Misplaced Pages

Iona Group

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Metamorphism is the transformation of existing rock (the protolith ) to rock with a different mineral composition or texture . Metamorphism takes place at temperatures in excess of 150 °C (300 °F), and often also at elevated pressure or in the presence of chemically active fluids, but the rock remains mostly solid during the transformation. Metamorphism is distinct from weathering or diagenesis , which are changes that take place at or just beneath Earth's surface.

#165834

93-693: The Iona Group is a sequence of metamorphosed Neoproterozoic sedimentary rocks that outcrop along the east coast of the island of Iona within the Inner Hebrides of Scotland . The name was given to this sequence by Stewart in 1969, keeping it distinct from the Torridonian , which it resembles. Since c. 2021, it has been assigned to the Wester Ross Supergroup . Three divisions are recognised; i) interbedded meta sandstones and meta siltstones , ii) slaty semipelites and iii) conglomerates ,

186-486: A change in composition. Solidification into rock occurs either below the surface as intrusive rocks or on the surface as extrusive rocks. Igneous rock may form with crystallization to form granular, crystalline rocks, or without crystallization to form natural glasses . Igneous rocks occur in a wide range of geological settings: shields, platforms, orogens, basins, large igneous provinces, extended crust and oceanic crust. Igneous and metamorphic rocks make up 90–95% of

279-554: A clue as to the temperatures and pressures at the time of metamorphism. These reactions are possible because of rapid diffusion of atoms at elevated temperature. Pore fluid between mineral grains can be an important medium through which atoms are exchanged. A particularly important group of neocrystallization reactions are those that release volatiles such as water and carbon dioxide . During metamorphism of basalt to eclogite in subduction zones , hydrous minerals break down, producing copious quantities of water. The water rises into

372-455: A combination of these processes. Other mechanisms, such as melting from a meteorite impact , are less important today, but impacts during the accretion of the Earth led to extensive melting, and the outer several hundred kilometres of our early Earth was probably an ocean of magma. Impacts of large meteorites in the last few hundred million years have been proposed as one mechanism responsible for

465-405: A crystalline basement formed of a great variety of metamorphic and igneous rocks, including granulite and granite. Oceanic crust is composed primarily of basalt and gabbro . Both continental and oceanic crust rest on peridotite of the mantle. Rocks may melt in response to a decrease in pressure, to a change in composition (such as an addition of water), to an increase in temperature, or to

558-416: A decarbonation reaction is: In plastic deformation pressure is applied to the protolith , which causes it to shear or bend, but not break. In order for this to happen temperatures must be high enough that brittle fractures do not occur, but not so high that diffusion of crystals takes place. As with pressure solution, the early stages of plastic deformation begin during diagenesis. Regional metamorphism

651-520: A huge mass of analytical data—over 230,000 rock analyses can be accessed on the web through a site sponsored by the U. S. National Science Foundation (see the External Link to EarthChem). The single most important component is silica, SiO 2 , whether occurring as quartz or combined with other oxides as feldspars or other minerals. Both intrusive and volcanic rocks are grouped chemically by total silica content into broad categories. This classification

744-507: A metabasalt. When the protolith cannot be determined, the rock is classified by its mineral composition or its degree of foliation. Metamorphic grade is an informal indication of the amount or degree of metamorphism. In the Barrovian sequence (described by George Barrow in zones of progressive metamorphism in Scotland), metamorphic grades are also classified by mineral assemblage based on

837-411: A metamorphic event. The facies are named after the metamorphic rock formed under those facies conditions from basalt . The particular mineral assemblage is somewhat dependent on the composition of that protolith, so that (for example) the amphibolite facies of a marble will not be identical with the amphibolite facies of a pellite. However, the facies are defined such that metamorphic rock with as broad

930-653: A microscope for fine-grained volcanic rock, and may be impossible for glassy volcanic rock. The rock must then be classified chemically. Mineralogical classification of an intrusive rock begins by determining if the rock is ultramafic, a carbonatite, or a lamprophyre . An ultramafic rock contains more than 90% of iron- and magnesium-rich minerals such as hornblende, pyroxene, or olivine, and such rocks have their own classification scheme. Likewise, rocks containing more than 50% carbonate minerals are classified as carbonatites, while lamprophyres are rare ultrapotassic rocks. Both are further classified based on detailed mineralogy. In

1023-609: A range of compositions as is practical can be assigned to a particular facies. The present definition of metamorphic facies is largely based on the work of the Finnish geologist, Pentti Eskola in 1921, with refinements based on subsequent experimental work. Eskola drew upon the zonal schemes, based on index minerals, that were pioneered by the British geologist, George Barrow . Igneous Igneous rock ( igneous from Latin igneus  'fiery'), or magmatic rock ,

SECTION 10

#1732855338166

1116-457: A rare type of magma called a carbonatite that is highly enriched in carbonates and low in silica . Cooling bodies of carbonatite magma give off highly alkaline fluids rich in sodium as they solidify, and the hot, reactive fluid replaces much of the mineral content in the aureole with sodium-rich minerals. A special type of contact metamorphism, associated with fossil fuel fires, is known as pyrometamorphism . Hydrothermal metamorphism

1209-549: A simplified compositional classification, igneous rock types are categorized into felsic or mafic based on the abundance of silicate minerals in the Bowen's Series. Rocks dominated by quartz, plagioclase, alkali feldspar and muscovite are felsic. Mafic rocks are primarily composed of biotite, hornblende, pyroxene and olivine. Generally, felsic rocks are light colored and mafic rocks are darker colored. For textural classification, igneous rocks that have crystals large enough to be seen by

1302-462: A viscosity similar to thick, cold molasses or even rubber when erupted. Felsic magma, such as rhyolite , is usually erupted at low temperature and is up to 10,000 times as viscous as basalt. Volcanoes with rhyolitic magma commonly erupt explosively, and rhyolitic lava flows are typically of limited extent and have steep margins because the magma is so viscous. Felsic and intermediate magmas that erupt often do so violently, with explosions driven by

1395-415: Is a common result of metamorphism, rock that is intensely deformed may eliminate strain energy by recrystallizing as a fine-grained rock called mylonite . Certain kinds of rock, such as those rich in quartz, carbonate minerals , or olivine, are particularly prone to form mylonites, while feldspar and garnet are resistant to mylonitization. Phase change metamorphism is the creating of a new mineral with

1488-428: Is a general term for metamorphism that affects entire regions of the Earth's crust. It most often refers to dynamothermal metamorphism , which takes place in orogenic belts (regions where mountain building is taking place), but also includes burial metamorphism , which results simply from rock being buried to great depths below the Earth's surface in a subsiding basin. To many geologists, regional metamorphism

1581-584: Is an example. The molten rock, which typically contains suspended crystals and dissolved gases, is called magma . It rises because it is less dense than the rock from which it was extracted. When magma reaches the surface, it is called lava . Eruptions of volcanoes into air are termed subaerial , whereas those occurring underneath the ocean are termed submarine . Black smokers and mid-ocean ridge basalt are examples of submarine volcanic activity. The volume of extrusive rock erupted annually by volcanoes varies with plate tectonic setting. Extrusive rock

1674-459: Is an important medium through which atoms are exchanged. This permits recrystallization of existing minerals or crystallization of new minerals with different crystalline structures or chemical compositions (neocrystallization). The transformation converts the minerals in the protolith into forms that are more stable (closer to chemical equilibrium ) under the conditions of pressure and temperature at which metamorphism takes place. Metamorphism

1767-634: Is called the metamorphic aureole , the contact aureole , or simply the aureole. Contact metamorphic rocks are usually known as hornfels . Rocks formed by contact metamorphism may not present signs of strong deformation and are often fine-grained and extremely tough. The Yule Marble used on the Lincoln Memorial exterior and the Tomb of the Unknown Soldier in Arlington National Cemetery

1860-697: Is completed during early stages of metamorphism. For a sandstone protolith, the dividing line between diagenesis and metamorphism can be placed at the point where strained quartz grains begin to be replaced by new, unstrained, small quartz grains, producing a mortar texture that can be identified in thin sections under a polarizing microscope. With increasing grade of metamorphism, further recrystallization produces foam texture , characterized by polygonal grains meeting at triple junctions, and then porphyroblastic texture , characterized by coarse, irregular grains, including some larger grains ( porphyroblasts .) Metamorphic rocks are typically more coarsely crystalline than

1953-488: Is composed of mylonite. Mylonite is distinguished by its strong foliation, which is absent in most cataclastic rock. It is distinguished from the surrounding rock by its finer grain size. There is considerable evidence that cataclasites form as much through plastic deformation and recrystallization as brittle fracture of grains, and that the rock may never fully lose cohesion during the process. Different minerals become ductile at different temperatures, with quartz being among

SECTION 20

#1732855338166

2046-725: Is distinguishable from the other two on the TAS diagram, being higher in total alkali oxides for a given silica content, but the tholeiitic and calc-alkaline series occupy approximately the same part of the TAS diagram. They are distinguished by comparing total alkali with iron and magnesium content. These three magma series occur in a range of plate tectonic settings. Tholeiitic magma series rocks are found, for example, at mid-ocean ridges, back-arc basins , oceanic islands formed by hotspots, island arcs and continental large igneous provinces . All three series are found in relatively close proximity to each other at subduction zones where their distribution

2139-595: Is expressed differently for major and minor elements and for trace elements. Contents of major and minor elements are conventionally expressed as weight percent oxides (e.g., 51% SiO 2 , and 1.50% TiO 2 ). Abundances of trace elements are conventionally expressed as parts per million by weight (e.g., 420 ppm Ni, and 5.1 ppm Sm). The term "trace element" is typically used for elements present in most rocks at abundances less than 100 ppm or so, but some trace elements may be present in some rocks at abundances exceeding 1,000 ppm. The diversity of rock compositions has been defined by

2232-502: Is formed by the cooling of molten magma on the earth's surface. The magma, which is brought to the surface through fissures or volcanic eruptions , rapidly solidifies. Hence such rocks are fine-grained ( aphanitic ) or even glassy. Basalt is the most common extrusive igneous rock and forms lava flows, lava sheets and lava plateaus. Some kinds of basalt solidify to form long polygonal columns . The Giant's Causeway in Antrim, Northern Ireland

2325-451: Is generally regarded to begin at temperatures of 100 to 200 °C (212 to 392 °F). This excludes diagenetic changes due to compaction and lithification , which result in the formation of sedimentary rocks. The upper boundary of metamorphic conditions lies at the solidus of the rock, which is the temperature at which the rock begins to melt. At this point, the process becomes an igneous process. The solidus temperature depends on

2418-507: Is known as prograde metamorphism , while decreasing temperature and pressure characterize retrograde metamorphism . Metamorphic petrology is the study of metamorphism. Metamorphic petrologists rely heavily on statistical mechanics and experimental petrology to understand metamorphic processes. Metamorphism is the set of processes by which existing rock is transformed physically or chemically at elevated temperature, without actually melting to any great degree. The importance of heating in

2511-436: Is most often used to classify plutonic rocks. Chemical classifications are preferred to classify volcanic rocks, with phenocryst species used as a prefix, e.g. "olivine-bearing picrite" or "orthoclase-phyric rhyolite". The IUGS recommends classifying igneous rocks by their mineral composition whenever possible. This is straightforward for coarse-grained intrusive igneous rock, but may require examination of thin sections under

2604-409: Is one of the three main rock types , the others being sedimentary and metamorphic . Igneous rocks are formed through the cooling and solidification of magma or lava . The magma can be derived from partial melts of existing rocks in either a planet 's mantle or crust . Typically, the melting is caused by one or more of three processes: an increase in temperature, a decrease in pressure , or

2697-410: Is practically synonymous with dynamothermal metamorphism. This form of metamorphism takes place at convergent plate boundaries , where two continental plates or a continental plate and an island arc collide. The collision zone becomes a belt of mountain formation called an orogeny . The orogenic belt is characterized by thickening of the Earth's crust, during which the deeply buried crustal rock

2790-496: Is produced in the following proportions: The behaviour of lava depends upon its viscosity , which is determined by temperature, composition, and crystal content. High-temperature magma, most of which is basaltic in composition, behaves in a manner similar to thick oil and, as it cools, treacle . Long, thin basalt flows with pahoehoe surfaces are common. Intermediate composition magma, such as andesite , tends to form cinder cones of intermingled ash , tuff and lava, and may have

2883-402: Is related to depth and the age of the subduction zone. The tholeiitic magma series is well represented above young subduction zones formed by magma from relatively shallow depth. The calc-alkaline and alkaline series are seen in mature subduction zones, and are related to magma of greater depths. Andesite and basaltic andesite are the most abundant volcanic rock in island arc which is indicative of

Iona Group - Misplaced Pages Continue

2976-539: Is subjected to high temperatures and pressures and is intensely deformed. Subsequent erosion of the mountains exposes the roots of the orogenic belt as extensive outcrops of metamorphic rock, characteristic of mountain chains. Metamorphic rock formed in these settings tends to shown well-developed foliation . Foliation develops when a rock is being shortened along one axis during metamorphism. This causes crystals of platy minerals, such as mica and chlorite , to become rotated such that their short axes are parallel to

3069-484: Is summarized in the following table: The percentage of alkali metal oxides ( Na 2 O plus K 2 O ) is second only to silica in its importance for chemically classifying volcanic rock. The silica and alkali metal oxide percentages are used to place volcanic rock on the TAS diagram , which is sufficient to immediately classify most volcanic rocks. Rocks in some fields, such as the trachyandesite field, are further classified by

3162-430: Is the most recognized metamorphic series in the world. However, Barrovian metamorphism is specific to pelitic rock, formed from mudstone or siltstone , and it is not unique even in pelitic rock. A different sequence in the northeast of Scotland defines Buchan metamorphism , which took place at lower pressure than the Barrovian. Burial metamorphism takes place simply through rock being buried to great depths below

3255-401: Is the result of the interaction of a rock with a high-temperature fluid of variable composition. The difference in composition between an existing rock and the invading fluid triggers a set of metamorphic and metasomatic reactions. The hydrothermal fluid may be magmatic (originate in an intruding magma), circulating groundwater , or ocean water. Convective circulation of hydrothermal fluids in

3348-475: The IUGS , this is often impractical, and chemical classification is done instead using the TAS classification . Igneous rocks are classified according to mode of occurrence, texture, mineralogy, chemical composition, and the geometry of the igneous body. The classification of the many types of igneous rocks can provide important information about the conditions under which they formed. Two important variables used for

3441-453: The convection of solid mantle, it will cool slightly as it expands in an adiabatic process , but the cooling is only about 0.3 °C per kilometre. Experimental studies of appropriate peridotite samples document that the solidus temperatures increase by 3 °C to 4 °C per kilometre. If the rock rises far enough, it will begin to melt. Melt droplets can coalesce into larger volumes and be intruded upwards. This process of melting from

3534-469: The 1640s and is derived either from French granit or Italian granito , meaning simply "granulate rock". The term rhyolite was introduced in 1860 by the German traveler and geologist Ferdinand von Richthofen The naming of new rock types accelerated in the 19th century and peaked in the early 20th century. Much of the early classification of igneous rocks was based on the geological age and occurrence of

3627-434: The 1960s. However, the concept of normative mineralogy has endured, and the work of Cross and his coinvestigators inspired a flurry of new classification schemes. Among these was the classification scheme of M.A. Peacock, which divided igneous rocks into four series: the alkalic, the alkali-calcic, the calc-alkali, and the calcic series. His definition of the alkali series, and the term calc-alkali, continue in use as part of

3720-419: The Earth's surface in a subsiding basin. Here the rock is subjected to high temperatures and the great pressure caused by the immense weight of the rock layers above. Burial metamorphism tends to produce low-grade metamorphic rock. This shows none of the effects of deformation and folding so characteristic of dynamothermal metamorphism. Examples of metamorphic rocks formed by burial metamorphism include some of

3813-520: The Earth's surface. Intrusive igneous rocks that form at depth within the crust are termed plutonic (or abyssal ) rocks and are usually coarse-grained. Intrusive igneous rocks that form near the surface are termed subvolcanic or hypabyssal rocks and they are usually much finer-grained, often resembling volcanic rock. Hypabyssal rocks are less common than plutonic or volcanic rocks and often form dikes, sills, laccoliths, lopoliths , or phacoliths . Extrusive igneous rock, also known as volcanic rock,

Iona Group - Misplaced Pages Continue

3906-452: The Earth's surface. Impact metamorphism is, therefore, characterized by ultrahigh pressure conditions and low temperature. The resulting minerals (such as SiO 2 polymorphs coesite and stishovite ) and textures are characteristic of these conditions. Dynamic metamorphism is associated with zones of high strain such as fault zones. In these environments, mechanical deformation is more important than chemical reactions in transforming

3999-401: The albite-epidote hornfels is often not formed, even though it is the lowest temperature grade. Magmatic fluids coming from the intrusive rock may also take part in the metamorphic reactions . An extensive addition of magmatic fluids can significantly modify the chemistry of the affected rocks. In this case the metamorphism grades into metasomatism . If the intruded rock is rich in carbonate

4092-441: The appearance of key minerals in rocks of pelitic (shaly, aluminous) origin: Low grade ------------------- Intermediate --------------------- High grade A more complete indication of this intensity or degree is provided by the concept of metamorphic facies . Metamorphic facies are recognizable terranes or zones with an assemblage of key minerals that were in equilibrium under specific range of temperature and pressure during

4185-515: The aureoles around batholiths can be up to several kilometers wide. The metamorphic grade of an aureole is measured by the peak metamorphic mineral which forms in the aureole. This is usually related to the metamorphic temperatures of pelitic or aluminosilicate rocks and the minerals they form. The metamorphic grades of aureoles at shallow depth are albite - epidote hornfels, hornblende hornfels, pyroxene hornfels, and sillimanite hornfels, in increasing order of temperature of formation. However,

4278-447: The basic TAS classification include: In older terminology, silica oversaturated rocks were called silicic or acidic where the SiO 2 was greater than 66% and the family term quartzolite was applied to the most silicic. A normative feldspathoid classifies a rock as silica-undersaturated; an example is nephelinite . Magmas are further divided into three series: The alkaline series

4371-563: The calc-alkaline magmas. Some island arcs have distributed volcanic series as can be seen in the Japanese island arc system where the volcanic rocks change from tholeiite—calc-alkaline—alkaline with increasing distance from the trench. Some igneous rock names date to before the modern era of geology. For example, basalt as a description of a particular composition of lava-derived rock dates to Georgius Agricola in 1546 in his work De Natura Fossilium . The word granite goes back at least to

4464-429: The chemical composition of an igneous rock was its most fundamental characteristic, it should be elevated to prime position. Geological occurrence, structure, mineralogical constitution—the hitherto accepted criteria for the discrimination of rock species—were relegated to the background. The completed rock analysis is first to be interpreted in terms of the rock-forming minerals which might be expected to be formed when

4557-625: The classification of igneous rocks are particle size, which largely depends on the cooling history, and the mineral composition of the rock. Feldspars , quartz or feldspathoids , olivines , pyroxenes , amphiboles , and micas are all important minerals in the formation of almost all igneous rocks, and they are basic to the classification of these rocks. All other minerals present are regarded as nonessential in almost all igneous rocks and are called accessory minerals . Types of igneous rocks with other essential minerals are very rare, but include carbonatites , which contain essential carbonates . In

4650-478: The clasts of which are largely metamorphic in origin. The rock strata are steeply inclined to vertical. Metamorphism Various forms of metamorphism exist, including regional , contact , hydrothermal , shock , and dynamic metamorphism. These differ in the characteristic temperatures, pressures, and rate at which they take place and in the extent to which reactive fluids are involved. Metamorphism occurring at increasing pressure and temperature conditions

4743-454: The composition of the rock, the pressure, and whether the rock is saturated with water. Typical solidus temperatures range from 650 °C (1,202 °F) for wet granite at a few hundred megapascals (MPa) of pressure to about 1,080 °C (1,980 °F) for wet basalt at atmospheric pressure. Migmatites are rocks formed at this upper limit, which contains pods and veins of material that has started to melt but has not fully segregated from

SECTION 50

#1732855338166

4836-405: The crust of a planet. Bodies of intrusive rock are known as intrusions and are surrounded by pre-existing rock (called country rock ). The country rock is an excellent thermal insulator , so the magma cools slowly, and intrusive rocks are coarse-grained ( phaneritic ). The mineral grains in such rocks can generally be identified with the naked eye. Intrusions can be classified according to

4929-546: The crystals, while high pressures cause solution of the crystals within the rock at their points of contact ( pressure solution ) and redeposition in pore space. During recrystallization, the identity of the mineral does not change, only its texture. Recrystallization generally begins when temperatures reach above half the melting point of the mineral on the Kelvin scale. Pressure solution begins during diagenesis (the process of lithification of sediments into sedimentary rock) but

5022-400: The depth at which they were formed, as the temperature and confining pressure determine the deformation mechanisms which predominate. At the shallowest depths, a fault zone will be filled with various kinds of unconsolidated cataclastic rock , such as fault gouge or fault breccia . At greater depths, these are replaced by consolidated cataclastic rock, such as crush breccia , in which

5115-402: The different types of extrusive igneous rocks than between different types of intrusive igneous rocks. Generally, the mineral constituents of fine-grained extrusive igneous rocks can only be determined by examination of thin sections of the rock under a microscope , so only an approximate classification can usually be made in the field . Although classification by mineral makeup is preferred by

5208-418: The direction of shortening. This results in a banded, or foliated, rock, with the bands showing the colors of the minerals that formed them. Foliated rock often develops planes of cleavage . Slate is an example of a foliated metamorphic rock, originating from shale , and it typically shows well-developed cleavage that allows slate to be split into thin plates. The type of foliation that develops depends on

5301-480: The extensive basalt magmatism of several large igneous provinces. Decompression melting occurs because of a decrease in pressure. The solidus temperatures of most rocks (the temperatures below which they are completely solid) increase with increasing pressure in the absence of water. Peridotite at depth in the Earth's mantle may be hotter than its solidus temperature at some shallower level. If such rock rises during

5394-399: The first to become ductile, and sheared rock composed of different minerals may simultaneously show both plastic deformation and brittle fracture. The strain rate also affects the way in which rocks deform. Ductile deformation is more likely at low strain rates (less than 10 sec ) in the middle and lower crust, but high strain rates can cause brittle deformation. At the highest strain rates,

5487-462: The formation of metamorphic rock was first recognized by the pioneering Scottish naturalist, James Hutton , who is often described as the father of modern geology. Hutton wrote in 1795 that some rock beds of the Scottish Highlands had originally been sedimentary rock , but had been transformed by great heat. Hutton also speculated that pressure was important in metamorphism. This hypothesis

5580-482: The great majority of cases, the rock has a more typical mineral composition, with significant quartz, feldspars, or feldspathoids. Classification is based on the percentages of quartz, alkali feldspar, plagioclase, and feldspathoid out of the total fraction of the rock composed of these minerals, ignoring all other minerals present. These percentages place the rock somewhere on the QAPF diagram , which often immediately determines

5673-433: The larger crystals, called phenocrysts, grow to considerable size before the main mass of the magma crystallizes as finer-grained, uniform material called groundmass. Grain size in igneous rocks results from cooling time so porphyritic rocks are created when the magma has two distinct phases of cooling. Igneous rocks are classified on the basis of texture and composition. Texture refers to the size, shape, and arrangement of

SECTION 60

#1732855338166

5766-403: The larger rock fragments are cemented together by calcite or quartz. At depths greater than about 5 kilometers (3.1 mi), cataclasites appear; these are quite hard rocks consist of crushed rock fragments in a flinty matrix, which forms only at elevated temperature. At still greater depths, where temperatures exceed 300 °C (572 °F), plastic deformation takes over, and the fault zone

5859-452: The list of processes that help bring about metamorphism. However, metamorphism can take place without metasomatism (isochemical metamorphism) or at depths of just a few hundred meters where pressures are relatively low (for example, in contact metamorphism). Rock can be transformed without melting because heat causes atomic bonds to break, freeing the atoms to move and form new bonds with other atoms . Pore fluid present between mineral grains

5952-399: The magma crystallizes, e.g., quartz feldspars, olivine , akermannite, Feldspathoids , magnetite , corundum , and so on, and the rocks are divided into groups strictly according to the relative proportion of these minerals to one another. This new classification scheme created a sensation, but was criticized for its lack of utility in fieldwork, and the classification scheme was abandoned by

6045-457: The majority of minerals will be visible to the naked eye or at least using a hand lens, magnifying glass or microscope. Plutonic rocks also tend to be less texturally varied and less prone to showing distinctive structural fabrics. Textural terms can be used to differentiate different intrusive phases of large plutons, for instance porphyritic margins to large intrusive bodies, porphyry stocks and subvolcanic dikes . Mineralogical classification

6138-502: The metamorphic grade. For instance, starting with a mudstone , the following sequence develops with increasing temperature: The mudstone is first converted to slate, which is a very fine-grained, foliated metamorphic rock, characteristic of very low grade metamorphism. Slate in turn is converted to phyllite , which is fine-grained and found in areas of low grade metamorphism. Schist is medium to coarse-grained and found in areas of medium grade metamorphism. High-grade metamorphism transforms

6231-407: The metamorphic rock marble . In metamorphosed sandstone , recrystallization of the original quartz sand grains results in very compact quartzite , also known as metaquartzite, in which the often larger quartz crystals are interlocked. Both high temperatures and pressures contribute to recrystallization. High temperatures allow the atoms and ions in solid crystals to migrate, thus reorganizing

6324-697: The mineral grains or crystals of which the rock is composed. Texture is an important criterion for the naming of volcanic rocks. The texture of volcanic rocks, including the size, shape, orientation, and distribution of mineral grains and the intergrain relationships, will determine whether the rock is termed a tuff , a pyroclastic lava or a simple lava . However, the texture is only a subordinate part of classifying volcanic rocks, as most often there needs to be chemical information gleaned from rocks with extremely fine-grained groundmass or from airfall tuffs, which may be formed from volcanic ash. Textural criteria are less critical in classifying intrusive rocks where

6417-415: The naked eye are called phaneritic ; those with crystals too small to be seen are called aphanitic . Generally speaking, phaneritic implies an intrusive origin or plutonic, indicating slow cooling; aphanitic are extrusive or volcanic, indicating rapid cooling. An igneous rock with larger, clearly discernible crystals embedded in a finer-grained matrix is termed porphyry . Porphyritic texture develops when

6510-449: The ocean floor basalts produces extensive hydrothermal metamorphism adjacent to spreading centers and other submarine volcanic areas. The fluids eventually escape through vents on the ocean floor known as black smokers . The patterns of this hydrothermal alteration are used as a guide in the search for deposits of valuable metal ores. Shock metamorphism occurs when an extraterrestrial object (a meteorite for instance) collides with

6603-438: The overlying mantle, where it lowers the melting temperature of the mantle rock, generating magma via flux melting . The mantle-derived magmas can ultimately reach the Earth's surface, resulting in volcanic eruptions. The resulting arc volcanoes tend to produce dangerous eruptions, because their high water content makes them extremely explosive. Examples of dehydration reactions that release water include: An example of

6696-401: The protolith from which they formed. Atoms in the interior of a crystal are surrounded by a stable arrangement of neighboring atoms. This is partially missing at the surface of the crystal, producing a surface energy that makes the surface thermodynamically unstable. Recrystallization to coarser crystals reduces the surface area and so minimizes the surface energy. Although grain coarsening

6789-516: The protolith. Chemical reactions digest the minerals of the protolith which yields new minerals. This is a very slow process as it can also involve the diffusion of atoms through solid crystals. An example of a neocrystallization reaction is the reaction of fayalite with plagioclase at elevated pressure and temperature to form garnet . The reaction is: Many complex high-temperature reactions may take place between minerals without them melting, and each mineral assemblage produced provides us with

6882-441: The ratio of potassium to sodium (so that potassic trachyandesites are latites and sodic trachyandesites are benmoreites). Some of the more mafic fields are further subdivided or defined by normative mineralogy , in which an idealized mineral composition is calculated for the rock based on its chemical composition. For example, basanite is distinguished from tephrite by having a high normative olivine content. Other refinements to

6975-435: The refractory residue. The metamorphic process can occur at almost any pressure, from near surface pressure (for contact metamorphism) to pressures in excess of 16 kbar (1600 MPa). The change in the grain size and orientation in the rock during the process of metamorphism is called recrystallization . For instance, the small calcite crystals in the sedimentary rocks limestone and chalk change into larger crystals in

7068-403: The release of dissolved gases—typically water vapour, but also carbon dioxide . Explosively erupted pyroclastic material is called tephra and includes tuff , agglomerate and ignimbrite . Fine volcanic ash is also erupted and forms ash tuff deposits, which can often cover vast areas. Because volcanic rocks are mostly fine-grained or glassy, it is much more difficult to distinguish between

7161-437: The result is a skarn . Fluorine -rich magmatic waters which leave a cooling granite may often form greisens within and adjacent to the contact of the granite. Metasomatic altered aureoles can localize the deposition of metallic ore minerals and thus are of economic interest. Fenitization , or Na-metasomatism , is a distinctive form of contact metamorphism accompanied by metasomatism. It takes place around intrusions of

7254-413: The rock may be so strongly heated that it briefly melts, forming a glassy rock called pseudotachylite . Pseudotachylites seem to be restricted to dry rock, such as granulite. Metamorphic rocks are classified by their protolith, if this can be determined from the properties of the rock itself. For example, if examination of a metamorphic rock shows that its protolith was basalt, it will be described as

7347-473: The rock must be classified chemically. There are relatively few minerals that are important in the formation of common igneous rocks, because the magma from which the minerals crystallize is rich in only certain elements: silicon , oxygen , aluminium, sodium , potassium , calcium , iron, and magnesium . These are the elements that combine to form the silicate minerals , which account for over ninety percent of all igneous rocks. The chemistry of igneous rocks

7440-428: The rock to gneiss , which is coarse to very coarse-grained. Rocks that were subjected to uniform pressure from all sides, or those that lack minerals with distinctive growth habits, will not be foliated. Marble lacks platy minerals and is generally not foliated, which allows its use as a material for sculpture and architecture. Collisional orogenies are preceded by subduction of oceanic crust. The conditions within

7533-424: The rock type. In a few cases, such as the diorite-gabbro-anorthite field, additional mineralogical criteria must be applied to determine the final classification. Where the mineralogy of an volcanic rock can be determined, it is classified using the same procedure, but with a modified QAPF diagram whose fields correspond to volcanic rock types. When it is impractical to classify a volcanic rock by mineralogy,

7626-548: The rock. The minerals present in the rock often do not reflect conditions of chemical equilibrium, and the textures produced by dynamic metamorphism are more significant than the mineral makeup. There are three deformation mechanisms by which rock is mechanically deformed. These are cataclasis , the deformation of rock via the fracture and rotation of mineral grains; plastic deformation of individual mineral crystals; and movement of individual atoms by diffusive processes. The textures of dynamic metamorphic zones are dependent on

7719-583: The rocks of the Midcontinent Rift System of North America, such as the Sioux Quartzite , and in the Hamersley Basin of Australia. Contact metamorphism occurs typically around intrusive igneous rocks as a result of the temperature increase caused by the intrusion of magma into cooler country rock . The area surrounding the intrusion where the contact metamorphism effects are present

7812-462: The rocks. However, in 1902, the American petrologists Charles Whitman Cross , Joseph P. Iddings , Louis V. Pirsson , and Henry Stephens Washington proposed that all existing classifications of igneous rocks should be discarded and replaced by a "quantitative" classification based on chemical analysis. They showed how vague, and often unscientific, much of the existing terminology was and argued that as

7905-500: The same chemical formula as a mineral of the protolith. This involves a rearrangement of the atoms in the crystals. An example is provided by the aluminium silicate minerals, kyanite , andalusite , and sillimanite . All three have the identical composition, Al 2 SiO 5 . Kyanite is stable at surface conditions. However, at atmospheric pressure, kyanite transforms to andalusite at a temperature of about 190 °C (374 °F). Andalusite, in turn, transforms to sillimanite when

7998-435: The shape and size of the intrusive body and its relation to the bedding of the country rock into which it intrudes. Typical intrusive bodies are batholiths , stocks , laccoliths , sills and dikes . Common intrusive rocks are granite , gabbro , or diorite . The central cores of major mountain ranges consist of intrusive igneous rocks. When exposed by erosion, these cores (called batholiths ) may occupy huge areas of

8091-414: The subducting slab as it plunges toward the mantle in a subduction zone produce their own distinctive regional metamorphic effects , characterized by paired metamorphic belts . The pioneering work of George Barrow on regional metamorphism in the Scottish Highlands showed that some regional metamorphism produces well-defined, mappable zones of increasing metamorphic grade. This Barrovian metamorphism

8184-426: The temperature reaches about 800 °C (1,470 °F). At pressures above about 4 kbar (400 MPa), kyanite transforms directly to sillimanite as the temperature increases. A similar phase change is sometimes seen between calcite and aragonite , with calcite transforming to aragonite at elevated pressure and relatively low temperature. Neocrystallization involves the creation of new mineral crystals different from

8277-475: The top 16 kilometres (9.9 mi) of the Earth's crust by volume. Igneous rocks form about 15% of the Earth's current land surface. Most of the Earth's oceanic crust is made of igneous rock. Igneous rocks are also geologically important because: Igneous rocks can be either intrusive ( plutonic and hypabyssal) or extrusive ( volcanic ). Intrusive igneous rocks make up the majority of igneous rocks and are formed from magma that cools and solidifies within

8370-572: The widely used Irvine-Barager classification, along with W.Q. Kennedy's tholeiitic series. By 1958, there were some 12 separate classification schemes and at least 1637 rock type names in use. In that year, Albert Streckeisen wrote a review article on igneous rock classification that ultimately led to the formation of the IUGG Subcommission of the Systematics of Igneous Rocks. By 1989 a single system of classification had been agreed upon, which

8463-419: Was formed by contact metamorphism. Contact metamorphism is greater adjacent to the intrusion and dissipates with distance from the contact. The size of the aureole depends on the heat of the intrusion, its size, and the temperature difference with the wall rocks. Dikes generally have small aureoles with minimal metamorphism, extending not more than one or two dike thicknesses into the surrounding rock, whereas

8556-460: Was further revised in 2005. The number of recommended rock names was reduced to 316. These included a number of new names promulgated by the Subcommission. The Earth's crust averages about 35 kilometres (22 mi) thick under the continents , but averages only some 7–10 kilometres (4.3–6.2 mi) beneath the oceans . The continental crust is composed primarily of sedimentary rocks resting on

8649-422: Was tested by his friend, James Hall , who sealed chalk into a makeshift pressure vessel constructed from a cannon barrel and heated it in an iron foundry furnace. Hall found that this produced a material strongly resembling marble , rather than the usual quicklime produced by heating of chalk in the open air. French geologists subsequently added metasomatism , the circulation of fluids through buried rock, to

#165834