Misplaced Pages

Khazri

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Khazri ( Azerbaijani : Xəzri ) is the name of the cold north Caspian Sea wind that blows across the Absheron Peninsula throughout the year, particularly in Baku . Khazri is a gale -force coastal wind and one of the prevailing winds in the area. The speed of khazri sometimes reaches 40 m/s (140 km/h; 89 mph; 78 kn). It damages some economic sectors. However, the wind provides cool temperatures during the summer. The Khazri wind is opposed to the Gilavar , the warm wind from the south, usually felt throughout the summertime.

#865134

137-522: This wind –related article is a stub . You can help Misplaced Pages by expanding it . This Azerbaijan -related article is a stub . You can help Misplaced Pages by expanding it . This Baku location article is a stub . You can help Misplaced Pages by expanding it . Wind Wind is the natural movement of air or other gases relative to a planet's surface . Winds occur on a range of scales, from thunderstorm flows lasting tens of minutes, to local breezes generated by heating of land surfaces and lasting

274-536: A difference in atmospheric pressure exists, air moves from the higher to the lower pressure area, resulting in winds of various speeds. On a rotating planet, air will also be deflected by the Coriolis effect , except exactly on the equator. Globally, the two major driving factors of large-scale wind patterns (the atmospheric circulation ) are the differential heating between the equator and the poles (difference in absorption of solar energy leading to buoyancy forces ) and

411-429: A glacial armor . Ice can not only erode mountains but also protect them from erosion. Depending on glacier regime, even steep alpine lands can be preserved through time with the help of ice. Scientists have proved this theory by sampling eight summits of northwestern Svalbard using Be10 and Al26, showing that northwestern Svalbard transformed from a glacier-erosion state under relatively mild glacial maxima temperature, to

548-424: A combination of wind and cold temperatures, when winds exceed 40 kilometers per hour (25 mph), rendering their hair and wool coverings ineffective. Although penguins use both a layer of fat and feathers to help guard against coldness in both water and air, their flippers and feet are less immune to the cold. In the coldest climates such as Antarctica , emperor penguins use huddling behavior to survive

685-426: A considerable depth. A gully is distinguished from a rill based on a critical cross-sectional area of at least one square foot, i.e. the size of a channel that can no longer be erased via normal tillage operations. Extreme gully erosion can progress to formation of badlands . These form under conditions of high relief on easily eroded bedrock in climates favorable to erosion. Conditions or disturbances that limit

822-408: A fall in sea level, can produce a distinctive landform called a raised beach . Chemical erosion is the loss of matter in a landscape in the form of solutes . Chemical erosion is usually calculated from the solutes found in streams. Anders Rapp pioneered the study of chemical erosion in his work about Kärkevagge published in 1960. Formation of sinkholes and other features of karst topography

959-453: A few hours, to global winds resulting from the difference in absorption of solar energy between the climate zones on Earth . The two main causes of large-scale atmospheric circulation are the differential heating between the equator and the poles, and the rotation of the planet ( Coriolis effect ). Within the tropics and subtropics, thermal low circulations over terrain and high plateaus can drive monsoon circulations. In coastal areas

1096-409: A few millimetres, or for thousands of kilometres. Agents of erosion include rainfall ; bedrock wear in rivers ; coastal erosion by the sea and waves ; glacial plucking , abrasion , and scour; areal flooding; wind abrasion; groundwater processes; and mass movement processes in steep landscapes like landslides and debris flows . The rates at which such processes act control how fast

1233-511: A gale, a storm, or a hurricane. Within the Beaufort scale, gale-force winds lie between 28 knots (52 km/h) and 55 knots (102 km/h) with preceding adjectives such as moderate, fresh, strong, and whole used to differentiate the wind's strength within the gale category. A storm has winds of 56 knots (104 km/h) to 63 knots (117 km/h). The terminology for tropical cyclones differs from one region to another globally. Most ocean basins use

1370-479: A glacier-armor state occupied by cold-based, protective ice during much colder glacial maxima temperatures as the Quaternary ice age progressed. These processes, combined with erosion and transport by the water network beneath the glacier, leave behind glacial landforms such as moraines , drumlins , ground moraine (till), glaciokarst , kames, kame deltas, moulins, and glacial erratics in their wake, typically at

1507-464: A homogeneous bedrock erosion pattern, curved channel cross-section beneath the ice is created. Though the glacier continues to incise vertically, the shape of the channel beneath the ice eventually remain constant, reaching a U-shaped parabolic steady-state shape as we now see in glaciated valleys . Scientists also provide a numerical estimate of the time required for the ultimate formation of a steady-shaped U-shaped valley —approximately 100,000 years. In

SECTION 10

#1732851475866

1644-586: A large potential as wind speeds are typically higher and more constant away from the coast. Wind energy the kinetic energy of the air, is proportional to the third power of wind velocity. Betz's law described the theoretical upper limit of what fraction of this energy wind turbines can extract, which is about 59%. Wind figures prominently in several popular sports, including recreational hang gliding , hot air ballooning , kite flying, snowkiting , kite landboarding , kite surfing , paragliding , sailing , and windsurfing . In gliding, wind gradients just above

1781-423: A large river can remove enough sediments to produce a river anticline , as isostatic rebound raises rock beds unburdened by erosion of overlying beds. Shoreline erosion, which occurs on both exposed and sheltered coasts, primarily occurs through the action of currents and waves but sea level (tidal) change can also play a role. Hydraulic action takes place when the air in a joint is suddenly compressed by

1918-473: A mechanical sandblaster in a laboratory setting, scientists affiliated with the Agricultural Research Service studied the effects of windblown sand abrasion on cotton seedlings. The study showed that the seedlings responded to the damage created by the windblown sand abrasion by shifting energy from stem and root growth to the growth and repair of the damaged stems. After a period of four weeks,

2055-487: A mountain mass similar to the Himalaya into an almost-flat peneplain if there are no significant sea-level changes . Erosion of mountains massifs can create a pattern of equally high summits called summit accordance . It has been argued that extension during post-orogenic collapse is a more effective mechanism of lowering the height of orogenic mountains than erosion. Examples of heavily eroded mountain ranges include

2192-771: A significant effect on the control of aircraft during take-off and landing, and was a significant cause of aircraft accidents involving large loss of life within the United States. Sound movement through the atmosphere is affected by wind shear, which can bend the wave front, causing sounds to be heard where they normally would not, or vice versa. Strong vertical wind shear within the troposphere also inhibits tropical cyclone development, but helps to organize individual thunderstorms into living longer life cycles that can then produce severe weather . The thermal wind concept explains how differences in wind speed with height are dependent on horizontal temperature differences, and explains

2329-432: A surface is eroded. Typically, physical erosion proceeds the fastest on steeply sloping surfaces, and rates may also be sensitive to some climatically controlled properties including amounts of water supplied (e.g., by rain), storminess, wind speed, wave fetch , or atmospheric temperature (especially for some ice-related processes). Feedbacks are also possible between rates of erosion and the amount of eroded material that

2466-433: A variety of aeolian processes such as the formation of fertile soils, for example loess , and by erosion . Dust from large deserts can be moved great distances from its source region by the prevailing winds ; winds that are accelerated by rough topography and associated with dust outbreaks have been assigned regional names in various parts of the world because of their significant effects on those regions. Wind also affects

2603-501: A wave closing the entrance of the joint. This then cracks it. Wave pounding is when the sheer energy of the wave hitting the cliff or rock breaks pieces off. Abrasion or corrasion is caused by waves launching sea load at the cliff. It is the most effective and rapid form of shoreline erosion (not to be confused with corrosion ). Corrosion is the dissolving of rock by carbonic acid in sea water. Limestone cliffs are particularly vulnerable to this kind of erosion. Attrition

2740-412: A weak bedrock (containing material more erodible than the surrounding rocks) erosion pattern, on the contrary, the amount of over deepening is limited because ice velocities and erosion rates are reduced. Glaciers can also cause pieces of bedrock to crack off in the process of plucking. In ice thrusting, the glacier freezes to its bed, then as it surges forward, it moves large sheets of frozen sediment at

2877-499: A wind barb to show both wind direction and speed. The wind barb shows the speed using "flags" on the end. Winds are depicted as blowing from the direction the barb is facing. Therefore, a northeast wind will be depicted with a line extending from the cloud circle to the northeast, with flags indicating wind speed on the northeast end of this line. Once plotted on a map, an analysis of isotachs (lines of equal wind speeds) can be accomplished. Isotachs are particularly useful in diagnosing

SECTION 20

#1732851475866

3014-528: Is a microscale meteorological phenomenon occurring over a very small distance, but it can be associated with mesoscale or synoptic scale weather features such as squall lines and cold fronts . It is commonly observed near microbursts and downbursts caused by thunderstorms , weather fronts, areas of locally higher low level winds referred to as low level jets, near mountains, radiation inversions that occur because of clear skies and calm winds, buildings, wind turbines , and sailboats . Wind shear has

3151-463: Is a difference in wind speed and direction over a relatively short distance in the Earth's atmosphere. Wind shear can be broken down into vertical and horizontal components, with horizontal wind shear seen across weather fronts and near the coast, and vertical shear typically near the surface, though also at higher levels in the atmosphere near upper level jets and frontal zones aloft. Wind shear itself

3288-537: Is already carried by, for example, a river or glacier. The transport of eroded materials from their original location is followed by deposition, which is arrival and emplacement of material at a new location. While erosion is a natural process, human activities have increased by 10–40 times the rate at which soil erosion is occurring globally. At agriculture sites in the Appalachian Mountains , intensive farming practices have caused erosion at up to 100 times

3425-442: Is also more prone to mudslides, landslides, and other forms of gravitational erosion processes. Tectonic processes control rates and distributions of erosion at the Earth's surface. If the tectonic action causes part of the Earth's surface (e.g., a mountain range) to be raised or lowered relative to surrounding areas, this must necessarily change the gradient of the land surface. Because erosion rates are almost always sensitive to

3562-484: Is an example of extreme chemical erosion. Glaciers erode predominantly by three different processes: abrasion/scouring, plucking , and ice thrusting. In an abrasion process, debris in the basal ice scrapes along the bed, polishing and gouging the underlying rocks, similar to sandpaper on wood. Scientists have shown that, in addition to the role of temperature played in valley-deepening, other glaciological processes, such as erosion also control cross-valley variations. In

3699-451: Is an increase of the wind speed above a certain threshold, which lasts for a minute or more. To determine winds aloft, radiosondes determine wind speed by GPS , radio navigation , or radar tracking of the probe. Alternatively, movement of the parent weather balloon position can be tracked from the ground visually using theodolites . Remote sensing techniques for wind include SODAR , Doppler lidars and radars, which can measure

3836-409: Is distinguished from changes on the bed of the watercourse, which is referred to as scour . Erosion and changes in the form of river banks may be measured by inserting metal rods into the bank and marking the position of the bank surface along the rods at different times. Thermal erosion is the result of melting and weakening permafrost due to moving water. It can occur both along rivers and at

3973-427: Is exposed to the wind to determine the dynamic pressure, which is then used to compute the wind speed. Sustained wind speeds are reported globally at a 10-meter (33 ft) height and are averaged over a 10‑minute time frame. The United States reports winds over a 1‑minute average for tropical cyclones, and a 2‑minute average within weather observations. India typically reports winds over a 3‑minute average. Knowing

4110-477: Is generally the primary factor governing the direction of flight operations at an airport, and airfield runways are aligned to account for the common wind direction(s) of the local area. While taking off with a tailwind may be necessary under certain circumstances, a headwind is generally desirable. A tailwind increases takeoff distance required and decreases the climb gradient. The ancient Sinhalese of Anuradhapura and in other cities around Sri Lanka used

4247-599: Is insufficient rainfall to support vegetation. An example is the formation of sand dunes , on a beach or in a desert. Loess is a homogeneous, typically nonstratified, porous, friable , slightly coherent, often calcareous, fine-grained, silty , pale yellow or buff, windblown (Aeolian) sediment . It generally occurs as a widespread blanket deposit that covers areas of hundreds of square kilometers and tens of meters thick. Loess often stands in either steep or vertical faces. Loess tends to develop into highly rich soils. Under appropriate climatic conditions, areas with loess are among

Khazri - Misplaced Pages Continue

4384-542: Is not the primary form of seed dispersal in plants, it provides dispersal for a large percentage of the biomass of land plants. Erosion can be the result of material movement by the wind. There are two main effects. First, wind causes small particles to be lifted and therefore moved to another region. This is called deflation. Second, these suspended particles may impact on solid objects causing erosion by abrasion (ecological succession). Wind erosion generally occurs in areas with little or no vegetation, often in areas where there

4521-405: Is of two primary varieties: deflation , where the wind picks up and carries away loose particles; and abrasion , where surfaces are worn down as they are struck by airborne particles carried by wind. Deflation is divided into three categories: (1) surface creep , where larger, heavier particles slide or roll along the ground; (2) saltation , where particles are lifted a short height into

4658-474: Is one of the more primitive means of dispersal. Wind dispersal can take on one of two primary forms: seeds can float on the breeze or alternatively, they can flutter to the ground. The classic examples of these dispersal mechanisms include dandelions ( Taraxacum spp., Asteraceae ), which have a feathery pappus attached to their seeds and can be dispersed long distances, and maples ( Acer (genus) spp., Sapindaceae ), which have winged seeds and flutter to

4795-425: Is similar to the geostrophic wind but also includes centrifugal force (or centripetal acceleration ). Wind direction is usually expressed in terms of the direction from which it originates. For example, a northerly wind blows from the north to the south. Weather vanes pivot to indicate the direction of the wind. At airports, windsocks indicate wind direction, and can also be used to estimate wind speed by

4932-404: Is sparse and soil is dry (and so is more erodible). Other climatic factors such as average temperature and temperature range may also affect erosion, via their effects on vegetation and soil properties. In general, given similar vegetation and ecosystems, areas with more precipitation (especially high-intensity rainfall), more wind, or more storms are expected to have more erosion. In some areas of

5069-457: Is the main climatic factor governing soil erosion by water. The relationship is particularly strong if heavy rainfall occurs at times when, or in locations where, the soil's surface is not well protected by vegetation . This might be during periods when agricultural activities leave the soil bare, or in semi-arid regions where vegetation is naturally sparse. Wind erosion requires strong winds, particularly during times of drought when vegetation

5206-503: Is the movement of gases or charged particles from the Sun through space, while planetary wind is the outgassing of light chemical elements from a planet's atmosphere into space. The strongest observed winds on a planet in the Solar System occur on Neptune and Saturn . In human civilization, the concept of wind has been explored in mythology , influenced the events of history, expanded

5343-407: Is warmed by the sun more slowly because of water's greater specific heat compared to land. As the temperature of the surface of the land rises, the land heats the air above it by conduction. The warm air is less dense than the surrounding environment and so it rises. The cooler air above the sea, now with higher sea level pressure , flows inland into the lower pressure, creating a cooler breeze near

5480-400: Is where particles/sea load carried by the waves are worn down as they hit each other and the cliffs. This then makes the material easier to wash away. The material ends up as shingle and sand. Another significant source of erosion, particularly on carbonate coastlines, is boring, scraping and grinding of organisms, a process termed bioerosion . Sediment is transported along the coast in

5617-495: The Doppler shift of electromagnetic radiation scattered or reflected off suspended aerosols or molecules , and radiometers and radars can be used to measure the surface roughness of the ocean from space or airplanes. Ocean roughness can be used to estimate wind velocity close to the sea surface over oceans. Geostationary satellite imagery can be used to estimate the winds at cloud top based upon how far clouds move from one image to

Khazri - Misplaced Pages Continue

5754-468: The Earth's crust and then transports it to another location where it is deposited . Erosion is distinct from weathering which involves no movement. Removal of rock or soil as clastic sediment is referred to as physical or mechanical erosion; this contrasts with chemical erosion, where soil or rock material is removed from an area by dissolution . Eroded sediment or solutes may be transported just

5891-560: The Gobi Desert , which combined with pollutants, spread large distances downwind, or eastward, into North America. There are local names for winds associated with sand and dust storms. The Calima carries dust on southeast winds into the Canary islands . The Harmattan carries dust during the winter into the Gulf of Guinea . The Sirocco brings dust from north Africa into southern Europe because of

6028-658: The Great Plains , it is estimated that soil loss due to wind erosion can be as much as 6100 times greater in drought years than in wet years. Mass wasting or mass movement is the downward and outward movement of rock and sediments on a sloped surface, mainly due to the force of gravity . Mass wasting is an important part of the erosional process and is often the first stage in the breakdown and transport of weathered materials in mountainous areas. It moves material from higher elevations to lower elevations where other eroding agents such as streams and glaciers can then pick up

6165-471: The Magnus effect , every sailing ship has a hull , rigging and at least one mast to hold up the sails that use the wind to power the ship. Ocean journeys by sailing ship can take many months, and a common hazard is becoming becalmed because of lack of wind, or being blown off course by severe storms or winds that do not allow progress in the desired direction. A severe storm could lead to shipwreck , and

6302-544: The North African Campaign of the World War II, "allied and German troops were several times forced to halt in mid-battle because of sandstorms caused by khamsin... Grains of sand whirled by the wind blinded the soldiers and created electrical disturbances that rendered compasses useless." There are many different forms of sailing ships, but they all have certain basic things in common. Except for rotor ships using

6439-700: The Timanides of Northern Russia. Erosion of this orogen has produced sediments that are now found in the East European Platform , including the Cambrian Sablya Formation near Lake Ladoga . Studies of these sediments indicate that it is likely that the erosion of the orogen began in the Cambrian and then intensified in the Ordovician . If the erosion rate exceeds soil formation , erosion destroys

6576-416: The accumulation zone above the glacial equilibrium line altitude), which causes increased rates of erosion of the mountain, decreasing mass faster than isostatic rebound can add to the mountain. This provides a good example of a negative feedback loop . Ongoing research is showing that while glaciers tend to decrease mountain size, in some areas, glaciers can actually reduce the rate of erosion, acting as

6713-400: The atmospheric boundary layer in the midlatitudes. The thermal wind is the difference in the geostrophic wind between two levels in the atmosphere. It exists only in an atmosphere with horizontal temperature gradients . The ageostrophic wind component is the difference between actual and geostrophic wind, which is responsible for air "filling up" cyclones over time. The gradient wind

6850-494: The gristmilling and sugarcane industries. Horizontal-axle windmills were later used extensively in Northwestern Europe to grind flour beginning in the 1180s, and many Dutch windmills still exist. Wind power is now one of the main sources of renewable energy , and its use is growing rapidly, driven by innovation and falling prices. Most of the installed capacity in wind power is onshore , but offshore wind power offers

6987-405: The impact of a falling raindrop creates a small crater in the soil , ejecting soil particles. The distance these soil particles travel can be as much as 0.6 m (2.0 ft) vertically and 1.5 m (4.9 ft) horizontally on level ground. If the soil is saturated , or if the rainfall rate is greater than the rate at which water can infiltrate into the soil, surface runoff occurs. If

SECTION 50

#1732851475866

7124-464: The leeward or downwind side. Moisture is removed by orographic lift, leaving drier air on the descending and generally warming, leeward side where a rain shadow is observed. Winds that flow over mountains down into lower elevations are known as downslope winds. These winds are warm and dry. In Europe downwind of the Alps , they are known as foehn . In Poland, an example is the halny wiatr. In Argentina,

7261-496: The logarithmic wind profile , can be utilized to derive vertical information. Temporal information is typically computed by solving the Navier-Stokes equations within numerical weather prediction models, generating global data for General Circulation Models or specific regional data. The calculation of wind fields is influenced by factors such as radiation differentials, Earth's rotation, and friction, among others. Solving

7398-455: The lower crust and mantle . Because tectonic processes are driven by gradients in the stress field developed in the crust, this unloading can in turn cause tectonic or isostatic uplift in the region. In some cases, it has been hypothesised that these twin feedbacks can act to localize and enhance zones of very rapid exhumation of deep crustal rocks beneath places on the Earth's surface with extremely high erosion rates, for example, beneath

7535-494: The polar regions . The westerlies can be particularly strong, especially in the southern hemisphere, where there is less land in the middle latitudes to cause the flow pattern to amplify, which slows the winds down. The strongest westerly winds in the middle latitudes are within a band known as the Roaring Forties , between 40 and 50 degrees latitude south of the equator. The Westerlies play an important role in carrying

7672-402: The rotation of the planet . Outside the tropics and aloft from frictional effects of the surface, the large-scale winds tend to approach geostrophic balance . Near the Earth's surface, friction causes the wind to be slower than it would be otherwise. Surface friction also causes winds to blow more inward into low-pressure areas. Winds defined by an equilibrium of physical forces are used in

7809-526: The sea breeze /land breeze cycle can define local winds; in areas that have variable terrain, mountain and valley breezes can prevail. Winds are commonly classified by their spatial scale , their speed and direction, the forces that cause them, the regions in which they occur, and their effect. Winds have various defining aspects such as velocity ( wind speed ), the density of the gases involved, and energy content or wind energy . In meteorology , winds are often referred to according to their strength, and

7946-407: The surface runoff which may result from rainfall, produces four main types of soil erosion : splash erosion , sheet erosion , rill erosion , and gully erosion . Splash erosion is generally seen as the first and least severe stage in the soil erosion process, which is followed by sheet erosion, then rill erosion and finally gully erosion (the most severe of the four). In splash erosion ,

8083-400: The windward side of mountains and is caused by the rising air motion of a large-scale flow of moist air across the mountain ridge, also known as upslope flow, resulting in adiabatic cooling and condensation. In mountainous parts of the world subjected to relatively consistent winds (for example, the trade winds), a more moist climate usually prevails on the windward side of a mountain than on

8220-499: The 21st century, a strong link has been drawn between the increase in storm frequency with an increase in sediment load in rivers and reservoirs, highlighting the impacts climate change can have on erosion. Vegetation acts as an interface between the atmosphere and the soil. It increases the permeability of the soil to rainwater, thus decreasing runoff. It shelters the soil from winds, which results in decreased wind erosion, as well as advantageous changes in microclimate. The roots of

8357-566: The African dust that reaches the United States affects Florida. Since 1970, dust outbreaks have worsened because of periods of drought in Africa. There is a large variability in the dust transport to the Caribbean and Florida from year to year. Dust events have been linked to a decline in the health of coral reefs across the Caribbean and Florida, primarily since the 1970s. Similar dust plumes originate in

SECTION 60

#1732851475866

8494-449: The Caribbean into southeastern North America. When dust from the Sahara moving around the southern periphery of the ridge within the belt of trade winds moves over land, rainfall is suppressed and the sky changes from a blue to a white appearance, which leads to an increase in red sunsets. Its presence negatively impacts air quality by adding to the count of airborne particulates. Over 50% of

8631-453: The Earth's complex atmospheric system. Historically, the Beaufort wind force scale (created by Beaufort ) provides an empirical description of wind speed based on observed sea conditions. Originally it was a 13-level scale (0–12), but during the 1940s, the scale was expanded to 18 levels (0–17). There are general terms that differentiate winds of different average speeds such as a breeze,

8768-425: The Earth's deserts lie near the average latitude of the subtropical ridge, where descent reduces the relative humidity of the air mass. The strongest winds are in the mid-latitudes where cold polar air meets warm air from the tropics. The trade winds (also called trades) are the prevailing pattern of easterly surface winds found in the tropics towards the Earth's equator . The trade winds blow predominantly from

8905-556: The Navier-Stokes equations is a time-consuming numerical process, but machine learning techniques can help expedite computation time. Numerical weather prediction models have significantly advanced our understanding of atmospheric dynamics and have become indispensable tools in weather forecasting and climate research. By leveraging both spatial and temporal data, these models enable scientists to analyze and predict global and regional wind patterns, contributing to our comprehension of

9042-587: The Prevailing Westerlies are the prevailing winds in the middle latitudes between 35 and 65 degrees latitude . These prevailing winds blow from the west to the east, and steer extratropical cyclones in this general manner. The winds are predominantly from the southwest in the Northern Hemisphere and from the northwest in the Southern Hemisphere. They are strongest in the winter when

9179-583: The United States, and they can be as strong as other downslope winds and unusual compared to other foehn winds in that the relative humidity typically changes little due to the increased moisture in the source air mass. In California, downslope winds are funneled through mountain passes, which intensify their effect, and examples include the Santa Ana and sundowner winds. Wind speeds during downslope wind effect can exceed 160 kilometers per hour (99 mph). Wind shear, sometimes referred to as wind gradient ,

9316-540: The Westerlies, these prevailing winds blow from the east to the west, and are often weak and irregular. Because of the low sun angle, cold air builds up and subsides at the pole creating surface high-pressure areas, forcing an equatorward outflow of air; that outflow is deflected westward by the Coriolis effect. In coastal regions, sea breezes and land breezes can be important factors in a location's prevailing winds. The sea

9453-433: The air, and bounce and saltate across the surface of the soil; and (3) suspension , where very small and light particles are lifted into the air by the wind, and are often carried for long distances. Saltation is responsible for the majority (50–70%) of wind erosion, followed by suspension (30–40%), and then surface creep (5–25%). Wind erosion is much more severe in arid areas and during times of drought. For example, in

9590-451: The airspeed to deal with the effect of the gradient. When landing, wind shear is also a hazard, particularly when the winds are strong. As the glider descends through the wind gradient on final approach to landing, airspeed decreases while sink rate increases, and there is insufficient time to accelerate prior to ground contact. The pilot must anticipate the wind gradient and use a higher approach speed to compensate for it. In arid climates,

9727-468: The angle of hang. Wind speed is measured by anemometers , most commonly using rotating cups or propellers. When a high measurement frequency is needed (such as in research applications), wind can be measured by the propagation speed of ultrasound signals or by the effect of ventilation on the resistance of a heated wire. Another type of anemometer uses pitot tubes that take advantage of the pressure differential between an inner tube and an outer tube that

9864-530: The average wind speed to determine the tropical cyclone's category. Below is a summary of the classifications used by Regional Specialized Meteorological Centers worldwide: The Enhanced Fujita Scale (EF Scale) rates the strength of tornadoes by using damage to estimate wind speed. It has six levels, from visible damage to complete destruction. It is used in the United States and in some other countries, including Canada and France, with small modifications. The station model plotted on surface weather maps uses

10001-463: The base along with the glacier. This method produced some of the many thousands of lake basins that dot the edge of the Canadian Shield . Differences in the height of mountain ranges are not only being the result tectonic forces, such as rock uplift, but also local climate variations. Scientists use global analysis of topography to show that glacial erosion controls the maximum height of mountains, as

10138-550: The coast, such as the Sitka spruce and sea grape , are pruned back by wind and salt spray near the coastline. Wind can also cause plants damage through sand abrasion . Strong winds will pick up loose sand and topsoil and hurl it through the air at speeds ranging from 25 miles per hour (40 km/h) to 40 miles per hour (64 km/h). Such windblown sand causes extensive damage to plant seedlings because it ruptures plant cells, making them vulnerable to evaporation and drought. Using

10275-400: The coast. A background along-shore wind either strengthens or weakens the sea breeze, depending on its orientation with respect to the Coriolis force. At night, the land cools off more quickly than the ocean because of differences in their specific heat values. This temperature change causes the daytime sea breeze to dissipate. When the temperature onshore cools below the temperature offshore,

10412-512: The coast. Rapid river channel migration observed in the Lena River of Siberia is due to thermal erosion, as these portions of the banks are composed of permafrost-cemented non-cohesive materials. Much of this erosion occurs as the weakened banks fail in large slumps. Thermal erosion also affects the Arctic coast , where wave action and near-shore temperatures combine to undercut permafrost bluffs along

10549-409: The coastline. Where there is a bend in the coastline, quite often a buildup of eroded material occurs forming a long narrow bank (a spit ). Armoured beaches and submerged offshore sandbanks may also protect parts of a coastline from erosion. Over the years, as the shoals gradually shift, the erosion may be redirected to attack different parts of the shore. Erosion of a coastal surface, followed by

10686-400: The decomposition and analysis of wind profiles. They are useful for simplifying the atmospheric equations of motion and for making qualitative arguments about the horizontal and vertical distribution of horizontal winds. The geostrophic wind component is the result of the balance between Coriolis force and pressure gradient force. It flows parallel to isobars and approximates the flow above

10823-560: The direction from which the wind is blowing. The convention for directions refer to where the wind comes from; therefore, a 'western' or 'westerly' wind blows from the west to the east, a 'northern' wind blows south, and so on. This is sometimes counter-intuitive. Short bursts of high speed wind are termed gusts . Strong winds of intermediate duration (around one minute) are termed squalls . Long-duration winds have various names associated with their average strength, such as breeze , gale , storm , and hurricane . In outer space , solar wind

10960-411: The direction of the prevailing current ( longshore drift ). When the upcurrent supply of sediment is less than the amount being carried away, erosion occurs. When the upcurrent amount of sediment is greater, sand or gravel banks will tend to form as a result of deposition . These banks may slowly migrate along the coast in the direction of the longshore drift, alternately protecting and exposing parts of

11097-511: The eight directions. Kamikaze is a Japanese word, usually translated as divine wind, believed to be a gift from the gods. The term is first known to have been used as the name of a pair or series of typhoons that are said to have saved Japan from two Mongol fleets under Kublai Khan that attacked Japan in 1274 and again in 1281. Protestant Wind is a name for the storm that deterred the Spanish Armada from an invasion of England in 1588 where

11234-457: The existence of the jet stream . As a natural force, the wind was often personified as one or more wind gods or as an expression of the supernatural in many cultures. Vayu is the Vedic and Hindu God of Wind. The Greek wind gods include Boreas , Notus , Eurus , and Zephyrus . Aeolus , in varying interpretations the ruler or keeper of the four winds, has also been described as Astraeus ,

11371-405: The extremely steep terrain of Nanga Parbat in the western Himalayas . Such a place has been called a " tectonic aneurysm ". Human land development, in forms including agricultural and urban development, is considered a significant factor in erosion and sediment transport , which aggravate food insecurity . In Taiwan, increases in sediment load in the northern, central, and southern regions of

11508-612: The flatter countryside. These conditions are dangerous to ascending and descending airplanes . Cool winds accelerating through mountain gaps have been given regional names. In Central America, examples include the Papagayo wind , the Panama wind, and the Tehuano wind . In Europe, similar winds are known as the Bora , Tramontane , and Mistral . When these winds blow over open waters, they increase mixing of

11645-575: The flood regions result from glacial Lake Missoula , which created the channeled scablands in the Columbia Basin region of eastern Washington . Wind erosion is a major geomorphological force, especially in arid and semi-arid regions. It is also a major source of land degradation, evaporation, desertification, harmful airborne dust, and crop damage—especially after being increased far above natural rates by human activities such as deforestation , urbanization , and agriculture . Wind erosion

11782-664: The god of dusk who fathered the four winds with Eos , goddess of dawn. The ancient Greeks also observed the seasonal change of the winds, as evidenced by the Tower of the Winds in Athens . Venti are the Roman gods of the winds. Fūjin is the Japanese wind god and is one of the eldest Shinto gods. According to legend, he was present at the creation of the world and first let the winds out of his bag to clear

11919-459: The ground. An important constraint on wind dispersal is the need for abundant seed production to maximize the likelihood of a seed landing in a site suitable for germination . There are also strong evolutionary constraints on this dispersal mechanism. For instance, species in the Asteraceae on islands tended to have reduced dispersal capabilities (i.e., larger seed mass and smaller pappus) relative to

12056-417: The growth of protective vegetation ( rhexistasy ) are a key element of badland formation. Valley or stream erosion occurs with continued water flow along a linear feature. The erosion is both downward , deepening the valley , and headward , extending the valley into the hillside, creating head cuts and steep banks. In the earliest stage of stream erosion, the erosive activity is dominantly vertical,

12193-597: The growth of the seedling once again became uniform throughout the plant, as it was before the windblown sand abrasion occurred. Besides plant gametes (seeds) wind also helps plants' enemies: Spores and other propagules of plant pathogens are even lighter and able to travel long distances. A few plant diseases are known to have been known to travel over marginal seas and even entire oceans. Humans are unable to prevent or even slow down wind dispersal of plant pathogens, requiring prediction and amelioration instead. Cattle and sheep are prone to wind chill caused by

12330-411: The island can be tracked with the timeline of development for each region throughout the 20th century. The intentional removal of soil and rock by humans is a form of erosion that has been named lisasion . Mountain ranges take millions of years to erode to the degree they effectively cease to exist. Scholars Pitman and Golovchenko estimate that it takes probably more than 450 million years to erode

12467-572: The local name for down sloped winds is zonda . In Java, the local name for such winds is koembang. In New Zealand, they are known as the Nor'west arch , and are accompanied by the cloud formation they are named after that has inspired artwork over the years. In the Great Plains of the United States, these winds are known as a chinook . Downslope winds also occur in the foothills of the Appalachian mountains of

12604-409: The local slope (see above), this will change the rates of erosion in the uplifted area. Active tectonics also brings fresh, unweathered rock towards the surface, where it is exposed to the action of erosion. However, erosion can also affect tectonic processes. The removal by erosion of large amounts of rock from a particular region, and its deposition elsewhere, can result in a lightening of the load on

12741-464: The location of the jet stream on upper-level constant pressure charts, and are usually located at or above the 300 hPa level. Easterly winds, on average, dominate the flow pattern across the poles, westerly winds blow across the mid-latitudes of the Earth, polewards of the subtropical ridge , while easterlies again dominate the tropics . Directly under the subtropical ridge are the doldrums, or horse latitudes, where winds are lighter. Many of

12878-459: The loss of all hands. Sailing ships can only carry a certain quantity of supplies in their hold , so they have to plan long voyages carefully to include appropriate provisions , including fresh water. For aerodynamic aircraft which operate relative to the air, winds affect groundspeed, and in the case of lighter-than-air vehicles, wind may play a significant or solitary role in their movement and ground track . The velocity of surface wind

13015-469: The lowest 7,000 feet (2,100 m) of the Earth's atmosphere , contaminates wind profiles gathered by weather radar, particularly the WSR-88D , by increasing the environmental wind returns by 15 knots (28 km/h) to 30 knots (56 km/h). Erosion Erosion is the action of surface processes (such as water flow or wind ) that removes soil , rock , or dissolved material from one location on

13152-478: The main source of erosion is wind. The general wind circulation moves small particulates such as dust across wide oceans thousands of kilometers downwind of their point of origin, which is known as deflation. Westerly winds in the mid-latitudes of the planet drive the movement of ocean currents from west to east across the world's oceans. Wind has a very important role in aiding plants and other immobile organisms in dispersal of seeds, spores, pollen, etc. Although wind

13289-418: The material and move it to even lower elevations. Mass-wasting processes are always occurring continuously on all slopes; some mass-wasting processes act very slowly; others occur very suddenly, often with disastrous results. Any perceptible down-slope movement of rock or sediment is often referred to in general terms as a landslide . However, landslides can be classified in a much more detailed way that reflects

13426-407: The material has begun to slide downhill. In some cases, the slump is caused by water beneath the slope weakening it. In many cases it is simply the result of poor engineering along highways where it is a regular occurrence. Surface creep is the slow movement of soil and rock debris by gravity which is usually not perceptible except through extended observation. However, the term can also describe

13563-438: The mechanisms responsible for the movement and the velocity at which the movement occurs. One of the visible topographical manifestations of a very slow form of such activity is a scree slope. Slumping happens on steep hillsides, occurring along distinct fracture zones, often within materials like clay that, once released, may move quite rapidly downhill. They will often show a spoon-shaped isostatic depression , in which

13700-571: The monsoon winds to power furnaces as early as 300 BCE . The furnaces were constructed on the path of the monsoon winds to bring the temperatures inside up to 1,200 °C (2,190 °F). A rudimentary windmill was used to power an organ in the first century CE. Windmills were later built in Sistan , Afghanistan , from the 7th century CE. These were vertical-axle windmills, with sails covered in reed matting or cloth material. These windmills were used to grind corn and draw up water, and were used in

13837-484: The morphologic impact of glaciations on active orogens, by both influencing their height, and by altering the patterns of erosion during subsequent glacial periods via a link between rock uplift and valley cross-sectional shape. At extremely high flows, kolks , or vortices are formed by large volumes of rapidly rushing water. Kolks cause extreme local erosion, plucking bedrock and creating pothole-type geographical features called rock-cut basins . Examples can be seen in

13974-413: The most agriculturally productive in the world. Loess deposits are geologically unstable by nature, and will erode very readily. Therefore, windbreaks (such as big trees and bushes) are often planted by farmers to reduce the wind erosion of loess. During mid-summer (July in the northern hemisphere), the westward-moving trade winds south of the northward-moving subtropical ridge expand northwestward from

14111-404: The most erosion occurs during times of flood when more and faster-moving water is available to carry a larger sediment load. In such processes, it is not the water alone that erodes: suspended abrasive particles, pebbles , and boulders can also act erosively as they traverse a surface, in a process known as traction . Bank erosion is the wearing away of the banks of a stream or river. This

14248-572: The movement of extratropical cyclones through the Mediterranean. Spring storm systems moving across the eastern Mediterranean Sea cause dust to carry across Egypt and the Arabian Peninsula , which are locally known as Khamsin . The Shamal is caused by cold fronts lifting dust into the atmosphere for days at a time across the Persian Gulf states. Wind dispersal of seeds, or anemochory ,

14385-531: The natural rate of erosion in the region. Excessive (or accelerated) erosion causes both "on-site" and "off-site" problems. On-site impacts include decreases in agricultural productivity and (on natural landscapes ) ecological collapse , both because of loss of the nutrient-rich upper soil layers . In some cases, this leads to desertification . Off-site effects include sedimentation of waterways and eutrophication of water bodies , as well as sediment-related damage to roads and houses. Water and wind erosion are

14522-409: The next. Wind engineering describes the study of the effects of the wind on the built environment, including buildings, bridges and other artificial objects. Models can provide spatial and temporal information about airflow. Spatial information can be obtained through the interpolation of data from various measurement stations, allowing for horizontal data calculation. Alternatively, profiles, such as

14659-500: The northeast in the Northern Hemisphere and from the southeast in the Southern Hemisphere. The trade winds act as the steering flow for tropical cyclones that form over the world's oceans. Trade winds also steer African dust westward across the Atlantic Ocean into the Caribbean, as well as portions of southeast North America. A monsoon is a seasonal prevailing wind that lasts for several months within tropical regions. The term

14796-434: The nutrient-rich upper soil layers . In some cases, the eventual result is desertification . Off-site effects include sedimentation of waterways and eutrophication of water bodies, as well as sediment-related damage to roads and houses. Water and wind erosion are the two primary causes of land degradation ; combined, they are responsible for about 84% of the global extent of degraded land , making excessive erosion one of

14933-411: The order of a few centimetres (about an inch) or less and along-channel slopes may be quite steep. This means that rills exhibit hydraulic physics very different from water flowing through the deeper, wider channels of streams and rivers. Gully erosion occurs when runoff water accumulates and rapidly flows in narrow channels during or immediately after heavy rains or melting snow, removing soil to

15070-556: The plants bind the soil together, and interweave with other roots, forming a more solid mass that is less susceptible to both water and wind erosion. The removal of vegetation increases the rate of surface erosion. The topography of the land determines the velocity at which surface runoff will flow, which in turn determines the erosivity of the runoff. Longer, steeper slopes (especially those without adequate vegetative cover) are more susceptible to very high rates of erosion during heavy rains than shorter, less steep slopes. Steeper terrain

15207-558: The pressure is lower over the poles, and weakest during the summer and when pressures are higher over the poles. Together with the trade winds , the westerlies enabled a round-trip trade route for sailing ships crossing the Atlantic and Pacific Oceans, as the westerlies lead to the development of strong ocean currents on the western sides of oceans in both hemispheres through the process of western intensification . These western ocean currents transport warm, sub-tropical water polewards toward

15344-419: The pressure over the water will be lower than that of the land, establishing a land breeze, as long as an onshore wind is not strong enough to oppose it. Over elevated surfaces, heating of the ground exceeds the heating of the surrounding air at the same altitude above sea level , creating an associated thermal low over the terrain and enhancing any thermal lows that would have otherwise existed, and changing

15481-532: The range of transport and warfare, and provided a power source for mechanical work, electricity, and recreation. Wind powers the voyages of sailing ships across Earth's oceans. Hot air balloons use the wind to take short trips, and powered flight uses it to increase lift and reduce fuel consumption. Areas of wind shear caused by various weather phenomena can lead to dangerous situations for aircraft. When winds become strong, trees and human-made structures can be damaged or destroyed. Winds can shape landforms, via

15618-413: The relief between mountain peaks and the snow line are generally confined to altitudes less than 1500 m. The erosion caused by glaciers worldwide erodes mountains so effectively that the term glacial buzzsaw has become widely used, which describes the limiting effect of glaciers on the height of mountain ranges. As mountains grow higher, they generally allow for more glacial activity (especially in

15755-828: The rolling of dislodged soil particles 0.5 to 1.0 mm (0.02 to 0.04 in) in diameter by wind along the soil surface. On the continental slope , erosion of the ocean floor to create channels and submarine canyons can result from the rapid downslope flow of sediment gravity flows , bodies of sediment-laden water that move rapidly downslope as turbidity currents . Where erosion by turbidity currents creates oversteepened slopes it can also trigger underwater landslides and debris flows . Turbidity currents can erode channels and canyons into substrates ranging from recently deposited unconsolidated sediments to hard crystalline bedrock. Almost all continental slopes and deep ocean basins display such channels and canyons resulting from sediment gravity flows and submarine canyons act as conduits for

15892-515: The runoff has sufficient flow energy , it will transport loosened soil particles ( sediment ) down the slope. Sheet erosion is the transport of loosened soil particles by overland flow. Rill erosion refers to the development of small, ephemeral concentrated flow paths which function as both sediment source and sediment delivery systems for erosion on hillslopes. Generally, where water erosion rates on disturbed upland areas are greatest, rills are active. Flow depths in rills are typically of

16029-497: The same species on the mainland. Reliance upon wind dispersal is common among many weedy or ruderal species. Unusual mechanisms of wind dispersal include tumbleweeds . A related process to anemochory is anemophily , which is the process where pollen is distributed by wind. Large families of plants are pollinated in this manner, which is favored when individuals of the dominant plant species are spaced closely together. Wind also limits tree growth. On coasts and isolated mountains,

16166-532: The shoreline and cause them to fail. Annual erosion rates along a 100-kilometre (62-mile) segment of the Beaufort Sea shoreline averaged 5.6 metres (18 feet) per year from 1955 to 2002. Most river erosion happens nearer to the mouth of a river. On a river bend, the longest least sharp side has slower moving water. Here deposits build up. On the narrowest sharpest side of the bend, there is faster moving water so this side tends to erode away mostly. Rapid erosion by

16303-593: The soil. Lower rates of erosion can prevent the formation of soil features that take time to develop. Inceptisols develop on eroded landscapes that, if stable, would have supported the formation of more developed Alfisols . While erosion of soils is a natural process, human activities have increased by 10-40 times the rate at which erosion occurs globally. Excessive (or accelerated) erosion causes both "on-site" and "off-site" problems. On-site impacts include decreases in agricultural productivity and (on natural landscapes ) ecological collapse , both because of loss of

16440-499: The spread of wildfires. Winds can disperse seeds from various plants, enabling the survival and dispersal of those plant species, as well as flying insect and bird populations. When combined with cold temperatures, the wind has a negative impact on livestock. Wind affects animals' food stores, as well as their hunting and defensive strategies. The study of wind is called anemology. Wind is caused by differences in atmospheric pressure, which are mainly due to temperature differences. When

16577-407: The surface affect the takeoff and landing phases of flight of a glider . Wind gradient can have a noticeable effect on ground launches , also known as winch launches or wire launches. If the wind gradient is significant or sudden, or both, and the pilot maintains the same pitch attitude, the indicated airspeed will increase, possibly exceeding the maximum ground launch tow speed. The pilot must adjust

16714-433: The terminus or during glacier retreat . The best-developed glacial valley morphology appears to be restricted to landscapes with low rock uplift rates (less than or equal to 2mm per year) and high relief, leading to long-turnover times. Where rock uplift rates exceed 2mm per year, glacial valley morphology has generally been significantly modified in postglacial time. Interplay of glacial erosion and tectonic forcing governs

16851-409: The transfer of sediment from the continents and shallow marine environments to the deep sea. Turbidites , which are the sedimentary deposits resulting from turbidity currents, comprise some of the thickest and largest sedimentary sequences on Earth, indicating that the associated erosional processes must also have played a prominent role in Earth's history. The amount and intensity of precipitation

16988-493: The tree line is often much lower than in corresponding altitudes inland and in larger, more complex mountain systems, because strong winds reduce tree growth. High winds scour away thin soils through erosion, as well as damage limbs and twigs. When high winds knock down or uproot trees, the process is known as windthrow . This is most likely on windward slopes of mountains, with severe cases generally occurring to tree stands that are 75 years or older. Plant varieties near

17125-563: The two primary causes of land degradation ; combined, they are responsible for about 84% of the global extent of degraded land, making excessive erosion one of the most significant environmental problems worldwide. Intensive agriculture , deforestation , roads , anthropogenic climate change and urban sprawl are amongst the most significant human activities in regard to their effect on stimulating erosion. However, there are many prevention and remediation practices that can curtail or limit erosion of vulnerable soils. Rainfall , and

17262-473: The upper layers of the ocean that elevates cool, nutrient rich waters to the surface, which leads to increased marine life. In mountainous areas, local distortion of the airflow becomes severe. Jagged terrain combines to produce unpredictable flow patterns and turbulence, such as rotors , which can be topped by lenticular clouds . Strong updrafts , downdrafts, and eddies develop as the air flows over hills and down valleys. Orographic precipitation occurs on

17399-427: The valleys have a typical V-shaped cross-section and the stream gradient is relatively steep. When some base level is reached, the erosive activity switches to lateral erosion, which widens the valley floor and creates a narrow floodplain. The stream gradient becomes nearly flat, and lateral deposition of sediments becomes important as the stream meanders across the valley floor. In all stages of stream erosion, by far

17536-412: The warm, equatorial waters and winds to the western coasts of continents, especially in the southern hemisphere because of its vast oceanic expanse. The polar easterlies, also known as Polar Hadley cells, are dry, cold prevailing winds that blow from the high-pressure areas of the polar highs at the north and South Poles towards the low-pressure areas within the Westerlies at high latitudes. Unlike

17673-502: The wind and cold, continuously alternating the members on the outside of the assembled group, which reduces heat loss by 50%. Flying insects , a subset of arthropods , are swept along by the prevailing winds, while birds follow their own course taking advantage of wind conditions, in order to either fly or glide. As such, fine line patterns within weather radar imagery, associated with converging winds, are dominated by insect returns. Bird migration, which tends to occur overnight within

17810-413: The wind circulation of the region. In areas where there is rugged topography that significantly interrupts the environmental wind flow, the wind circulation between mountains and valleys is the most important contributor to the prevailing winds. Hills and valleys substantially distort the airflow by increasing friction between the atmosphere and landmass by acting as a physical block to the flow, deflecting

17947-556: The wind parallel to the range just upstream of the topography, which is known as a barrier jet . This barrier jet can increase the low-level wind by 45%. Wind direction also changes because of the contour of the land. If there is a pass in the mountain range, winds will rush through the pass with considerable speed because of the Bernoulli principle that describes an inverse relationship between speed and pressure. The airflow can remain turbulent and erratic for some distance downwind into

18084-546: The wind played a pivotal role, or the favorable winds that enabled William of Orange to invade England in 1688. During Napoleon 's Egyptian Campaign , the French soldiers had a hard time with the khamsin wind: when the storm appeared "as a blood-stint in the distant sky", the Ottomans went to take cover, while the French "did not react until it was too late, then choked and fainted in the blinding, suffocating walls of dust". During

18221-407: The wind sampling average is important, as the value of a one-minute sustained wind is typically 14% greater than a ten-minute sustained wind. A short burst of high speed wind is termed a wind gust ; one technical definition of a wind gust is: the maxima that exceed the lowest wind speed measured during a ten-minute time interval by 10 knots (19 km/h; 12 mph) for periods of seconds. A squall

18358-550: The world (e.g. western Europe ), runoff and erosion result from relatively low intensities of stratiform rainfall falling onto the previously saturated soil. In such situations, rainfall amount rather than intensity is the main factor determining the severity of soil erosion by water. According to the climate change projections, erosivity will increase significantly in Europe and soil erosion may increase by 13–22.5% by 2050 In Taiwan , where typhoon frequency increased significantly in

18495-491: The world (e.g. the mid-western US ), rainfall intensity is the primary determinant of erosivity (for a definition of erosivity check, ) with higher intensity rainfall generally resulting in more soil erosion by water. The size and velocity of rain drops is also an important factor. Larger and higher-velocity rain drops have greater kinetic energy , and thus their impact will displace soil particles by larger distances than smaller, slower-moving rain drops. In other regions of

18632-447: The world of mist. In Norse mythology , Njörðr is the god of the wind. There are also four dvärgar ( Norse dwarves ), named Norðri, Suðri, Austri and Vestri , and probably the four stags of Yggdrasil , personify the four winds, and parallel the four Greek wind gods. Stribog is the name of the Slavic god of winds, sky and air. He is said to be the ancestor (grandfather) of the winds of

18769-684: Was first used in English in India, Bangladesh , Pakistan, and neighboring countries to refer to the big seasonal winds blowing from the Indian Ocean and Arabian Sea in the southwest bringing heavy rainfall to the area. Its poleward progression is accelerated by the development of a heat low over the Asian, African, and North American continents during May through July, and over Australia in December. The Westerlies or

#865134