . If the engine has a power turbine added to drive an industrial generator or a helicopter rotor, the exit pressure will be as close to the entry pressure as possible with only enough energy left to overcome the pressure losses in the exhaust ducting and expel the exhaust. For
294-409: A turboprop engine there will be a particular balance between propeller power and jet thrust which gives the most economical operation. In a turbojet engine only enough pressure and energy is extracted from the flow to drive the compressor and other components. The remaining high-pressure gases are accelerated through a nozzle to provide a jet to propel an aircraft. The smaller the engine, the higher
392-420: A turbopump to permit the use of lightweight, low-pressure tanks, reducing the empty weight of the rocket. A turboprop engine is a turbine engine that drives an aircraft propeller using a reduction gear to translate high turbine section operating speed (often in the 10s of thousands) into low thousands necessary for efficient propeller operation. The benefit of using the turboprop engine is to take advantage of
490-452: A turboshaft design. They supply: Industrial gas turbines differ from aeronautical designs in that the frames, bearings, and blading are of heavier construction. They are also much more closely integrated with the devices they power—often an electric generator —and the secondary-energy equipment that is used to recover residual energy (largely heat). They range in size from portable mobile plants to large, complex systems weighing more than
588-413: A buildup on the outside of the blades. Nickel-based superalloys boast improved strength and creep resistance due to their composition and resultant microstructure . The gamma (γ) FCC nickel is alloyed with aluminum and titanium in order to precipitate a uniform dispersion of the coherent Ni 3 (Al,Ti) gamma-prime (γ') phases. The finely dispersed γ' precipitates impede dislocation motion and introduce
686-461: A centrifugal or axial compressor ). Heat is added in the combustion chamber and the specific volume of the gas increases, accompanied by a slight loss in pressure. During expansion through the stator and rotor passages in the turbine, irreversible energy transformation once again occurs. Fresh air is taken in, in place of the heat rejection. Air is taken in by a compressor, called a gas generator , with either an axial or centrifugal design, or
784-421: A combination of the two. This air is then ducted into the combustor section which can be of a annular , can , or can-annular design. In the combustor section, roughly 70% of the air from the compressor is ducted around the combustor itself for cooling purposes. The remaining roughly 30% the air is mixed with fuel and ignited by the already burning air-fuel mixture , which then expands producing power across
882-517: A few dozen hours per year—depending on the electricity demand and the generating capacity of the region. In areas with a shortage of base-load and load following power plant capacity or with low fuel costs, a gas turbine powerplant may regularly operate most hours of the day. A large single-cycle gas turbine typically produces 100 to 400 megawatts of electric power and has 35–40% thermodynamic efficiency . Industrial gas turbines that are used solely for mechanical drive or used in collaboration with
980-579: A gas turbine engine is its power to weight ratio. Since significant useful work can be generated by a relatively lightweight engine, gas turbines are perfectly suited for aircraft propulsion. Thrust bearings and journal bearings are a critical part of a design. They are hydrodynamic oil bearings or oil-cooled rolling-element bearings . Foil bearings are used in some small machines such as micro turbines and also have strong potential for use in small gas turbines/ auxiliary power units A major challenge facing turbine design, especially turbine blades ,
1078-487: A hundred tonnes housed in purpose-built buildings. When the gas turbine is used solely for shaft power, its thermal efficiency is about 30%. However, it may be cheaper to buy electricity than to generate it. Therefore, many engines are used in CHP (Combined Heat and Power) configurations that can be small enough to be integrated into portable container configurations. Gas turbines can be particularly efficient when waste heat from
SECTION 10
#17328587150721176-683: A large change in area in the combustor (rather than swirlers in many gas turbine combustors). That said, many ramjet combustors are also similar to traditional gas turbine combustors, such as the combustor in the ramjet used by the RIM-8 Talos missile, which used a can-type combustor. Scramjet ( supersonic combustion ramjet ) engines present a much different situation for the combustor than conventional gas turbine engines (scramjets are not gas turbines, as they generally have few or no moving parts). While scramjet combustors may be physically quite different from conventional combustors, they face many of
1274-418: A lesser extent, on cars, buses, and motorcycles. A key advantage of jets and turboprops for airplane propulsion – their superior performance at high altitude compared to piston engines, particularly naturally aspirated ones – is irrelevant in most automobile applications. Their power-to-weight advantage, though less critical than for aircraft, is still important. Gas turbines offer a high-powered engine in
1372-410: A local low pressure zone that forces some of the combustion products to recirculate, creating the high turbulence. However, the higher the turbulence, the higher the pressure loss will be for the combustor, so the dome and swirler must be carefully designed so as not to generate more turbulence than is needed to sufficiently mix the fuel and air. The fuel injector is responsible for introducing fuel to
1470-444: A pressure vessel. The combustion zones can also "communicate" with each other via liner holes or connecting tubes that allow some air to flow circumferentially. The exit flow from the can-annular combustor generally has a more uniform temperature profile, which is better for the turbine section. It also eliminates the need for each chamber to have its own igniter. Once the fire is lit in one or two cans, it can easily spread to and ignite
1568-532: A recovery steam generator differ from power generating sets in that they are often smaller and feature a dual shaft design as opposed to a single shaft. The power range varies from 1 megawatt up to 50 megawatts. These engines are connected directly or via a gearbox to either a pump or compressor assembly. The majority of installations are used within the oil and gas industries. Mechanical drive applications increase efficiency by around 2%. Oil and gas platforms require these engines to drive compressors to inject gas into
1666-446: A result of this close relation, a combustor that is well optimized for CO emissions is inherently well optimized for UHC emissions, so most design work focuses on CO emissions. Carbon monoxide is an intermediate product of combustion, and it is eliminated by oxidation . CO and OH react to form CO 2 and H . This process, which consumes the CO, requires a relatively long time ("relatively"
1764-416: A shaft work output in the process, used to drive the compressor; the unused energy comes out in the exhaust gases that can be repurposed for external work, such as directly producing thrust in a turbojet engine , or rotating a second, independent turbine (known as a power turbine ) that can be connected to a fan, propeller, or electrical generator. The purpose of the gas turbine determines the design so that
1862-420: A single can, rather than have to test the whole system). Can-type combustors are easy to maintain, as only a single can needs to be removed, rather than the whole combustion section. Most modern gas turbine engines (particularly for aircraft applications) do not use can combustors, as they often weigh more than alternatives. Additionally, the pressure drop across the can is generally higher than other combustors (on
1960-569: A threshold stress, increasing the stress required for the onset of creep. Furthermore, γ' is an ordered L1 2 phase that makes it harder for dislocations to shear past it. Further Refractory elements such as rhenium and ruthenium can be added in solid solution to improve creep strength. The addition of these elements reduces the diffusion of the gamma prime phase, thus preserving the fatigue resistance, strength, and creep resistance. The development of single crystal superalloys has led to significant improvements in creep resistance as well. Due to
2058-550: A very small and light package. However, they are not as responsive and efficient as small piston engines over the wide range of RPMs and powers needed in vehicle applications. In series hybrid vehicles, as the driving electric motors are mechanically detached from the electricity generating engine, the responsiveness, poor performance at low speed and low efficiency at low output problems are much less important. The turbine can be run at optimum speed for its power output, and batteries and ultracapacitors can supply power as needed, with
SECTION 20
#17328587150722156-491: Is a type of continuous flow internal combustion engine . The main parts common to all gas turbine engines form the power-producing part (known as the gas generator or core) and are, in the direction of flow: Additional components have to be added to the gas generator to suit its application. Common to all is an air inlet but with different configurations to suit the requirements of marine use, land use or flight at speeds varying from stationary to supersonic. A propelling nozzle
2254-418: Is achieved with the addition of an afterburner . The basic operation of the gas turbine is a Brayton cycle with air as the working fluid : atmospheric air flows through the compressor that brings it to higher pressure; energy is then added by spraying fuel into the air and igniting it so that the combustion generates a high-temperature flow; this high-temperature pressurized gas enters a turbine, producing
2352-427: Is added to produce thrust for flight. An extra turbine is added to drive a propeller ( turboprop ) or ducted fan ( turbofan ) to reduce fuel consumption (by increasing propulsive efficiency) at subsonic flight speeds. An extra turbine is also required to drive a helicopter rotor or land-vehicle transmission ( turboshaft ), marine propeller or electrical generator (power turbine). Greater thrust-to-weight ratio for flight
2450-405: Is air injected through holes in the liner at the end of the combustion chamber to cool the flue gas before it reaches the turbines. The air is carefully used to produce the uniform temperature profile desired in the combustor. However, as turbine blade technology improves, allowing them to withstand higher temperatures, dilution air is used less, allowing the use of more combustion air. Cooling air
2548-425: Is air that is injected through small holes in the liner to generate a layer (film) of cool air to protect the liner from the combustion temperatures. The implementation of cooling air has to be carefully designed so it does not directly interact with the combustion air and process. In some cases, as much as 50% of the inlet air is used as cooling air. There are several different methods of injecting this cooling air, and
2646-413: Is diverted through the injector, rather than the swirler. This type of injector also requires lower fuel pressures than the pressure atomizing type. The vaporizing fuel injector, the third type, is similar to the air blast injector in that primary air is mixed with the fuel as it is injected into the combustion zone. However, the fuel-air mixture travels through a tube within the combustion zone. Heat from
2744-414: Is oxygen injection, where oxygen is fed to the ignition area, helping the fuel easily combust. This is particularly useful in some aircraft applications where the engine may have to restart at high altitude. This is the main combustion air. It is highly compressed air from the high-pressure compressor (often decelerated via the diffuser) that is fed through the main channels in the dome of the combustor and
2842-500: Is reducing emissions, and the combustor is the primary contributor to a gas turbine's emissions. Generally speaking, there are five major types of emissions from gas turbine engines: smoke, carbon dioxide (CO 2 ), carbon monoxide (CO), unburned hydrocarbons (UHC), and nitrogen oxides (NO x ). Smoke is primarily mitigated by more evenly mixing the fuel with air. As discussed in the fuel injector section above, modern fuel injectors (such as airblast fuel injectors) evenly atomize
2940-677: Is reducing the creep that is induced by the high temperatures and stresses that are experienced during operation. Higher operating temperatures are continuously sought in order to increase efficiency, but come at the cost of higher creep rates. Several methods have therefore been employed in an attempt to achieve optimal performance while limiting creep, with the most successful ones being high performance coatings and single crystal superalloys . These technologies work by limiting deformation that occurs by mechanisms that can be broadly classified as dislocation glide, dislocation climb and diffusional flow. Protective coatings provide thermal insulation of
3038-401: Is the fully annular combustor. Annular combustors do away with the separate combustion zones and simply have a continuous liner and casing in a ring (the annulus). There are many advantages to annular combustors, including more uniform combustion, shorter size (therefore lighter), and less surface area. Additionally, annular combustors tend to have very uniform exit temperatures. They also have
Klimov TV3-117 - Misplaced Pages Continue
3136-678: Is used because the combustion process happens incredibly quickly), high temperatures, and high pressures. This fact means that a low-CO combustor has a long residence time (essentially the amount of time the gases are in the combustion chamber). Like CO, Nitrogen oxides (NO x ) are produced in the combustion zone. However, unlike CO, it is most produced during the conditions that CO is most consumed (high temperature, high pressure, long residence time). This means that, in general, reducing CO emissions results in an increase in NO x , and vice versa. This fact means that most successful emission reductions require
3234-475: Is used, it is possible to use exhaust air from the turbine as the primary combustion air. This effectively reduces global heat losses, although heat losses associated with the combustion exhaust remain inevitable. Closed-cycle gas turbines based on helium or supercritical carbon dioxide also hold promise for use with future high temperature solar and nuclear power generation. Gas turbines are often used on ships , locomotives , helicopters , tanks , and to
3332-405: Is usually used. Jet engines are referred to as operating wet when afterburning is being used and dry when the engine is used without afterburning. An engine producing maximum thrust wet is at maximum power or max reheat (this is the maximum power the engine can produce); an engine producing maximum thrust dry is at military power or max dry . As with the main combustor in a gas turbine,
3430-942: The Airbus A400M transport, Lockheed AC-130 and the 60-year-old Tupolev Tu-95 strategic bomber. While military turboprop engines can vary, in the civilian market there are two primary engines to be found: the Pratt & Whitney Canada PT6 , a free-turbine turboshaft engine, and the Honeywell TPE331 , a fixed turbine engine (formerly designated as the Garrett AiResearch 331). Aeroderivative gas turbines are generally based on existing aircraft gas turbine engines and are smaller and lighter than industrial gas turbines. Aeroderivatives are used in electrical power generation due to their ability to be shut down and handle load changes more quickly than industrial machines. They are also used in
3528-525: The BMW 801 . This, however, also translated into poor efficiency and reliability. More advanced gas turbines (such as those found in modern jet engines or combined cycle power plants) may have 2 or 3 shafts (spools), hundreds of compressor and turbine blades, movable stator blades, and extensive external tubing for fuel, oil and air systems; they use temperature resistant alloys, and are made with tight specifications requiring precision manufacture. All this often makes
3626-496: The Brayton cycle , also known as the "constant pressure cycle" . It is distinguished from the Otto cycle , in that all the processes (compression, ignition combustion, exhaust), occur at the same time, continuously. In a real gas turbine, mechanical energy is changed irreversibly (due to internal friction and turbulence) into pressure and thermal energy when the gas is compressed (in either
3724-434: The turbine . This expansion of the mixture then leaves the combustor section and has its velocity increased across the turbine section to strike the turbine blades, spinning the disc they are attached to, thus creating useful power. Of the power produced, 60-70% is solely used to power the gas generator. The remaining power is used to power what the engine is being used for, typically an aviation application, being thrust in
3822-499: The 1950s, were aimed at reducing the smoke produced by the engine. Once smoke was essentially eliminated, efforts turned in the 1970s to reducing other emissions, like unburned hydrocarbons and carbon monoxide (for more details, see the Emissions section below). The 1970s also saw improvement in combustor durability, as new manufacturing methods improved liner (see Components below) lifetime by nearly 100 times that of early liners. In
3920-481: The 1980s combustors began to improve their efficiency across the whole operating range; combustors tended to be highly efficient (99%+) at full power, but that efficiency dropped off at lower settings. Development over that decade improved efficiencies at lower levels. The 1990s and 2000s saw a renewed focus on reducing emissions, particularly nitrogen oxides . Combustor technology is still being actively researched and advanced, and much modern research focuses on improving
4018-453: The active species (typically vacancies) within the alloy and reducing dislocation and vacancy creep. It has been found that a coating of 1–200 μm can decrease blade temperatures by up to 200 °C (392 °F). Bond coats are directly applied onto the surface of the substrate using pack carburization and serve the dual purpose of providing improved adherence for the TBC and oxidation resistance for
Klimov TV3-117 - Misplaced Pages Continue
4116-510: The addition of a ducted fan are called turbofans or (rarely) fan-jets. These engines produce nearly 80% of their thrust by the ducted fan, which can be seen from the front of the engine. They come in two types, low-bypass turbofan and high bypass , the difference being the amount of air moved by the fan, called "bypass air". These engines offer the benefit of more thrust without extra fuel consumption. Gas turbines are also used in many liquid-fuel rockets , where gas turbines are used to power
4214-443: The afterburner has both a case and a liner, serving the same purpose as their main combustor counterparts. One major difference between a main combustor and an afterburner is that the temperature rise is not constrained by a turbine section, therefore afterburners tend to have a much higher temperature rise than main combustors. Another difference is that afterburners are not designed to mix fuel as well as primary combustors, so not all
4312-401: The blade and offer oxidation and corrosion resistance. Thermal barrier coatings (TBCs) are often stabilized zirconium dioxide -based ceramics and oxidation/corrosion resistant coatings (bond coats) typically consist of aluminides or MCrAlY (where M is typically Fe and/or Cr) alloys. Using TBCs limits the temperature exposure of the superalloy substrate, thereby decreasing the diffusivity of
4410-420: The closely related form of the turbocharger . The turbocharger is basically a compact and simple free shaft radial gas turbine which is driven by the piston engine's exhaust gas . The centripetal turbine wheel drives a centrifugal compressor wheel through a common rotating shaft. This wheel supercharges the engine air intake to a degree that can be controlled by means of a wastegate or by dynamically modifying
4508-406: The combination of several methods. An afterburner (or reheat) is an additional component added to some jet engines , primarily those on military supersonic aircraft. Its purpose is to provide a temporary increase in thrust , both for supersonic flight and for takeoff (as the high wing loading typical of supersonic aircraft designs means that take-off speed is very high). On military aircraft
4606-533: The combustion process. Early gas turbine engines used a single chamber known as a can-type combustor. Today three main configurations exist: can, annular, and cannular (also referred to as can-annular tubo-annular). Afterburners are often considered another type of combustor. Combustors play a crucial role in determining many of an engine's operating characteristics, such as fuel efficiency , levels of emissions, and transient response (the response to changing conditions such as fuel flow and air speed). The objective of
4704-535: The combustion zone and, along with the swirler (above), is responsible for mixing the fuel and air. There are four primary types of fuel injectors; pressure-atomizing, air blast, vaporizing, and premix/prevaporizing injectors. Pressure atomizing fuel injectors rely on high fuel pressures (as much as 3,400 kilopascals (500 psi)) to atomize the fuel. This type of fuel injector has the advantage of being very simple, but it has several disadvantages. The fuel system must be robust enough to withstand such high pressures, and
4802-474: The combustion zone is transferred to the fuel-air mixture, vaporizing some of the fuel (mixing it better) before it is combusted. This method allows the fuel to be combusted with less thermal radiation , which helps protect the liner. However, the vaporizer tube may have serious durability problems with low fuel flow within it (the fuel inside of the tube protects the tube from the combustion heat). The premixing/prevaporizing injectors work by mixing or vaporizing
4900-511: The combustion zone where the fuel and air are already mixed, but it needs to be far enough upstream so that it is not damaged by the combustion itself. Once the combustion is initially started by the igniter, it is self-sustaining, and the igniter is no longer used. In can-annular and annular combustors (see Types of combustors below), the flame can propagate from one combustion zone to another, so igniters are not needed at each one. In some systems ignition-assist techniques are used. One such method
4998-564: The combustion zone. The liner must be designed and built to withstand extended high-temperature cycles. For that reason liners tend to be made from superalloys like Hastelloy X . Furthermore, even though high-performance alloys are used, the liners must be cooled with air flow. Some combustors also make use of thermal barrier coatings . However, air cooling is still required. In general, there are two main types of liner cooling; film cooling and transpiration cooling. Film cooling works by injecting (by one of several methods) cool air from outside of
SECTION 50
#17328587150725096-512: The combustor in a gas turbine is to add energy to the system to power the turbines , and produce a high-velocity gas to exhaust through the nozzle in aircraft applications. As with any engineering challenge, accomplishing this requires balancing many design considerations, such as the following: Sources: Advancements in combustor technology focused on several distinct areas; emissions, operating range, and durability. Early jet engines produced large amounts of smoke, so early combustor advances, in
5194-473: The compressor and the turbine with a compressed air store. In a conventional turbine, up to half the generated power is used driving the compressor. In a compressed air energy storage configuration, power is used to drive the compressor, and the compressed air is released to operate the turbine when required. Turboshaft engines are used to drive compressors in gas pumping stations and natural gas liquefaction plants. They are also used in aviation to power all but
5292-514: The compressor, where it is fed outside of the liner (inside of which is where the combustion is taking place). The secondary air is then fed, usually through slits in the liner, into the combustion zone to cool the liner via thin film cooling. In most applications, multiple cans are arranged around the central axis of the engine, and their shared exhaust is fed to the turbine(s). Can-type combustors were most widely used in early gas turbine engines, owing to their ease of design and testing (one can test
5390-504: The compressor/shaft/turbine rotor assembly, with other moving parts in the fuel system. This, in turn, can translate into price. For instance, costing 10,000 ℛℳ for materials, the Jumo 004 proved cheaper than the Junkers 213 piston engine, which was 35,000 ℛℳ , and needed only 375 hours of lower-skill labor to complete (including manufacture, assembly, and shipping), compared to 1,400 for
5488-444: The construction of a simple gas turbine more complicated than a piston engine. Moreover, to reach optimum performance in modern gas turbine power plants the gas needs to be prepared to exact fuel specifications. Fuel gas conditioning systems treat the natural gas to reach the exact fuel specification prior to entering the turbine in terms of pressure, temperature, gas composition, and the related Wobbe index . The primary advantage of
5586-400: The diffuser must be designed to limit the flow distortion as much as possible by avoiding flow effects like boundary layer separation . Like most other gas turbine engine components, the diffuser is designed to be as short and light as possible. The liner contains the combustion process and introduces the various airflows (intermediate, dilution, and cooling, see Air flow paths below) into
5684-425: The early 2020s. In March 2018, GE Power achieved a 63.08% gross efficiency for its 7HA turbine. Aeroderivative gas turbines can also be used in combined cycles, leading to a higher efficiency, but it will not be as high as a specifically designed industrial gas turbine. They can also be run in a cogeneration configuration: the exhaust is used for space or water heating, or drives an absorption chiller for cooling
5782-435: The engine cycled on and off to run it only at high efficiency. The emergence of the continuously variable transmission may also alleviate the responsiveness problem. Turbines have historically been more expensive to produce than piston engines, though this is partly because piston engines have been mass-produced in huge quantities for decades, while small gas turbine engines are rarities; however, turbines are mass-produced in
5880-437: The engine's crankshaft instead of to a centrifugal compressor, thus providing additional power instead of boost. While the turbocharger is a pressure turbine, a power recovery turbine is a velocity one. Combustor A combustor must contain and maintain stable combustion despite very high air flow rates. To do so combustors are carefully designed to first mix and ignite the air and fuel, and then mix in more air to complete
5978-533: The entire engine from raw materials, including the fabrication of a centrifugal compressor wheel from plywood, epoxy and wrapped carbon fibre strands. Several small companies now manufacture small turbines and parts for the amateur. Most turbojet-powered model aircraft are now using these commercial and semi-commercial microturbines, rather than a Schreckling-like home-build. Small gas turbines are used as auxiliary power units (APUs) to supply auxiliary power to larger, mobile, machines such as an aircraft , and are
SECTION 60
#17328587150726076-407: The exhaust gases, or from ducted fans connected to the gas turbines. Jet engines that produce thrust from the direct impulse of exhaust gases are often called turbojets . While still in service with many militaries and civilian operators, turbojets have mostly been phased out in favor of the turbofan engine due to the turbojet's low fuel efficiency, and high noise. Those that generate thrust with
6174-402: The extra thrust is also useful for combat situations. This is achieved by injecting additional fuel into the jet pipe downstream of (i.e. after ) the turbine and combusting it. The advantage of afterburning is significantly increased thrust; the disadvantage is its very high fuel consumption and inefficiency, though this is often regarded as acceptable for the short periods during which it
6272-421: The first set of liner holes. This air is mixed with fuel, and then combusted. Intermediate air is the air injected into the combustion zone through the second set of liner holes (primary air goes through the first set). This air completes the reaction processes, diluting the high concentrations of carbon monoxide (CO) and hydrogen (H 2 ), and also helps cooling down the gases from combustion. Dilution air
6370-411: The fuel and eliminate local pockets of high fuel concentration. Most modern engines use these types of fuel injectors and are essentially smokeless. Carbon dioxide is a product of the combustion process, and it is primarily mitigated by reducing fuel usage. On average, 1 kg of jet fuel burned produces 3.2 kg of CO 2 . Carbon dioxide emissions will continue to drop as manufacturers improve
6468-487: The fuel before it reaches the combustion zone. This method allows the fuel to be very uniformly mixed with the air, reducing emissions from the engine. One disadvantage of this method is that fuel may auto-ignite or otherwise combust before the fuel-air mixture reaches the combustion zone. If this happens the combustor can be seriously damaged. Most igniters in gas turbine applications are electrical spark igniters, similar to automotive spark plugs . The igniter needs to be in
6566-452: The fuel is burned within the afterburner section. Afterburners also often require the use of flameholders to keep the velocity of the air in the afterburner from blowing the flame out. These are often bluff bodies or "vee-gutters" directly behind the fuel injectors that create localized low-speed flow in the same manner the dome does in the main combustor. Ramjet engines differ in many ways from traditional gas turbine engines, but most of
6664-446: The fuel tends to be heterogeneously atomized, resulting in incomplete or uneven combustion which has more pollutants and smoke. The second type of fuel injector is the air blast injector. This injector "blasts" a sheet of fuel with a stream of air, atomizing the fuel into homogeneous droplets. This type of fuel injector led to the first smokeless combustors. The air used is just some of the primary air (see Air flow paths below) that
6762-550: The hobby of engine collecting. In its most extreme form, amateurs have even rebuilt engines beyond professional repair and then used them to compete for the land speed record. The simplest form of self-constructed gas turbine employs an automotive turbocharger as the core component. A combustion chamber is fabricated and plumbed between the compressor and turbine sections. More sophisticated turbojets are also built, where their thrust and light weight are sufficient to power large model aircraft. The Schreckling design constructs
6860-435: The inlet air and increase the power output, technology known as turbine inlet air cooling . Another significant advantage is their ability to be turned on and off within minutes, supplying power during peak, or unscheduled, demand. Since single cycle (gas turbine only) power plants are less efficient than combined cycle plants, they are usually used as peaking power plants , which operate anywhere from several hours per day to
6958-611: The lack of grain boundaries, single crystals eliminate Coble creep and consequently deform by fewer modes – decreasing the creep rate. Although single crystals have lower creep at high temperatures, they have significantly lower yield stresses at room temperature where strength is determined by the Hall-Petch relationship. Care needs to be taken in order to optimize the design parameters to limit high temperature creep while not decreasing low temperature yield strength. Airbreathing jet engines are gas turbines optimized to produce thrust from
7056-487: The liner to just inside of the liner. This creates a thin film of cool air that protects the liner, reducing the temperature at the liner from around 1800 kelvins (K) to around 830 K, for example. The other type of liner cooling, transpiration cooling, is a more modern approach that uses a porous material for the liner. The porous liner allows a small amount of cooling air to pass through it, providing cooling benefits similar to film cooling. The two primary differences are in
7154-426: The lower pressure outside. That mechanical (rather than thermal) load is a driving design factor in the case. The purpose of the diffuser is to slow the high-speed, highly compressed, air from the compressor to a velocity optimal for the combustor. Reducing the velocity results in an unavoidable loss in total pressure, so one of the design challenges is to limit the loss of pressure as much as possible. Furthermore,
7252-472: The lowest pressure drop of the three designs (on the order of 5%). The annular design is also simpler, although testing generally requires a full size test rig. An engine that uses an annular combustor is the CFM International CFM56 . Almost all of the modern gas turbine engines use annular combustors; likewise, most combustor research and development focuses on improving this type. One variation on
7350-447: The main zone is used as well, increasing air and mass flow through the combustor. GE's implementation of this type of combustor focuses on reducing NO x and CO 2 emissions. A good diagram of a DAC is available from Purdue . Extending the same principles as the double annular combustor, triple annular and "multiple annular" combustors have been proposed and even patented. One of the driving factors in modern gas turbine design
7448-540: The marine industry to reduce weight. Common types include the General Electric LM2500 , General Electric LM6000 , and aeroderivative versions of the Pratt & Whitney PW4000 , Pratt & Whitney FT4 and Rolls-Royce RB211 . Increasing numbers of gas turbines are being used or even constructed by amateurs. In its most straightforward form, these are commercial turbines acquired through military surplus or scrapyard sales, then operated for display as part of
7546-402: The method can influence the temperature profile that the liner is exposed to (see Liner , above). Can combustors are self-contained cylindrical combustion chambers. Each "can" has its own fuel injector, igniter, liner, and casing. The primary air from the compressor is guided into each individual can, where it is decelerated, mixed with fuel, and then ignited. The secondary air also comes from
7644-626: The most desirable split of energy between the thrust and the shaft work is achieved. The fourth step of the Brayton cycle (cooling of the working fluid) is omitted, as gas turbines are open systems that do not reuse the same air. Gas turbines are used to power aircraft, trains, ships, electrical generators, pumps, gas compressors, and tanks . In an ideal gas turbine, gases undergo four thermodynamic processes: an isentropic compression, an isobaric (constant pressure) combustion, an isentropic expansion and isobaric heat rejection. Together, these make up
7742-461: The order of 10% of total airflow, rather than 20-50% for film cooling). Using less air for cooling allows more to be used for combustion, which is more and more important for high-performance, high-thrust engines. The snout is an extension of the dome (see below) that acts as an air splitter, separating the primary air from the secondary air flows (intermediate, dilution, and cooling air; see Air flow paths section below). The dome and swirler are
7840-459: The order of 7%). Most modern engines that use can combustors are turboshafts featuring centrifugal compressors . The next type of combustor is the "can-annular" combustor. Like the can-type combustor, can-annular combustors have discrete combustion zones contained in separate liners with their own fuel injectors. Unlike the can combustor, all the combustion zones share a common ring (annulus) casing. Each combustion zone no longer has to serve as
7938-511: The others. This type of combustor is also lighter than the can type, and has a lower pressure drop (on the order of 6%). However, a can-annular combustor can be more difficult to maintain than a can combustor. Examples of gas turbine engines utilizing a can-annular combustor include the General Electric J79 turbojet and the Pratt & Whitney JT8D and Rolls-Royce Tay turbofans . The final, and most-commonly used type of combustor
8036-462: The overall efficiency of gas turbine engines. Unburned-hydrocarbon (UHC) and carbon-monoxide (CO) emissions are highly related. UHCs are essentially fuel that was not completely combusted. They are mostly produced at low power levels (where the engine is not burning all the fuel). Much of the UHC content reacts and forms CO within the combustor, which is why the two types of emissions are heavily related. As
8134-455: The part of the combustor that the primary air (see Air flow paths below) flows through as it enters the combustion zone. Their role is to generate turbulence in the flow to rapidly mix the air with fuel. Early combustors tended to use bluff body domes (rather than swirlers), which used a simple plate to create wake turbulence to mix the fuel and air. Most modern designs, however, are swirl stabilized (use swirlers). The swirler establishes
8232-463: The pioneer of modern Micro-Jets, Kurt Schreckling , produced one of the world's first Micro-Turbines, the FD3/67. This engine can produce up to 22 newtons of thrust, and can be built by most mechanically minded people with basic engineering tools, such as a metal lathe . Evolved from piston engine turbochargers , aircraft APUs or small jet engines , microturbines are 25 to 500 kilowatt turbines
8330-474: The purpose of using pulverized coal or finely ground biomass (such as sawdust) as a fuel. In the indirect system, a heat exchanger is used and only clean air with no combustion products travels through the power turbine. The thermal efficiency is lower in the indirect type of external combustion; however, the turbine blades are not subjected to combustion products and much lower quality (and therefore cheaper) fuels are able to be used. When external combustion
8428-445: The resulting temperature profile of the liner and the amount of cooling air required. Transpiration cooling results in a much more even temperature profile, as the cooling air is uniformly introduced through pores. Film cooling air is generally introduced through slats or louvers, resulting in an uneven profile where it is cooler at the slat and warmer between the slats. More importantly, transpiration cooling uses much less cooling air (on
8526-670: The rotation rate of the shaft must be to attain the required blade tip speed. Blade-tip speed determines the maximum pressure ratios that can be obtained by the turbine and the compressor. This, in turn, limits the maximum power and efficiency that can be obtained by the engine. In order for tip speed to remain constant, if the diameter of a rotor is reduced by half, the rotational speed must double. For example, large jet engines operate around 10,000–25,000 rpm, while micro turbines spin as fast as 500,000 rpm. Mechanically, gas turbines can be considerably less complex than Reciprocating engines . Simple turbines might have one main moving part,
8624-399: The same aspects. The case is the outer shell of the combustor, and is a fairly simple structure. The casing generally requires little maintenance. The case is protected from thermal loads by the air flowing in it, so thermal performance is of limited concern. However, the casing serves as a pressure vessel that must withstand the difference between the high pressures inside the combustor and
8722-420: The same design challenges, like fuel mixing and flame holding. However, as its name implies, a scramjet combustor must address these challenges in a supersonic flow environment. For example, for a scramjet flying at Mach 5, the air flow entering the combustor would nominally be Mach 2. One of the major challenges in a scramjet engine is preventing shock waves generated by combustor from traveling upstream into
8820-490: The same principles hold. One major difference is the lack of rotating machinery (a turbine) after the combustor. The combustor exhaust is directly fed to a nozzle. This allows ramjet combustors to burn at a higher temperature. Another difference is that many ramjet combustors do not use liners like gas turbine combustors do. Furthermore, some ramjet combustors are dump combustors rather than a more conventional type. Dump combustors inject fuel and rely on recirculation generated by
8918-545: The size of a refrigerator . Microturbines have around 15% efficiencies without a recuperator , 20 to 30% with one and they can reach 85% combined thermal-electrical efficiency in cogeneration . Most gas turbines are internal combustion engines but it is also possible to manufacture an external combustion gas turbine which is, effectively, a turbine version of a hot air engine . Those systems are usually indicated as EFGT (Externally Fired Gas Turbine) or IFGT (Indirectly Fired Gas Turbine). External combustion has been used for
9016-503: The smallest modern helicopters, and function as an auxiliary power unit in large commercial aircraft. A primary shaft carries the compressor and its turbine which, together with a combustor, is called a Gas Generator . A separately spinning power-turbine is usually used to drive the rotor on helicopters. Allowing the gas generator and power turbine/rotor to spin at their own speeds allows more flexibility in their design. Also known as miniature gas turbines or micro-jets. With this in mind
9114-470: The standard annular combustor is the double annular combustor (DAC). Like an annular combustor, the DAC is a continuous ring without separate combustion zones around the radius. The difference is that the combustor has two combustion zones around the ring; a pilot zone and a main zone. The pilot zone acts like that of a single annular combustor, and is the only zone operating at low power levels. At high power levels,
9212-503: The substrate. The Al from the bond coats forms Al 2 O 3 on the TBC-bond coat interface which provides the oxidation resistance, but also results in the formation of an undesirable interdiffusion (ID) zone between itself and the substrate. The oxidation resistance outweighs the drawbacks associated with the ID zone as it increases the lifetime of the blade and limits the efficiency losses caused by
9310-578: The turbine engines high power-to-weight ratio to drive a propeller, thus allowing a more powerful, but also smaller engine to be used. Turboprop engines are used on a wide range of business aircraft such as the Pilatus PC-12 , commuter aircraft such as the Beechcraft 1900 , and small cargo aircraft such as the Cessna 208 Caravan or De Havilland Canada Dash 8 , and large aircraft (typically military) such as
9408-463: The turbine housing's geometry (as in a variable geometry turbocharger ). It mainly serves as a power recovery device which converts a great deal of otherwise wasted thermal and kinetic energy into engine boost. Turbo-compound engines (actually employed on some semi-trailer trucks ) are fitted with blow down turbines which are similar in design and appearance to a turbocharger except for the turbine shaft being mechanically or hydraulically connected to
9506-480: The turbine is recovered by a heat recovery steam generator (HRSG) to power a conventional steam turbine in a combined cycle configuration. The 605 MW General Electric 9HA achieved a 62.22% efficiency rate with temperatures as high as 1,540 °C (2,800 °F). For 2018, GE offers its 826 MW HA at over 64% efficiency in combined cycle due to advances in additive manufacturing and combustion breakthroughs, up from 63.7% in 2017 orders and on track to achieve 65% by
9604-498: The wells to force oil up via another bore, or to compress the gas for transportation. They are also often used to provide power for the platform. These platforms do not need to use the engine in collaboration with a CHP system due to getting the gas at an extremely reduced cost (often free from burn off gas). The same companies use pump sets to drive the fluids to land and across pipelines in various intervals. One modern development seeks to improve efficiency in another way, by separating
#71928