Misplaced Pages

IBM RS/6000

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Electronics is a scientific and engineering discipline that studies and applies the principles of physics to design, create, and operate devices that manipulate electrons and other electrically charged particles . It is a subfield of physics and electrical engineering which uses active devices such as transistors , diodes , and integrated circuits to control and amplify the flow of electric current and to convert it from one form to another, such as from alternating current (AC) to direct current (DC) or from analog signals to digital signals.

#322677

95-562: The RISC System/6000 ( RS/6000 ) is a family of RISC -based Unix servers , workstations and supercomputers made by IBM in the 1990s. The RS/6000 family replaced the IBM RT PC computer platform in February 1990 and is the first computer line to see the use of IBM's POWER and PowerPC based microprocessors. In October 2000, the RS/6000 brand was retired for POWER-based servers and replaced by

190-603: A Harvard memory model , where the instruction stream and the data stream are conceptually separated; this means that modifying the memory where code is held might not have any effect on the instructions executed by the processor (because the CPU has a separate instruction and data cache ), at least until a special synchronization instruction is issued; CISC processors that have separate instruction and data caches generally keep them synchronized automatically, for backwards compatibility with older processors. Many early RISC designs also shared

285-432: A mass-production basis, which limited them to a number of specialised applications. The MOSFET was invented at Bell Labs between 1955 and 1960. It was the first truly compact transistor that could be miniaturised and mass-produced for a wide range of uses. Its advantages include high scalability , affordability, low power consumption, and high density . It revolutionized the electronics industry , becoming

380-750: A 24-bit high-speed processor to use as the basis for a digital telephone switch . To reach their goal of switching 1 million calls per hour (300 per second) they calculated that the CPU required performance on the order of 12 million instructions per second (MIPS), compared to their fastest mainframe machine of the time, the 370/168 , which performed at 3.5 MIPS. The design was based on a study of IBM's extensive collection of statistics gathered from their customers. This demonstrated that code in high-performance settings made extensive use of processor registers , and that they often ran out of them. This suggested that additional registers would improve performance. Additionally, they noticed that compilers generally ignored

475-455: A 5-bit number, for 15 bits. If one of these registers is replaced by an immediate, there is still lots of room to encode the two remaining registers and the opcode. Common instructions found in multi-word systems, like INC and DEC , which reduce the number of words that have to be read before performing the instruction, are unnecessary in RISC as they can be accomplished with a single register and

570-493: A IBM 9309 Rack Enclosure; this a first generation RS/6000 server running AIX. These units were configured by IBM as experimental "NSS" ("Network Switching Subsystem") routers, and used on the NSFnet T3 backbone in the early/mid-90s. Produced since 1994 until the time were the RS/6000 line was rebranded to System P. The Model N40 was a PowerPC-based laptop developed and manufactured by Tadpole Technology in conjunction with IBM. It

665-514: A barebones core sufficient for a small embedded processor to supercomputer and cloud computing use with standard and chip designer–defined extensions and coprocessors. It has been tested in silicon design with the ROCKET SoC , which is also available as an open-source processor generator in the CHISEL language. In the early 1980s, significant uncertainties surrounded the RISC concept. One concern involved

760-400: A better balancing of pipeline stages than before, making RISC pipelines significantly more efficient and allowing higher clock frequencies . Yet another impetus of both RISC and other designs came from practical measurements on real-world programs. Andrew Tanenbaum summed up many of these, demonstrating that processors often had oversized immediates. For instance, he showed that 98% of all

855-448: A different opcode. In contrast, a 32-bit machine has ample room to encode an immediate value, and doing so avoids the need to do a second memory read to pick up the value. This is why many RISC processors allow a 12- or 13-bit constant to be encoded directly into the instruction word. Assuming a 13-bit constant area, as is the case in the MIPS and RISC designs, another 19 bits are available for

950-566: A mix of the two types. Analog circuits are becoming less common, as many of their functions are being digitized. Analog circuits use a continuous range of voltage or current for signal processing, as opposed to the discrete levels used in digital circuits. Analog circuits were common throughout an electronic device in the early years in devices such as radio receivers and transmitters. Analog electronic computers were valuable for solving problems with continuous variables until digital processing advanced. As semiconductor technology developed, many of

1045-488: A number of additional points. Among these was the fact that programs spent a significant amount of time performing subroutine calls and returns, and it seemed there was the potential to improve overall performance by speeding these calls. This led the Berkeley design to select a method known as register windows which can significantly improve subroutine performance although at the cost of some complexity. They also noticed that

SECTION 10

#1733105026323

1140-583: A paper on ways to improve microcoding, but later changed his mind and decided microcode itself was the problem. With funding from the DARPA VLSI Program , Patterson started the Berkeley RISC effort. The Program, practically unknown today, led to a huge number of advances in chip design, fabrication, and even computer graphics. Considering a variety of programs from their BSD Unix variant, the Berkeley team found, as had IBM, that most programs made no use of

1235-484: A particular strategy for implementing some RISC designs, and modern RISC designs generally do away with it (such as PowerPC and more recent versions of SPARC and MIPS). Some aspects attributed to the first RISC- labeled designs around 1975 include the observations that the memory-restricted compilers of the time were often unable to take advantage of features intended to facilitate manual assembly coding, and that complex addressing modes take many cycles to perform due to

1330-402: A phone number (via a modem) in case of serious failure with the machine. Early advertisements and documentation called the service processor "System Guard", (or SystemGuard) although this name was apparently dropped later on, roughly around the same time that the simplified RS/6000 name was adopted for the computer line itself. Late in the RS/6000 cycle, the service processor was "converged" with

1425-540: A physical space, although in more recent years the trend has been towards electronics lab simulation software , such as CircuitLogix , Multisim , and PSpice . Today's electronics engineers have the ability to design circuits using premanufactured building blocks such as power supplies , semiconductors (i.e. semiconductor devices, such as transistors), and integrated circuits. Electronic design automation software programs include schematic capture programs and printed circuit board design programs. Popular names in

1520-413: A pipelined processor and for code generation by an optimizing compiler. A common misunderstanding of the phrase "reduced instruction set computer" is that instructions are simply eliminated, resulting in a smaller set of instructions. In fact, over the years, RISC instruction sets have grown in size, and today many of them have a larger set of instructions than many CISC CPUs. Some RISC processors such as

1615-469: A reasonably sized constant in a 32-bit instruction word. Since many real-world programs spend most of their time executing simple operations, some researchers decided to focus on making those operations as fast as possible. The clock rate of a CPU is limited by the time it takes to execute the slowest sub-operation of any instruction; decreasing that cycle-time often accelerates the execution of other instructions. The focus on "reduced instructions" led to

1710-497: A sequence of simpler internal instructions. In the 68k, a full 1 ⁄ 3 of the transistors were used for this microcoding. In 1979, David Patterson was sent on a sabbatical from the University of California, Berkeley to help DEC's west-coast team improve the VAX microcode. Patterson was struck by the complexity of the coding process and concluded it was untenable. He first wrote

1805-500: A sequence of simpler operations doing the same thing. This was in part an effect of the fact that many designs were rushed, with little time to optimize or tune every instruction; only those used most often were optimized, and a sequence of those instructions could be faster than a less-tuned instruction performing an equivalent operation as that sequence. One infamous example was the VAX 's INDEX instruction. The Berkeley work also turned up

1900-452: A single complex instruction such as STRING MOVE , but hide those details from the compiler. The internal operations of a RISC processor are "exposed to the compiler", leading to the backronym 'Relegate Interesting Stuff to the Compiler'. Most RISC architectures have fixed-length instructions and a simple encoding, which simplifies fetch, decode, and issue logic considerably. This is among

1995-477: A single data memory cycle—compared to the "complex instructions" of CISC CPUs that may require dozens of data memory cycles in order to execute a single instruction. The term load–store architecture is sometimes preferred. Another way of looking at the RISC/CISC debate is to consider what is exposed to the compiler. In a CISC processor, the hardware may internally use registers and flag bit in order to implement

SECTION 20

#1733105026323

2090-613: A very small set of instructions—but these designs are very different from classic RISC designs, so they have been given other names such as minimal instruction set computer (MISC) or transport triggered architecture (TTA). RISC architectures have traditionally had few successes in the desktop PC and commodity server markets, where the x86 -based platforms remain the dominant processor architecture. However, this may change, as ARM-based processors are being developed for higher performance systems. Manufacturers including Cavium , AMD, and Qualcomm have released server processors based on

2185-548: Is defined as unwanted disturbances superposed on a useful signal that tend to obscure its information content. Noise is not the same as signal distortion caused by a circuit. Noise is associated with all electronic circuits. Noise may be electromagnetically or thermally generated, which can be decreased by lowering the operating temperature of the circuit. Other types of noise, such as shot noise cannot be removed as they are due to limitations in physical properties. Many different methods of connecting components have been used over

2280-421: Is one of the largest and most profitable sectors in the global economy, with annual revenues exceeding $ 481 billion in 2018. The electronics industry also encompasses other sectors that rely on electronic devices and systems, such as e-commerce, which generated over $ 29 trillion in online sales in 2017. The identification of the electron in 1897 by Sir Joseph John Thomson , along with the subsequent invention of

2375-595: Is the voltage comparator which receives a continuous range of voltage but only outputs one of two levels as in a digital circuit. Similarly, an overdriven transistor amplifier can take on the characteristics of a controlled switch , having essentially two levels of output. Analog circuits are still widely used for signal amplification, such as in the entertainment industry, and conditioning signals from analog sensors, such as in industrial measurement and control. Digital circuits are electric circuits based on discrete voltage levels. Digital circuits use Boolean algebra and are

2470-448: Is therefore the process of defining and developing complex electronic devices to satisfy specified requirements of the user. Due to the complex nature of electronics theory, laboratory experimentation is an important part of the development of electronic devices. These experiments are used to test or verify the engineer's design and detect errors. Historically, electronics labs have consisted of electronics devices and equipment located in

2565-573: The eServer pSeries . Workstations continued under the RS/6000 brand until 2002, when new POWER-based workstations were released under the IntelliStation POWER brand. The first RS/6000 models used the Micro Channel bus, later models used PCI . Some later models conformed to the PReP and CHRP standard platforms, which were co-developed with Apple and Motorola , with Open Firmware . The plan

2660-542: The Adapteva Epiphany , have an optional short, feature-reduced compressed instruction set . Generally, these instructions expose a smaller number of registers and fewer bits for immediate values, and often use a two-operand format to eliminate one register number from instructions. A two-operand format in a system with 16 registers requires 8 bits for register numbers, leaving another 8 for an opcode or other uses. The SH5 also follows this pattern, albeit having evolved in

2755-607: The DEC Alpha , AMD Am29000 , Intel i860 and i960 , Motorola 88000 , IBM POWER , and, slightly later, the IBM/Apple/Motorola PowerPC . Many of these have since disappeared due to them often offering no competitive advantage over others of the same era. Those that remain are often used only in niche markets or as parts of other systems; of the designs from these traditional vendors, only SPARC and POWER have any significant remaining market. The ARM architecture has been

2850-621: The IBM 608 was the first IBM product to use transistor circuits without any vacuum tubes and is believed to be the first all-transistorized calculator to be manufactured for the commercial market. The 608 contained more than 3,000 germanium transistors. Thomas J. Watson Jr. ordered all future IBM products to use transistors in their design. From that time on transistors were almost exclusively used for computer logic circuits and peripheral devices. However, early junction transistors were relatively bulky devices that were difficult to manufacture on

2945-542: The PowerPC 604e -based Deep Blue supercomputer that beat world champion Garry Kasparov at chess in 1997, and the POWER3 -based ASCI White which was the fastest supercomputer in the world during 2000–2002. Many RS/6000 and subsequent pSeries machines came with a service processor, which booted itself when power was applied and continuously ran its own firmware, independent of the operating system. The service processor could call

IBM RS/6000 - Misplaced Pages Continue

3040-522: The RT PC —was less competitive than others, but the success of SPARC renewed interest within IBM, which released new RISC systems by 1990 and by 1995 RISC processors were the foundation of a $ 15 billion server industry. By the later 1980s, the new RISC designs were easily outperforming all traditional designs by a wide margin. At that point, all of the other vendors began RISC efforts of their own. Among these were

3135-452: The laser printer , the router , and similar products. In the minicomputer market, companies that included Celerity Computing , Pyramid Technology , and Ridge Computers began offering systems designed according to RISC or RISC-like principles in the early 1980s. Few of these designs began by using RISC microprocessors . The varieties of RISC processor design include the ARC processor,

3230-409: The load–store approach. The term RISC was coined by David Patterson of the Berkeley RISC project, although somewhat similar concepts had appeared before. The CDC 6600 designed by Seymour Cray in 1964 used a load–store architecture with only two addressing modes (register+register, and register+immediate constant) and 74 operation codes, with the basic clock cycle being 10 times faster than

3325-441: The vacuum tube which could amplify and rectify small electrical signals , inaugurated the field of electronics and the electron age. Practical applications started with the invention of the diode by Ambrose Fleming and the triode by Lee De Forest in the early 1900s, which made the detection of small electrical voltages, such as radio signals from a radio antenna , practicable. Vacuum tubes (thermionic valves) were

3420-448: The 1960s, U.S. manufacturers were unable to compete with Japanese companies such as Sony and Hitachi who could produce high-quality goods at lower prices. By the 1980s, however, U.S. manufacturers became the world leaders in semiconductor development and assembly. However, during the 1990s and subsequently, the industry shifted overwhelmingly to East Asia (a process begun with the initial movement of microchip mass-production there in

3515-531: The 1970s), as plentiful, cheap labor, and increasing technological sophistication, became widely available there. Over three decades, the United States' global share of semiconductor manufacturing capacity fell, from 37% in 1990, to 12% in 2022. America's pre-eminent semiconductor manufacturer, Intel Corporation , fell far behind its subcontractor Taiwan Semiconductor Manufacturing Company (TSMC) in manufacturing technology. By that time, Taiwan had become

3610-594: The 1980s as the MIPS and SPARC systems. IBM eventually produced RISC designs based on further work on the 801 concept, the IBM POWER architecture , PowerPC , and Power ISA . As the projects matured, many similar designs, produced in the mid-to-late 1980s and early 1990s, such as ARM , PA-RISC , and Alpha , created central processing units that increased the commercial utility of the Unix workstation and of embedded processors in

3705-701: The ARM architecture. ARM further partnered with Cray in 2017 to produce an ARM-based supercomputer. On the desktop, Microsoft announced that it planned to support the PC version of Windows 10 on Qualcomm Snapdragon -based devices in 2017 as part of its partnership with Qualcomm. These devices will support Windows applications compiled for 32-bit x86 via an x86 processor emulator that translates 32-bit x86 code to ARM64 code . Apple announced they will transition their Mac desktop and laptop computers from Intel processors to internally developed ARM64-based SoCs called Apple silicon ;

3800-580: The Berkeley RISC-II system. The US government Committee on Innovations in Computing and Communications credits the acceptance of the viability of the RISC concept to the success of the SPARC system. By 1989 many RISC CPUs were available; competition lowered their price to $ 10 per MIPS in large quantities, much less expensive than the sole sourced Intel 80386 . The performance of IBM's RISC CPU—only available in

3895-497: The CPU allows RISC computers few simple addressing modes and predictable instruction times that simplify design of the system as a whole. The conceptual developments of the RISC computer architecture began with the IBM 801 project in the late 1970s, but these were not immediately put into use. Designers in California picked up the 801 concepts in two seminal projects, Stanford MIPS and Berkeley RISC . These were commercialized in

IBM RS/6000 - Misplaced Pages Continue

3990-618: The DEC Alpha, the AMD Am29000 , the ARM architecture, the Atmel AVR , Blackfin , Intel i860 , Intel i960 , LoongArch , Motorola 88000 , the MIPS architecture, PA-RISC, Power ISA, RISC-V , SuperH , and SPARC. RISC processors are used in supercomputers , such as the Fugaku . A number of systems, going back to the 1960s, have been credited as the first RISC architecture, partly based on their use of

4085-709: The EDA software world are NI Multisim, Cadence ( ORCAD ), EAGLE PCB and Schematic, Mentor (PADS PCB and LOGIC Schematic), Altium (Protel), LabCentre Electronics (Proteus), gEDA , KiCad and many others. Heat generated by electronic circuitry must be dissipated to prevent immediate failure and improve long term reliability. Heat dissipation is mostly achieved by passive conduction/convection. Means to achieve greater dissipation include heat sinks and fans for air cooling, and other forms of computer cooling such as water cooling . These techniques use convection , conduction , and radiation of heat energy . Electronic noise

4180-445: The ISA, who in partnership with TI, GEC, Sharp, Nokia, Oracle and Digital would develop low-power and embedded RISC designs, and target those market segments, which at the time were niche. With the rise in mobile, automotive, streaming, smart device computing, ARM became the most widely used ISA, the company estimating almost half of all CPUs shipped in history have been ARM. Confusion around

4275-573: The PowerPC have instruction sets as large as the CISC IBM System/370 , for example; conversely, the DEC PDP-8 —clearly a CISC CPU because many of its instructions involve multiple memory accesses—has only 8 basic instructions and a few extended instructions. The term "reduced" in that phrase was intended to describe the fact that the amount of work any single instruction accomplishes is reduced—at most

4370-422: The RISC computer is that each instruction performs only one function (e.g. copy a value from memory to a register). The RISC computer usually has many (16 or 32) high-speed, general-purpose registers with a load–store architecture in which the code for the register-register instructions (for performing arithmetic and tests) are separate from the instructions that access the main memory of the computer. The design of

4465-528: The VAX. They followed this up with the 40,760-transistor, 39-instruction RISC-II in 1983, which ran over three times as fast as RISC-I. As the RISC project began to become known in Silicon Valley , a similar project began at Stanford University in 1981. This MIPS project grew out of a graduate course by John L. Hennessy , produced a functioning system in 1983, and could run simple programs by 1984. The MIPS approach emphasized an aggressive clock cycle and

4560-409: The basis of all digital computers and microprocessor devices. They range from simple logic gates to large integrated circuits, employing millions of such gates. Digital circuits use a binary system with two voltage levels labelled "0" and "1" to indicated logical status. Often logic "0" will be a lower voltage and referred to as "Low" while logic "1" is referred to as "High". However, some systems use

4655-469: The characteristic of having a branch delay slot , an instruction space immediately following a jump or branch. The instruction in this space is executed, whether or not the branch is taken (in other words the effect of the branch is delayed). This instruction keeps the ALU of the CPU busy for the extra time normally needed to perform a branch. Nowadays the branch delay slot is considered an unfortunate side effect of

4750-459: The circuit, thus slowing the computer. The invention of the integrated circuit by Jack Kilby and Robert Noyce solved this problem by making all the components and the chip out of the same block (monolith) of semiconductor material. The circuits could be made smaller, and the manufacturing process could be automated. This led to the idea of integrating all components on a single-crystal silicon wafer, which led to small-scale integration (SSI) in

4845-527: The computer to accomplish tasks. Compared to the instructions given to a complex instruction set computer (CISC), a RISC computer might require more instructions (more code) in order to accomplish a task because the individual instructions are written in simpler code. The goal is to offset the need to process more instructions by increasing the speed of each instruction, in particular by implementing an instruction pipeline , which may be simpler to achieve given simpler instructions. The key operational concept of

SECTION 50

#1733105026323

4940-441: The constants in a program would fit in 13 bits , yet many CPU designs dedicated 16 or 32 bits to store them. This suggests that, to reduce the number of memory accesses, a fixed length machine could store constants in unused bits of the instruction word itself, so that they would be immediately ready when the CPU needs them (much like immediate addressing in a conventional design). This required small opcodes in order to leave room for

5035-423: The definition of RISC deriving from the formulation of the term, along with the tendency to opportunistically categorize processor architectures with relatively few instructions (or groups of instructions) as RISC architectures, led to attempts to define RISC as a design philosophy. One attempt to do so was expressed as the following: A RISC processor has an instruction set that is designed for efficient execution by

5130-874: The early 1960s, and then medium-scale integration (MSI) in the late 1960s, followed by VLSI . In 2008, billion-transistor processors became commercially available. An electronic component is any component in an electronic system either active or passive. Components are connected together, usually by being soldered to a printed circuit board (PCB), to create an electronic circuit with a particular function. Components may be packaged singly, or in more complex groups as integrated circuits . Passive electronic components are capacitors , inductors , resistors , whilst active components are such as semiconductor devices; transistors and thyristors , which control current flow at electron level. Electronic circuit functions can be divided into two function groups: analog and digital. A particular device may consist of circuitry that has either or

5225-466: The early 1980s, leading, for example, to the iron law of processor performance . Since 2010, a new open standard instruction set architecture (ISA), Berkeley RISC-V , has been under development at the University of California, Berkeley, for research purposes and as a free alternative to proprietary ISAs. As of 2014, version 2 of the user space ISA is fixed. The ISA is designed to be extensible from

5320-452: The electronic logic gates to generate binary states. Highly integrated devices: Electronic systems design deals with the multi-disciplinary design issues of complex electronic devices and systems, such as mobile phones and computers . The subject covers a broad spectrum, from the design and development of an electronic system ( new product development ) to assuring its proper function, service life and disposal . Electronic systems design

5415-544: The first active electronic components which controlled current flow by influencing the flow of individual electrons , and enabled the construction of equipment that used current amplification and rectification to give us radio , television , radar , long-distance telephony and much more. The early growth of electronics was rapid, and by the 1920s, commercial radio broadcasting and telecommunications were becoming widespread and electronic amplifiers were being used in such diverse applications as long-distance telephony and

5510-576: The first such computers, using the Apple M1 processor, were released in November 2020. Macs with Apple silicon can run x86-64 binaries with Rosetta 2 , an x86-64 to ARM64 translator. Outside of the desktop arena, however, the ARM RISC architecture is in widespread use in smartphones, tablets and many forms of embedded devices. While early RISC designs differed significantly from contemporary CISC designs, by 2000

5605-562: The following ways: The electronics industry consists of various sectors. The central driving force behind the entire electronics industry is the semiconductor industry sector, which has annual sales of over $ 481 billion as of 2018. The largest industry sector is e-commerce , which generated over $ 29 trillion in 2017. The most widely manufactured electronic device is the metal-oxide-semiconductor field-effect transistor (MOSFET), with an estimated 13   sextillion MOSFETs having been manufactured between 1960 and 2018. In

5700-489: The functions of analog circuits were taken over by digital circuits, and modern circuits that are entirely analog are less common; their functions being replaced by hybrid approach which, for instance, uses analog circuits at the front end of a device receiving an analog signal, and then use digital processing using microprocessor techniques thereafter. Sometimes it may be difficult to classify some circuits that have elements of both linear and non-linear operation. An example

5795-501: The highest-performing CPUs in the RISC line were almost indistinguishable from the highest-performing CPUs in the CISC line. RISC architectures are now used across a range of platforms, from smartphones and tablet computers to some of the world's fastest supercomputers such as Fugaku , the fastest on the TOP500 list as of November 2020 , and Summit , Sierra , and Sunway TaihuLight ,

SECTION 60

#1733105026323

5890-413: The immediate value 1. The original RISC-I format remains a canonical example of the concept. It uses 7 bits for the opcode and a 1-bit flag for conditional codes, the following 5 bits for the destination register, and the next five for the first operand. This leaves 14 bits, the first of which indicates whether the following 13 contain an immediate value or uses only five of them to indicate a register for

5985-403: The instruction encoding. This leaves ample room to indicate both the opcode and one or two registers. Register-to-register operations, mostly math and logic, require enough bits to encode the two or three registers being used. Most processors use the three-operand format, of the form A = B + C , in which case three registers numbers are needed. If the processor has 32 registers, each one requires

6080-445: The instruction word which could then be used to select among a larger set of registers. The telephone switch program was canceled in 1975, but by then the team had demonstrated that the same design would offer significant performance gains running just about any code. In simulations, they showed that a compiler tuned to use registers wherever possible would run code about three times as fast as traditional designs. Somewhat surprisingly,

6175-428: The large variety of instructions in the 68k. Patterson's early work pointed out an important problem with the traditional "more is better" approach; even those instructions that were critical to overall performance were being delayed by their trip through the microcode. If the microcode was removed, the programs would run faster. And since the microcode ultimately took a complex instruction and broke it into steps, there

6270-482: The late 1970s, the 801 had become well-known in the industry. This coincided with new fabrication techniques that were allowing more complex chips to come to market. The Zilog Z80 of 1976 had 8,000 transistors, whereas the 1979 Motorola 68000 (68k) had 68,000. These newer designs generally used their newfound complexity to expand the instruction set to make it more orthogonal. Most, like the 68k, used microcode to do this, reading instructions and re-implementing them as

6365-494: The main goals of the RISC approach. Some of this is possible only due to the contemporary move to 32-bit formats. For instance, in a typical program, over 30% of all the numeric constants are either 0 or 1, 95% will fit in one byte, and 99% in a 16-bit value. When computers were based on 8- or 16-bit words, it would be difficult to have an immediate combined with the opcode in a single memory word, although certain instructions like increment and decrement did this implicitly by using

6460-422: The majority of mathematical instructions were simple assignments; only 1 ⁄ 3 of them actually performed an operation like addition or subtraction. But when those operations did occur, they tended to be slow. This led to far more emphasis on the underlying arithmetic data unit, as opposed to previous designs where the majority of the chip was dedicated to control and microcode. The resulting Berkeley RISC

6555-509: The memory access time. Partly due to the optimized load–store architecture of the CDC 6600, Jack Dongarra says that it can be considered a forerunner of modern RISC systems, although a number of other technical barriers needed to be overcome for the development of a modern RISC system. Michael J. Flynn views the first RISC system as the IBM 801 design, begun in 1975 by John Cocke and completed in 1980. The 801 developed out of an effort to build

6650-545: The mid-1980s. The Acorn ARM1 appeared in April 1985, MIPS R2000 appeared in January 1986, followed shortly thereafter by Hewlett-Packard 's PA-RISC in some of their computers. In the meantime, the Berkeley effort had become so well known that it eventually became the name for the entire concept. In 1987 Sun Microsystems began shipping systems with the SPARC processor, directly based on

6745-563: The most significant characteristics of RISC processors was that external memory was only accessible by a load or store instruction. All other instructions were limited to internal registers. This simplified many aspects of processor design: allowing instructions to be fixed-length, simplifying pipelines, and isolating the logic for dealing with the delay in completing a memory access (cache miss, etc.) to only two instructions. This led to RISC designs being referred to as load–store architectures. Some CPUs have been specifically designed to have

6840-640: The most widely adopted RISC ISA, initially intended to deliver higher-performance desktop computing, at low cost, and in a restricted thermal package, such as in the Acorn Archimedes , while featuring in the Super Computer League tables , its initial, relatively, lower power and cooling implementation was soon adapted to embedded applications, such as laser printer raster image processing. Acorn, in partnership with Apple Inc, and VLSI, creating ARM Ltd, in 1990, to share R&D costs and find new markets for

6935-399: The most widely used electronic device in the world. The MOSFET is the basic element in most modern electronic equipment. As the complexity of circuits grew, problems arose. One problem was the size of the circuit. A complex circuit like a computer was dependent on speed. If the components were large, the wires interconnecting them must be long. The electric signals took time to go through

7030-688: The music recording industry. The next big technological step took several decades to appear, when the first working point-contact transistor was invented by John Bardeen and Walter Houser Brattain at Bell Labs in 1947. However, vacuum tubes continued to play a leading role in the field of microwave and high power transmission as well as television receivers until the middle of the 1980s. Since then, solid-state devices have all but completely taken over. Vacuum tubes are still used in some specialist applications such as high power RF amplifiers , cathode-ray tubes , specialist audio equipment, guitar amplifiers and some microwave devices . In April 1955,

7125-474: The next three on that list. Electronics Electronic devices have hugely influenced the development of many aspects of modern society, such as telecommunications , entertainment, education, health care, industry, and security. The main driving force behind the advancement of electronics is the semiconductor industry , which in response to global demand continually produces ever-more sophisticated electronic devices and circuits. The semiconductor industry

7220-520: The one used on the AS/400 machines. POWER machines typically ran AIX . Solaris, OS/2 and Windows NT were also ported to PowerPC. Later Linux was also used. Some AIX systems support IBM Web-based System Manager . Some models were marketed under the RS/6000 POWERstation and POWERserver names. The early lines were based on an IBM proprietary Micro Channel architecture ; the same architecture that

7315-540: The opcode was 0 and the last 6 bits contained the actual code; those that used an immediate value used the normal opcode field at the front. One drawback of 32-bit instructions is reduced code density, which is more adverse a characteristic in embedded computing than it is in the workstation and server markets RISC architectures were originally designed to serve. To address this problem, several architectures, such as SuperH (1992), ARM thumb (1994), MIPS16e (2004), Power Variable Length Encoding ISA (2006), RISC-V , and

7410-531: The opposite direction, having added longer 32-bit instructions to an original 16-bit encoding. The most characteristic aspect of RISC is executing at least one instruction per cycle . Single-cycle operation is described as "the rapid execution of simple functions that dominate a computer's instruction stream", thus seeking to deliver an average throughput approaching one instruction per cycle for any single instruction stream. Other features of RISC architectures include: RISC designs are also more likely to feature

7505-497: The required additional memory accesses. It was argued that such functions would be better performed by sequences of simpler instructions if this could yield implementations small enough to leave room for many registers, reducing the number of slow memory accesses. In these simple designs, most instructions are of uniform length and similar structure, arithmetic operations are restricted to CPU registers and only separate load and store instructions access memory. These properties enable

7600-402: The resulting machine being called a "reduced instruction set computer" (RISC). The goal was to make instructions so simple that they could easily be pipelined, in order to achieve a single clock throughput at high frequencies . This contrasted with CISC designs whose "crucial arithmetic operations and register transfers" were considered difficult to pipeline. Later, it was noted that one of

7695-540: The reverse definition ("0" is "High") or are current based. Quite often the logic designer may reverse these definitions from one circuit to the next as they see fit to facilitate their design. The definition of the levels as "0" or "1" is arbitrary. Ternary (with three states) logic has been studied, and some prototype computers made, but have not gained any significant practical acceptance. Universally, Computers and Digital signal processors are constructed with digital circuits using Transistors such as MOSFETs in

7790-503: The same code would run about 50% faster even on existing machines due to the improved register use. In practice, their experimental PL/8 compiler, a slightly cut-down version of PL/I , consistently produced code that ran much faster on their existing mainframes. A 32-bit version of the 801 was eventually produced in a single-chip form as the IBM ROMP in 1981, which stood for 'Research OPD [Office Products Division] Micro Processor'. This CPU

7885-471: The second half of the 1980s, and led the designers of the MIPS-X to put it this way in 1987: The goal of any instruction format should be: 1. simple decode, 2. simple decode, and 3. simple decode. Any attempts at improved code density at the expense of CPU performance should be ridiculed at every opportunity. Competition between RISC and conventional CISC approaches was also the subject of theoretical analysis in

7980-408: The second operand. A more complex example is the MIPS encoding, which used only 6 bits for the opcode, followed by two 5-bit registers. The remaining 16 bits could be used in two ways, one as a 16-bit immediate value, or as a 5-bit shift value (used only in shift operations, otherwise zero) and the remaining 6 bits as an extension on the opcode. In the case of register-to-register arithmetic operations,

8075-454: The use of memory; a single instruction from a traditional processor like the Motorola 68k may be written out as perhaps a half dozen of the simpler RISC instructions. In theory, this could slow the system down as it spent more time fetching instructions from memory. But by the mid-1980s, the concepts had matured enough to be seen as commercially viable. Commercial RISC designs began to emerge in

8170-506: The use of the pipeline, making sure it could be run as "full" as possible. The MIPS system was followed by the MIPS-X and in 1984 Hennessy and his colleagues formed MIPS Computer Systems to produce the design commercially. The venture resulted in a new architecture that was also called MIPS and the R2000 microprocessor in 1985. The overall philosophy of the RISC concept was widely understood by

8265-441: The vast majority of the available instructions, especially orthogonal addressing modes. Instead, they selected the fastest version of any given instruction and then constructed small routines using it. This suggested that the majority of instructions could be removed without affecting the resulting code. These two conclusions worked in concert; removing instructions would allow the instruction opcodes to be shorter, freeing up bits in

8360-491: The window "down" by eight, to the set of eight registers used by that procedure, and the return moves the window back. The Berkeley RISC project delivered the RISC-I processor in 1982. Consisting of only 44,420 transistors (compared with averages of about 100,000 in newer CISC designs of the era), RISC-I had only 32 instructions, and yet completely outperformed any other single-chip design, with estimated performance being higher than

8455-756: The years. For instance, early electronics often used point to point wiring with components attached to wooden breadboards to construct circuits. Cordwood construction and wire wrap were other methods used. Most modern day electronics now use printed circuit boards made of materials such as FR4 , or the cheaper (and less hard-wearing) Synthetic Resin Bonded Paper ( SRBP , also known as Paxoline/Paxolin (trade marks) and FR2) – characterised by its brown colour. Health and environmental concerns associated with electronics assembly have gained increased attention in recent years, especially for products destined to go to European markets. Electrical components are generally mounted in

8550-498: Was based on gaining performance through the use of pipelining and aggressive use of register windowing. In a traditional CPU, one has a small number of registers, and a program can use any register at any time. In a CPU with register windows, there are a huge number of registers, e.g., 128, but programs can only use a small number of them, e.g., eight, at any one time. A program that limits itself to eight registers per procedure can make very fast procedure calls : The call simply moves

8645-412: Was designed for "mini" tasks, and found use in peripheral interfaces and channel controllers on later IBM computers. It was also used as the CPU in the IBM RT PC in 1986, which turned out to be a commercial failure. Although the 801 did not see widespread use in its original form, it inspired many research projects, including ones at IBM that would eventually lead to the IBM POWER architecture . By

8740-474: Was no reason the compiler couldn't do this instead. These studies suggested that, even with no other changes, one could make a chip with 1 ⁄ 3 fewer transistors that would run faster. In the original RISC-I paper they noted: Skipping this extra level of interpretation appears to enhance performance while reducing chip size. It was also discovered that, on microcoded implementations of certain architectures, complex operations tended to be slower than

8835-425: Was released on 25 March 1994, priced at US$ 12,000. The internal batteries could power the system for 45 minutes only and an external battery pack that lasted for 4 hours was available for this reason. Reduced instruction set computer In electronics and computer science , a reduced instruction set computer ( RISC ) is a computer architecture designed to simplify the individual instructions given to

8930-667: Was to enable the RS/6000 to run multiple operating systems such as Windows NT , NetWare , OS/2 , Solaris , Taligent , AIX and Mac OS but in the end only IBM's Unix variant AIX was used and supported on RS/6000. Linux is widely used on CHRP based RS/6000s, but support was added after the RS/6000 name was changed to eServer pSeries in 2000. The RS/6000 family also included the POWERserver servers, POWERstation workstations and Scalable POWERparallel supercomputer platform. While most machines were desktops, desksides, or rack-mounted, there were laptop models too. Famous RS/6000s include

9025-467: Was used in the high end PS/2 x86 desktop line. MCA-based lines were produced until 1999. These workstations were marketed under the PowerStation name. This type was for Xstations, IBM's line of X terminal . The 380, 390, and 39H servers correspond to the 3AT, 3BT, and 3CT workstations. The 7016-730 model was a version of 7013-530 model, but with licensed by Silicon Graphics graphics card. Uses

#322677