Misplaced Pages

June solstice

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

This is an accepted version of this page

#992007

92-647: The June solstice is the solstice on Earth that occurs annually between 20 and 22 June according to the Gregorian calendar . In the Northern Hemisphere , the June solstice is the summer solstice (the day with the longest period of daylight), while in the Southern Hemisphere it is the winter solstice (the day with the shortest period of daylight). It is also known as the northern solstice . During June solstice,

184-544: A band including the noted constellations named on mythical themes. Other authors use Zodiac to mean ecliptic, which first appears in a gloss of unknown author in a passage of Cleomedes where he is explaining that the Moon is in the zodiacal circle as well and periodically crosses the path of the Sun. As some of these crossings represent eclipses of the Moon, the path of the Sun is given a synonym,

276-404: A body is proportional to the product of the masses of the two attracting bodies and decreases inversely with the square of the distance between them. To this Newtonian approximation, for a system of two-point masses or spherical bodies, only influenced by their mutual gravitation (called a two-body problem ), their trajectories can be exactly calculated. If the heavier body is much more massive than

368-449: A celestial pole. The Sun and the planets do not move in these parallel paths but along another circle, the ecliptic, whose plane is at an angle, the obliquity of the ecliptic , to the axis, bringing the Sun and planets across the paths of and in among the stars.* Cleomedes states: The band of the Zodiac ( zōdiakos kuklos , "zodiacal circle") is at an oblique angle ( loksos ) because it

460-427: A certain time called the period. This motion is described by the empirical laws of Kepler, which can be mathematically derived from Newton's laws. These can be formulated as follows: Note that while bound orbits of a point mass or a spherical body with a Newtonian gravitational field are closed ellipses , which repeat the same path exactly and indefinitely, any non-spherical or non-Newtonian effects (such as caused by

552-412: A leap day re-aligns the calendar with the orbit. Thus the solstices always occur between June 20 and 22 and between December 20 and 23 in a four-year-long cycle with the 21st and 22nd being the most common dates, as can be seen in the schedule at the start of the article. Using the current official IAU constellation boundaries – and taking into account the variable precession speed and the rotation of

644-719: A midwinter party, to celebrate that the Sun is at its lowest point and coming back. The Fremont Solstice Parade takes place every summer solstice in Fremont, Seattle, Washington in the United States . The reconstructed Cahokia Woodhenge , a large timber circle located at the Mississippian culture Cahokia archaeological site near Collinsville, Illinois , is the site of annual equinox and solstice sunrise observances. Out of respect for Native American beliefs these events do not feature ceremonies or rituals of any kind. Unlike

736-607: A noise festival, to call the Sun back. Further east, the Aymara people celebrate their New Year on 21 June. A celebration occurs at sunrise, when the sun shines directly through the Gate of the Sun in Tiwanaku . Other Aymara New Year feasts occur throughout Bolivia , including at the site of El Fuerte de Samaipata . In the Hindu calendar , two sidereal solstices are named Makara Sankranti which marks

828-404: A planet, moon, asteroid, or Lagrange point . Normally, orbit refers to a regularly repeating trajectory, although it may also refer to a non-repeating trajectory. To a close approximation, planets and satellites follow elliptic orbits , with the center of mass being orbited at a focal point of the ellipse, as described by Kepler's laws of planetary motion . For most situations, orbital motion

920-424: A position that changes little with respect to the background of stars . An observer on Earth therefore sees a solar path that is the result of both rotation and revolution. The component of the Sun's motion seen by an earthbound observer caused by the revolution of the tilted axis – which, keeping the same angle in space, is oriented toward or away from the Sun – is an observed daily increment (and lateral offset) of

1012-420: A practical sense, both of these trajectory types mean the object is "breaking free" of the planet's gravity, and "going off into space" never to return. In most situations, relativistic effects can be neglected, and Newton's laws give a sufficiently accurate description of motion. The acceleration of a body is equal to the sum of the forces acting on it, divided by its mass, and the gravitational force acting on

SECTION 10

#1732845447993

1104-410: A single point called the barycenter. The paths of all the star's satellites are elliptical orbits about that barycenter. Each satellite in that system will have its own elliptical orbit with the barycenter at one focal point of that ellipse. At any point along its orbit, any satellite will have a certain value of kinetic and potential energy with respect to the barycenter, and the sum of those two energies

1196-487: A technical sense—they are describing a portion of an elliptical path around the center of gravity—but the orbits are interrupted by striking the Earth. If the cannonball is fired with sufficient speed, the ground curves away from the ball at least as much as the ball falls—so the ball never strikes the ground. It is now in what could be called a non-interrupted or circumnavigating, orbit. For any specific combination of height above

1288-505: Is a constant value at every point along its orbit. As a result, as a planet approaches periapsis , the planet will increase in speed as its potential energy decreases; as a planet approaches apoapsis , its velocity will decrease as its potential energy increases. There are a few common ways of understanding orbits: The velocity relationship of two moving objects with mass can thus be considered in four practical classes, with subtypes: Orbital rockets are launched vertically at first to lift

1380-523: Is a convenient approximation to take the center of mass as coinciding with the center of the more massive body. Advances in Newtonian mechanics were then used to explore variations from the simple assumptions behind Kepler orbits, such as the perturbations due to other bodies, or the impact of spheroidal rather than spherical bodies. Joseph-Louis Lagrange developed a new approach to Newtonian mechanics emphasizing energy more than force, and made progress on

1472-418: Is adequately approximated by Newtonian mechanics , which explains gravity as a force obeying an inverse-square law . However, Albert Einstein 's general theory of relativity , which accounts for gravity as due to curvature of spacetime , with orbits following geodesics , provides a more accurate calculation and understanding of the exact mechanics of orbital motion. Historically, the apparent motions of

1564-407: Is adopted of taking the potential energy as zero at infinite separation, the bound orbits will have negative total energy, the parabolic trajectories zero total energy, and hyperbolic orbits positive total energy. An open orbit will have a parabolic shape if it has the velocity of exactly the escape velocity at that point in its trajectory, and it will have the shape of a hyperbola when its velocity

1656-464: Is also a vector. Because our basis vector r ^ {\displaystyle {\hat {\mathbf {r} }}} moves as the object orbits, we start by differentiating it. From time t {\displaystyle t} to t + δ t {\displaystyle t+\delta t} , the vector r ^ {\displaystyle {\hat {\mathbf {r} }}} keeps its beginning at

1748-404: Is greater than the escape velocity. When bodies with escape velocity or greater approach each other, they will briefly curve around each other at the time of their closest approach, and then separate, forever. All closed orbits have the shape of an ellipse . A circular orbit is a special case, wherein the foci of the ellipse coincide. The point where the orbiting body is closest to Earth is called

1840-429: Is hardly detectable with indirect viewing based devices like sextant equipped with a vernier , and impossible with more traditional tools like a gnomon or an astrolabe . It is also hard to detect the changes in sunrise/sunset azimuth due to the atmospheric refraction changes. Those accuracy issues render it impossible to determine the solstice day based on observations made within the 3 (or even 5) days surrounding

1932-581: Is located in the plane using vector calculus in polar coordinates both with the standard Euclidean basis and with the polar basis with the origin coinciding with the center of force. Let r {\displaystyle r} be the distance between the object and the center and θ {\displaystyle \theta } be the angle it has rotated. Let x ^ {\displaystyle {\hat {\mathbf {x} }}} and y ^ {\displaystyle {\hat {\mathbf {y} }}} be

SECTION 20

#1732845447993

2024-559: Is not perpendicular to its orbital plane (the plane of the ecliptic ) but currently makes an angle of about 23.44° (called the obliquity of the ecliptic ), and because the axis keeps its orientation with respect to an inertial frame of reference . As a consequence, for half the year the Northern Hemisphere is inclined toward the Sun while for the other half year the Southern Hemisphere has this distinction. The two moments when

2116-402: Is positioned between the tropical circles and equinoctial circle touching each of the tropical circles at one point ... This Zodiac has a determinable width (set at 8° today) ... that is why it is described by three circles: the central one is called "heliacal" ( hēliakos , "of the sun"). The term heliacal circle is used for the ecliptic, which is in the center of the zodiacal circle, conceived as

2208-402: Is that it was able to account for the remaining unexplained amount in precession of Mercury's perihelion first noted by Le Verrier. However, Newton's solution is still used for most short term purposes since it is significantly easier to use and sufficiently accurate. Within a planetary system , planets, dwarf planets , asteroids and other minor planets , comets , and space debris orbit

2300-402: Is the summer solstice at one Pole, it is the winter solstice on the other. The Sun's westerly motion never ceases as Earth is continually in rotation. However, the Sun's motion in declination (i.e. vertically) comes to a stop, before reversing, at the moment of solstice. In that sense, solstice means "sun-standing". This modern scientific word descends from a Latin scientific word in use in

2392-507: Is the 10th solar term, and marks the summer solstice . It begins when the Sun reaches the celestial longitude of 90° (around 21 June) and ends when the Sun reaches the longitude of 105° (around 7 July). Xiàzhì more often refers in particular to the day when the Sun is exactly at the celestial longitude of 90°. Dōngzhì ( pīnyīn ) or Tōji ( rōmaji ) ( Chinese and Japanese : 冬至; Korean : 동지(Dongji) ; Vietnamese : Đông chí ; lit. winter's extreme )

2484-485: Is the 22nd solar term, and marks the winter solstice . It begins when the Sun reaches the celestial longitude of 270° (around 23 December) and ends when the Sun reaches the longitude of 285° (around 5 January). Dōngzhì more often refers in particular to the day when the Sun is exactly at the celestial longitude of 270°. The solstices (as well as the equinoxes ) mark the middle of the seasons in East Asian calendars. Here,

2576-513: The Dongzhi Festival is celebrated on the winter solstice. For the northern or summer solstice , Christian cultures celebrate the feast of St. John from June 23 to 24 (see St. John's Eve , Ivan Kupala Day ), while Modern Pagans observe Midsummer, known as Litha among Wiccans . For the vernal (spring) equinox, several springtime festivals are celebrated, such as the Persian Nowruz ,

2668-415: The apoapsis is that point at which they are the farthest. (More specific terms are used for specific bodies. For example, perigee and apogee are the lowest and highest parts of an orbit around Earth, while perihelion and aphelion are the closest and farthest points of an orbit around the Sun.) In the case of planets orbiting a star, the mass of the star and all its satellites are calculated to be at

2760-410: The celestial sphere . Two solstices occur annually, around 20-22 June and 20-22 December. In many countries, the seasons of the year are defined by reference to the solstices and the equinoxes . The term solstice can also be used in a broader sense, as the day when this occurs. For locations not too close to the equator or the poles, the dates with the longest and shortest periods of daylight are

2852-461: The eccentricities of the planetary orbits vary over time. Mercury , the smallest planet in the Solar System, has the most eccentric orbit. At the present epoch , Mars has the next largest eccentricity while the smallest orbital eccentricities are seen with Venus and Neptune . As two objects orbit each other, the periapsis is that point at which the two objects are closest to each other and

June solstice - Misplaced Pages Continue

2944-538: The ekleiptikos (kuklos) from ekleipsis , "eclipse". The two solstices can be distinguished by different pairs of names, depending on which feature one wants to stress. ( Gregorian calendar ) ( subsolar point ) ( Northern Hemisphere ) ( Southern Hemisphere ) The traditional East Asian calendars divide a year into 24 solar terms (節氣). Xiàzhì ( pīnyīn ) or Geshi ( rōmaji ) ( Chinese and Japanese : 夏至; Korean : 하지(Haji) ; Vietnamese : Hạ chí ; lit. summer's extreme )

3036-439: The elevation of the Sun at noon for approximately six months and observed daily decrement for the remaining six months. At maximum or minimum elevation, the relative yearly motion of the Sun perpendicular to the horizon stops and reverses direction. Outside of the tropics, the maximum elevation occurs at the summer solstice and the minimum at the winter solstice. The path of the Sun, or ecliptic , sweeps north and south between

3128-453: The perigee , and when orbiting a body other than earth it is called the periapsis (less properly, "perifocus" or "pericentron"). The point where the satellite is farthest from Earth is called the apogee , apoapsis, or sometimes apifocus or apocentron. A line drawn from periapsis to apoapsis is the line-of-apsides . This is the major axis of the ellipse, the line through its longest part. Bodies following closed orbits repeat their paths with

3220-416: The solstitial colure , i.e. the times when the apparent geocentric celestial longitude of the Sun is equal to 90° (June solstice) or 270° (December solstice). The dates of the solstice varies each year and may occur a day earlier or later depending on the time zone . Because the earth's orbit takes slightly longer than a calendar year of 365 days, the solstices occur slightly later each calendar year, until

3312-718: The three-body problem , discovering the Lagrangian points . In a dramatic vindication of classical mechanics, in 1846 Urbain Le Verrier was able to predict the position of Neptune based on unexplained perturbations in the orbit of Uranus . Albert Einstein in his 1916 paper The Foundation of the General Theory of Relativity explained that gravity was due to curvature of space-time and removed Newton's assumption that changes in gravity propagate instantaneously. This led astronomers to recognize that Newtonian mechanics did not provide

3404-446: The three-body problem ; however, it converges too slowly to be of much use. Except for special cases like the Lagrangian points , no method is known to solve the equations of motion for a system with four or more bodies. Rather than an exact closed form solution, orbits with many bodies can be approximated with arbitrarily high accuracy. These approximations take two forms: Differential simulations with large numbers of objects perform

3496-543: The Chinese character 至 means "extreme", so the terms for the solstices directly signify the summits of summer and winter. The term solstice can also be used in a wider sense, as the date (day) that such a passage happens. The solstices, together with the equinoxes, are connected with the seasons. In some languages they are considered to start or separate the seasons; in others they are considered to be centre points (in England , in

3588-410: The Earth at the point half an orbit beyond, and directly opposite the firing point, below the circular orbit. At a specific horizontal firing speed called escape velocity , dependent on the mass of the planet and the distance of the object from the barycenter, an open orbit (E) is achieved that has a parabolic path . At even greater speeds the object will follow a range of hyperbolic trajectories . In

3680-545: The June solstice, places on the Arctic Circle (latitude 66.56° north) will see the Sun just on the horizon during midnight, and all places north of it will see the Sun above horizon for 24 hours. That is the midnight sun or midsummer -night sun or polar day. On the other hand, places on the Antarctic Circle (latitude 66.56° south) will see the Sun just on the horizon during midday, and all places south of it will not see

3772-537: The Northern Hemisphere, for example, the period around the northern solstice is known as midsummer). Midsummer's Day , defined as St. Johns Day by the Christian Church , is 24 June, about three days after the solstice itself). Similarly 25 December is the start of the Christmas celebration, and is the day the Sun begins to return to the Northern Hemisphere. The traditional British and Irish main rent and meeting days of

June solstice - Misplaced Pages Continue

3864-494: The Sun above horizon at any time of the day. That is the polar night . During the December Solstice, the effects on both hemispheres are just the opposite. This sees polar sea ice re-grow annually due to lack of sunlight on the air above and surrounding sea. The warmest and coldest periods of the year in temperate regions are offset by about one month from the solstices, delayed by the earth's thermal inertia. The concept of

3956-475: The Sun is directly over the Tropic of Cancer, located in the northern hemisphere. The June solstice solar year is the solar year based on the June solstice. It is thus the length of time between adjacent June solstices. The following tables contain information on the length of the day on 20 June 2016, close to the summer solstice of the Northern Hemisphere and winter solstice of the Southern Hemisphere . The data

4048-427: The Sun, their orbital periods respectively about 11.86 and 0.615 years. The proportionality is seen by the fact that the ratio for Jupiter, 5.2 /11.86 , is practically equal to that for Venus, 0.723 /0.615 , in accord with the relationship. Idealised orbits meeting these rules are known as Kepler orbits . Isaac Newton demonstrated that Kepler's laws were derivable from his theory of gravitation and that, in general,

4140-403: The accelerations in the radial and transverse directions. As said, Newton gives this first due to gravity is − μ / r 2 {\displaystyle -\mu /r^{2}} and the second is zero. Equation (2) can be rearranged using integration by parts. We can multiply through by r {\displaystyle r} because it is not zero unless

4232-458: The atmosphere, in an act commonly referred to as an aerobraking maneuver. As an illustration of an orbit around a planet, the Newton's cannonball model may prove useful (see image below). This is a ' thought experiment ', in which a cannon on top of a tall mountain is able to fire a cannonball horizontally at any chosen muzzle speed. The effects of air friction on the cannonball are ignored (or perhaps

4324-461: The calculations in a hierarchical pairwise fashion between centers of mass. Using this scheme, galaxies, star clusters and other large assemblages of objects have been simulated. The following derivation applies to such an elliptical orbit. We start only with the Newtonian law of gravitation stating that the gravitational acceleration towards the central body is related to the inverse of the square of

4416-517: The center of gravity and mass of the planet, there is one specific firing speed (unaffected by the mass of the ball, which is assumed to be very small relative to the Earth's mass) that produces a circular orbit , as shown in (C). As the firing speed is increased beyond this, non-interrupted elliptic orbits are produced; one is shown in (D). If the initial firing is above the surface of the Earth as shown, there will also be non-interrupted elliptical orbits at slower firing speed; these will come closest to

4508-459: The coordinate system at the center of the mass of the system. Energy is associated with gravitational fields . A stationary body far from another can do external work if it is pulled towards it, and therefore has gravitational potential energy . Since work is required to separate two bodies against the pull of gravity, their gravitational potential energy increases as they are separated, and decreases as they approach one another. For point masses,

4600-683: The distance r {\displaystyle r} of the orbiting object from the center as a function of its angle θ {\displaystyle \theta } . However, it is easier to introduce the auxiliary variable u = 1 / r {\displaystyle u=1/r} and to express u {\displaystyle u} as a function of θ {\displaystyle \theta } . Derivatives of r {\displaystyle r} with respect to time may be rewritten as derivatives of u {\displaystyle u} with respect to angle. Plugging these into (1) gives So for

4692-434: The distance between them, namely where F 2 is the force acting on the mass m 2 caused by the gravitational attraction mass m 1 has for m 2 , G is the universal gravitational constant, and r is the distance between the two masses centers. From Newton's Second Law, the summation of the forces acting on m 2 related to that body's acceleration: where A 2 is the acceleration of m 2 caused by

SECTION 50

#1732845447993

4784-475: The ecliptic – the solstices shift through the constellations as follows (expressed in astronomical year numbering in which the year 0 = 1 BC, −1 = 2 BC, etc.): Orbit In celestial mechanics , an orbit (also known as orbital revolution ) is the curved trajectory of an object such as the trajectory of a planet around a star, or of a natural satellite around a planet, or of an artificial satellite around an object or position in space such as

4876-428: The entire analysis can be done separately in these dimensions. This results in the harmonic parabolic equations x = A cos ⁡ ( t ) {\displaystyle x=A\cos(t)} and y = B sin ⁡ ( t ) {\displaystyle y=B\sin(t)} of the ellipse. The location of the orbiting object at the current time t {\displaystyle t}

4968-410: The equinox, the solstice time is not easy to determine. The changes in solar declination become smaller as the Sun gets closer to its maximum/minimum declination. The days before and after the solstice, the declination speed is less than 30 arcseconds per day which is less than 1 ⁄ 60 of the angular size of the Sun, or the equivalent to just 2 seconds of right ascension . This difference

5060-408: The force of gravitational attraction F 2 of m 1 acting on m 2 . Combining Eq. 1 and 2: Solving for the acceleration, A 2 : where μ {\displaystyle \mu \,} is the standard gravitational parameter , in this case G m 1 {\displaystyle Gm_{1}} . It is understood that the system being described is m 2 , hence

5152-417: The gravitational energy decreases to zero as they approach zero separation. It is convenient and conventional to assign the potential energy as having zero value when they are an infinite distance apart, and hence it has a negative value (since it decreases from zero) for smaller finite distances. When only two gravitational bodies interact, their orbits follow a conic section . The orbit can be open (implying

5244-404: The halfway time between both noons is estimated solstice time. An interval of 45 days has been postulated as the best one to achieve up to a quarter-day precision, in the solstice determination. In 2012, the journal DIO found that accuracy of one or two hours with balanced errors can be attained by observing the Sun's equal altitudes about S = twenty degrees (or d = about 20 days) before and after

5336-490: The highest accuracy in understanding orbits. In relativity theory , orbits follow geodesic trajectories which are usually approximated very well by the Newtonian predictions (except where there are very strong gravity fields and very high speeds) but the differences are measurable. Essentially all the experimental evidence that can distinguish between the theories agrees with relativity theory to within experimental measurement accuracy. The original vindication of general relativity

5428-633: The inclination of Earth's rotational axis has maximum effect are the solstices. At the June solstice the subsolar point is further north than any other time: at latitude 23.44° north, known as the Tropic of Cancer . Similarly at the December solstice the subsolar point is further south than any other time: at latitude 23.44° south, known as the Tropic of Capricorn . The subsolar point will cross every latitude between these two extremes exactly twice per year. Also during

5520-419: The late Roman Republic of the 1st century BC: solstitium . Pliny uses it a number of times in his Natural History with a similar meaning that it has today. It contains two Latin-language morphemes, sol , "sun", and -stitium , "stoppage". The Romans used "standing" to refer to a component of the relative velocity of the Sun as it is observed in the sky. Relative velocity is the motion of an object from

5612-427: The model was capable of reasonably accurately predicting the planets' positions in the sky, more and more epicycles were required as the measurements became more accurate, hence the model became increasingly unwieldy. Originally geocentric , it was modified by Copernicus to place the Sun at the centre to help simplify the model. The model was further challenged during the 16th century, as comets were observed traversing

SECTION 60

#1732845447993

5704-504: The mountain is high enough that the cannon is above the Earth's atmosphere, which is the same thing). If the cannon fires its ball with a low initial speed, the trajectory of the ball curves downward and hits the ground (A). As the firing speed is increased, the cannonball hits the ground farther (B) away from the cannon, because while the ball is still falling towards the ground, the ground is increasingly curving away from it (see first point, above). All these motions are actually "orbits" in

5796-415: The northern and southern hemispheres. The lengths time when the sun is up are longer around the summer solstice and shorter around the winter solstice, except near the equator. When the Sun's path crosses the equator , the length of the nights at latitudes +L° and −L° are of equal length. This is known as an equinox . There are two solstices and two equinoxes in a tropical year. Because of the variation in

5888-410: The object never returns) or closed (returning). Which it is depends on the total energy ( kinetic + potential energy ) of the system. In the case of an open orbit, the speed at any position of the orbit is at least the escape velocity for that position, in the case of a closed orbit, the speed is always less than the escape velocity. Since the kinetic energy is never negative if the common convention

5980-803: The observance in Judaism of Passover , the rites of Easter in most Christian churches, as well as the Wiccan Ostara . The autumnal equinox is associated with the Jewish holiday of Sukkot and the Wiccan Mabon . In the southern tip of South America , the Mapuche people celebrate We Tripantu (the New Year) a few days after the northern solstice, on 24 June. Further north, the Atacama people formerly celebrated this date with

6072-471: The orbital speed of each planet is not constant, as had previously been thought, but rather that the speed depends on the planet's distance from the Sun. Third, Kepler found a universal relationship between the orbital properties of all the planets orbiting the Sun. For the planets, the cubes of their distances from the Sun are proportional to the squares of their orbital periods. Jupiter and Venus, for example, are respectively about 5.2 and 0.723 AU distant from

6164-498: The orbiting object crashes. Then having the derivative be zero gives that the function is a constant. which is actually the theoretical proof of Kepler's second law (A line joining a planet and the Sun sweeps out equal areas during equal intervals of time). The constant of integration, h , is the angular momentum per unit mass . In order to get an equation for the orbit from equation (1), we need to eliminate time. (See also Binet equation .) In polar coordinates, this would express

6256-411: The orbits of bodies subject to gravity were conic sections (this assumes that the force of gravity propagates instantaneously). Newton showed that, for a pair of bodies, the orbits' sizes are in inverse proportion to their masses , and that those bodies orbit their common center of mass . Where one body is much more massive than the other (as is the case of an artificial satellite orbiting a planet), it

6348-421: The origin and rotates from angle θ {\displaystyle \theta } to θ + θ ˙   δ t {\displaystyle \theta +{\dot {\theta }}\ \delta t} which moves its head a distance θ ˙   δ t {\displaystyle {\dot {\theta }}\ \delta t} in

6440-627: The perpendicular direction θ ^ {\displaystyle {\hat {\boldsymbol {\theta }}}} giving a derivative of θ ˙ θ ^ {\displaystyle {\dot {\theta }}{\hat {\boldsymbol {\theta }}}} . We can now find the velocity and acceleration of our orbiting object. The coefficients of r ^ {\displaystyle {\hat {\mathbf {r} }}} and θ ^ {\displaystyle {\hat {\boldsymbol {\theta }}}} give

6532-477: The planets were described by European and Arabic philosophers using the idea of celestial spheres . This model posited the existence of perfect moving spheres or rings to which the stars and planets were attached. It assumed the heavens were fixed apart from the motion of the spheres and was developed without any understanding of gravity. After the planets' motions were more accurately measured, theoretical mechanisms such as deferent and epicycles were added. Although

6624-413: The point of view of an observer in a frame of reference . From a fixed position on the ground, the Sun appears to orbit around Earth. To an observer in an inertial frame of reference , planet Earth is seen to rotate about an axis and orbit around the Sun in an elliptical path with the Sun at one focus . Earth's axis is tilted with respect to the plane of Earth's orbit and this axis maintains

6716-548: The radial and transverse polar basis with the first being the unit vector pointing from the central body to the current location of the orbiting object and the second being the orthogonal unit vector pointing in the direction that the orbiting object would travel if orbiting in a counter clockwise circle. Then the vector to the orbiting object is We use r ˙ {\displaystyle {\dot {r}}} and θ ˙ {\displaystyle {\dot {\theta }}} to denote

6808-473: The rate at which the sun's right ascension changes, the days of longest and shortest daylight do not coincide with the solstices for locations very close to the equator. At the equator, the longest day is around 23 December and the shortest around 16 September (see graph). Inside the Arctic or Antarctic Circles the sun is up all the time for days or even months. The seasons occur because the Earth's axis of rotation

6900-408: The rocket above the atmosphere (which causes frictional drag), and then slowly pitch over and finish firing the rocket engine parallel to the atmosphere to achieve orbit speed. Once in orbit, their speed keeps them in orbit above the atmosphere. If e.g., an elliptical orbit dips into dense air, the object will lose speed and re-enter (i.e. fall). Occasionally a space craft will intentionally intercept

6992-576: The seasonal movement of the Sun's daily path (as seen from Earth ) pauses at a northern or southern limit before reversing direction. For an observer at the North Pole , the Sun reaches the highest position in the sky once a year in June. The day this occurs is called the June solstice day. Similarly, for an observer on the South Pole , the Sun reaches the highest position on the December solstice day. When it

7084-500: The slight oblateness of the Earth , or by relativistic effects , thereby changing the gravitational field's behavior with distance) will cause the orbit's shape to depart from the closed ellipses characteristic of Newtonian two-body motion . The two-body solutions were published by Newton in Principia in 1687. In 1912, Karl Fritiof Sundman developed a converging infinite series that solves

7176-440: The smaller, as in the case of a satellite or small moon orbiting a planet or for the Earth orbiting the Sun, it is accurate enough and convenient to describe the motion in terms of a coordinate system that is centered on the heavier body, and we say that the lighter body is in orbit around the heavier. For the case where the masses of two bodies are comparable, an exact Newtonian solution is still sufficient and can be had by placing

7268-403: The solstice without the use of more complex tools. Accounts do not survive but Greek astronomers must have used an approximation method based on interpolation, which is still used by some amateurs. This method consists of recording the declination angle at noon during some days before and after the solstice, trying to find two separate days with the same declination. When those two days are found,

7360-432: The solstices was embedded in ancient Greek celestial navigation . As soon as they discovered that the Earth was spherical they devised the concept of the celestial sphere , an imaginary spherical surface rotating with the heavenly bodies ( ouranioi ) fixed in it (the modern one does not rotate, but the stars in it do). As long as no assumptions are made concerning the distances of those bodies from Earth or from each other,

7452-401: The sphere can be accepted as real and is in fact still in use. The Ancient Greeks use the term "ηλιοστάσιο" (heliostāsio) , meaning stand of the Sun . The stars move across the inner surface of the celestial sphere along the circumferences of circles in parallel planes perpendicular to the Earth's axis extended indefinitely into the heavens and intersecting the celestial sphere in

7544-437: The spheres. The basis for the modern understanding of orbits was first formulated by Johannes Kepler whose results are summarised in his three laws of planetary motion. First, he found that the orbits of the planets in our Solar System are elliptical, not circular (or epicyclic ), as had previously been believed, and that the Sun is not located at the center of the orbits, but rather at one focus . Second, he found that

7636-730: The standard Euclidean bases and let r ^ = cos ⁡ ( θ ) x ^ + sin ⁡ ( θ ) y ^ {\displaystyle {\hat {\mathbf {r} }}=\cos(\theta ){\hat {\mathbf {x} }}+\sin(\theta ){\hat {\mathbf {y} }}} and θ ^ = − sin ⁡ ( θ ) x ^ + cos ⁡ ( θ ) y ^ {\displaystyle {\hat {\boldsymbol {\theta }}}=-\sin(\theta ){\hat {\mathbf {x} }}+\cos(\theta ){\hat {\mathbf {y} }}} be

7728-412: The standard derivatives of how this distance and angle change over time. We take the derivative of a vector to see how it changes over time by subtracting its location at time t {\displaystyle t} from that at time t + δ t {\displaystyle t+\delta t} and dividing by δ t {\displaystyle \delta t} . The result

7820-503: The start of Uttarayana and Karka Sankranti which marks the start of Dakshinayana . The former occurs around 14 January each year, while the latter occurs around 14 July each year. These mark the movement of the Sun along a sidereally fixed zodiac ( precession is ignored) into Makara, the zodiacal sign which corresponds with Capricorn , and into Karka, the zodiacal sign which corresponds with Cancer , respectively. The Amundsen–Scott South Pole Station celebrates every year on 21 June

7912-443: The subscripts can be dropped. We assume that the central body is massive enough that it can be considered to be stationary and we ignore the more subtle effects of general relativity . When a pendulum or an object attached to a spring swings in an ellipse, the inward acceleration/force is proportional to the distance A = F / m = − k r . {\displaystyle A=F/m=-kr.} Due to

8004-449: The summer and winter solstices, respectively. Terms with no ambiguity as to which hemisphere is the context are " June solstice " and " December solstice ", referring to the months in which they take place every year. The word solstice is derived from the Latin sol ("sun") and sistere ("to stand still"), because at the solstices, the Sun's declination appears to "stand still"; that is,

8096-418: The summer solstice because the average of the two times will be early by q arc minutes where q is (πe cosA)/3 times the square of S in degrees (e = earth orbit eccentricity, A = earth's perihelion or Sun's apogee), and the noise in the result will be about 41 hours divided by d if the eye's sharpness is taken as one arc minute. Astronomical almanacs define the solstices as the moments when the Sun passes through

8188-463: The system's barycenter in elliptical orbits . A comet in a parabolic or hyperbolic orbit about a barycenter is not gravitationally bound to the star and therefore is not considered part of the star's planetary system. Bodies that are gravitationally bound to one of the planets in a planetary system, either natural or artificial satellites , follow orbits about a barycenter near or within that planet. Owing to mutual gravitational perturbations ,

8280-498: The way vectors add, the component of the force in the x ^ {\displaystyle {\hat {\mathbf {x} }}} or in the y ^ {\displaystyle {\hat {\mathbf {y} }}} directions are also proportionate to the respective components of the distances, r x ″ = A x = − k r x {\displaystyle r''_{x}=A_{x}=-kr_{x}} . Hence,

8372-507: The year, "the usual quarter days ," were often those of the solstices and equinoxes. Many cultures celebrate various combinations of the winter and summer solstices, the equinoxes, and the midpoints between them, leading to various holidays arising around these events. During the southern or winter solstice , Christmas is the most widespread contemporary holiday, while Yalda , Saturnalia , Karachun , Hanukkah , Kwanzaa , and Yule are also celebrated around this time. In East Asian cultures,

8464-543: Was collected from the website of the Finnish Meteorological Institute as well as from certain other websites. The data is arranged geographically and within the tables from the longest day to the shortest one. Times that occur the next day (21 June) are marked with . Solstice A solstice is the time when the Sun reaches its most northerly or southerly excursion relative to the celestial equator on

#992007