Misplaced Pages

PDZ domain

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

1fc9 A:151-232 1fcf A:151-232 1fc6 A:151-232 1ueq A:426-492 1ujv A:639-680 1i92 A:14-91 1g9o A:14-91 1q3o A:663-754 1q3p A:663-754 1uep A:778-859 1wfv A:1147-1226 1uew A:920-1007 2cs5 A:517-602 1qav A:81-161 2pdz A:81-161 1z86 A:81-161 1z87 A:81-161 1pdr :466-544 1tq3 A:313-391 1be9 A:313-391 1bfe A:313-391 1tp5 A:313-391 1tp3 A:313-391 1um7 A:386-464 1iu2 A:65-149 1iu0 A:65-149 1kef A:65-149 1zok A:224-308 1qlc A:160-244 2byg A:193-277 2fe5 A:226-310 1wi2 A:47-125 1wha A:871-947 1x5q A: 728-812 1t2m A:993-1073 1um1 A:974-1056 1wf8 A:504-589 1gm1 A:1357-1439 1ozi A:1357-1439 1vj6 A:1357-1439 1d5g A:1368-1450 3pdz A:1368-1450 1q7x A:1368-1450 1uju A:1100-1189 1wi4 A:22-94 1l6o A:254-339 1mc7 A:251-336 1n7t A:1323-1407 1mfg A:1323-1407 1mfl A:1323-1407 1uez A:140-219 1uf1 A:279-357 1x5n A:211-289 1ihj A:17-103 1uhp A:249-336 1uit A:1240-1316 1x6d A:412-495 2csj A:10-94 1m5z A:988-1067 2css A:605-688 1zub A:619-702 1wfg A:668-753 1ufx A:816-887 1qau A:17-96 1b8q A:17-96 1u38 A:656-740 1u37 A:656-740 1u3b A:656-740 1x45 A:656-740 1p1d A:471-557 1p1e A:471-557 1x5r A:456-542 1v62 A:248-329 1n7f A:672-751 1n7e A:672-751 1wf7 A:5-82 1rgw A:4-81 1vb7 A:3-81 1i16 :533-616 1v6b A:752-838 2f5y B:300-373 1whd A:18-92 1ybo A:114-191 1v1t B:114-191 1obz B:114-191 1n99 A:114-191 1wh1 A:419-501 1va8 A:256-333 1kwa A:490-568 1nf3 D:157-247 1rzx A:160-250 1oby B:198-270 1obx A:198-270 1nte A:198-270 1r6j A:198-270 1u39 A:747-820

#531468

96-411: The PDZ domain is a common structural domain of 80-90 amino-acids found in the signaling proteins of bacteria , yeast , plants , viruses and animals . Proteins containing PDZ domains play a key role in anchoring receptor proteins in the membrane to cytoskeletal components. Proteins with these domains help hold together and organize signaling complexes at cellular membranes. These domains play

192-438: A protein ultimately encodes its uniquely folded three-dimensional (3D) conformation. The most important factor governing the folding of a protein into 3D structure is the distribution of polar and non-polar side chains. Folding is driven by the burial of hydrophobic side chains into the interior of the molecule so to avoid contact with the aqueous environment. Generally proteins have a core of hydrophobic residues surrounded by

288-433: A quaternary structure , which consists of several polypeptide chains that associate into an oligomeric molecule. Each polypeptide chain in such a protein is called a subunit. Hemoglobin, for example, consists of two α and two β subunits. Each of the four chains has an all-α globin fold with a heme pocket. Domain swapping is a mechanism for forming oligomeric assemblies. In domain swapping, a secondary or tertiary element of

384-405: A 'split value' from the number of each type of contact when the protein is divided arbitrarily into two parts. This split value is large when the two parts of the structure are distinct. The method of Wodak and Janin was based on the calculated interface areas between two chain segments repeatedly cleaved at various residue positions. Interface areas were calculated by comparing surface areas of

480-402: A bound ligand is said to display "constitutive activity". The constitutive activity of a receptor may be blocked by an inverse agonist . The anti-obesity drugs rimonabant and taranabant are inverse agonists at the cannabinoid CB1 receptor and though they produced significant weight loss, both were withdrawn owing to a high incidence of depression and anxiety, which are believed to relate to

576-742: A concerted manner with its neighbours. Domains can either serve as modules for building up large assemblies such as virus particles or muscle fibres, or can provide specific catalytic or binding sites as found in enzymes or regulatory proteins. An appropriate example is pyruvate kinase (see first figure), a glycolytic enzyme that plays an important role in regulating the flux from fructose-1,6-biphosphate to pyruvate. It contains an all-β nucleotide-binding domain (in blue), an α/β-substrate binding domain (in grey) and an α/β-regulatory domain (in olive green), connected by several polypeptide linkers. Each domain in this protein occurs in diverse sets of protein families . The central α/β-barrel substrate binding domain

672-457: A different part of the target protein or a different protein altogether. PDZ domains play a vital role in organizing and maintaining complex scaffolding formations. PDZ domains are found in diverse proteins, but all assist in localization of cellular elements. PDZ domains are primarily involved in anchoring receptor proteins to the cytoskeleton . For cells to function properly it is important for components—proteins and other molecules— to be in

768-469: A domain having been inserted into another. Sequence or structural similarities to other domains demonstrate that homologues of inserted and parent domains can exist independently. An example is that of the 'fingers' inserted into the 'palm' domain within the polymerases of the Pol I family. Since a domain can be inserted into another, there should always be at least one continuous domain in a multidomain protein. This

864-452: A domain really is has meant that domain assignments have varied enormously, with each researcher using a unique set of criteria. A structural domain is a compact, globular sub-structure with more interactions within it than with the rest of the protein. Therefore, a structural domain can be determined by two visual characteristics: its compactness and its extent of isolation. Measures of local compactness in proteins have been used in many of

960-495: A favorable spatial arrangements, neuronal nitric oxide synthase (nNOS) is brought close to NMDA receptors via interactions with PDZ domains on PSD-95, which concurrently binds nNOS and NMDA receptors . With nNOS located closely to NMDA receptors, it will be activated immediately after calcium ions begin entering the cell. PDZ domains are directly involved in the regulation of different cellular pathways. This mechanism of this regulation varies as PDZ domains are able to interact with

1056-565: A fixed stoichiometric ratio of the enzymatic activity necessary for a sequential set of reactions. Structural alignment is an important tool for determining domains. Several motifs pack together to form compact, local, semi-independent units called domains. The overall 3D structure of the polypeptide chain is referred to as the protein's tertiary structure . Domains are the fundamental units of tertiary structure, each domain containing an individual hydrophobic core built from secondary structural units connected by loop regions. The packing of

SECTION 10

#1732851094532

1152-686: A key role in the formation and function of signal transduction complexes. PDZ domains also play a highly significant role in the anchoring of cell surface receptors (such as Cftr and FZD7 ) to the actin cytoskeleton via mediators like NHERF and ezrin . PDZ is an initialism combining the first letters of the first three proteins discovered to share the domain — post synaptic density protein (PSD95) , Drosophila disc large tumor suppressor (Dlg1) , and zonula occludens-1 protein (zo-1) . PDZ domains have previously been referred to as DHR (Dlg homologous region) or GLGF ( glycine - leucine -glycine- phenylalanine ) domains. In general PDZ domains bind to

1248-457: A monomeric protein is replaced by the same element of another protein. Domain swapping can range from secondary structure elements to whole structural domains. It also represents a model of evolution for functional adaptation by oligomerisation, e.g. oligomeric enzymes that have their active site at subunit interfaces. Nature is a tinkerer and not an inventor , new sequences are adapted from pre-existing sequences rather than invented. Domains are

1344-836: A multi-enzyme polypeptide containing the GAR synthetase , AIR synthetase and GAR transformylase domains (GARs-AIRs-GARt; GAR: glycinamide ribonucleotide synthetase/transferase; AIR: aminoimidazole ribonucleotide synthetase). In insects, the polypeptide appears as GARs-(AIRs)2-GARt, in yeast GARs-AIRs is encoded separately from GARt, and in bacteria each domain is encoded separately. Multidomain proteins are likely to have emerged from selective pressure during evolution to create new functions. Various proteins have diverged from common ancestors by different combinations and associations of domains. Modular units frequently move about, within and between biological systems through mechanisms of genetic shuffling: The simplest multidomain organization seen in proteins

1440-557: A particular structure. This has been analogously compared to how locks will only accept specifically shaped keys . When a ligand binds to a corresponding receptor, it activates or inhibits the receptor's associated biochemical pathway, which may also be highly specialised. Receptor proteins can be also classified by the property of the ligands. Such classifications include chemoreceptors , mechanoreceptors , gravitropic receptors , photoreceptors , magnetoreceptors and gasoreceptors. The structures of receptors are very diverse and include

1536-448: A range of cellular components. This regulation is usually a result of the co-localization of multiple signaling molecules such as in the example with nNos and NMDA receptors. Some examples of signaling pathway regulation executed by the PDZ domain include phosphatase enzyme activity, mechanosensory signaling , and the sorting pathway of endocytosed receptor proteins. The signaling pathway of

1632-415: A receptor and produce physiological responses such as change in the electrical activity of a cell . For example, GABA , an inhibitory neurotransmitter , inhibits electrical activity of neurons by binding to GABA A receptors . There are three main ways the action of the receptor can be classified: relay of signal, amplification, or integration. Relaying sends the signal onward, amplification increases

1728-410: A receptor is its binding affinity, which is inversely related to the dissociation constant K d . A good fit corresponds with high affinity and low K d . The final biological response (e.g. second messenger cascade , muscle-contraction), is only achieved after a significant number of receptors are activated. Affinity is a measure of the tendency of a ligand to bind to its receptor. Efficacy

1824-429: A series of “GLGF repeats”. She continued to explain that in order to “better reflect the origin and distribution of the domain,” the new title of the domain would be changed. Thus, the name “PDZ domain” was introduced to the world. PDZ domain structure is partially conserved across the various proteins that contain them. They usually have 5-6 β-strands and one short and one long α-helix . Apart from this conserved fold,

1920-560: A shell of hydrophilic residues. Since the peptide bonds themselves are polar they are neutralised by hydrogen bonding with each other when in the hydrophobic environment. This gives rise to regions of the polypeptide that form regular 3D structural patterns called secondary structure . There are two main types of secondary structure: α-helices and β-sheets . Some simple combinations of secondary structure elements have been found to frequently occur in protein structure and are referred to as supersecondary structure or motifs . For example,

2016-469: A short region of the C-terminus of other specific proteins. These short regions bind to the PDZ domain by beta sheet augmentation. This means that the beta sheet in the PDZ domain is extended by the addition of a further beta strand from the tail of the binding partner protein. The C-terminal carboxylate group is bound by a nest (protein structural motif) in the PDZ domain, i.e. a PDZ-binding motif . PDZ

SECTION 20

#1732851094532

2112-533: A simple mutation in GRIP. HOMER differs significantly from many known PDZ proteins, including GRIP and PSD-95. Instead of mediating receptors near ion channels, as is the case with GRIP and PSD-95, HOMER is involved in metabotropic glutamate signaling. Another unique aspect of HOMER is that it only contains a single PDZ domain, which mediates interactions between HOMER and type 5 metabotropic glutamate receptor ( mGluR5 ). The single GLGF repeat on HOMER binds amino acids on

2208-576: A single structural/functional unit. This combined superdomain can occur in diverse proteins that are not related by gene duplication alone. An example of a superdomain is the protein tyrosine phosphatase – C2 domain pair in PTEN , tensin , auxilin and the membrane protein TPTE2. This superdomain is found in proteins in animals, plants and fungi. A key feature of the PTP-C2 superdomain is amino acid residue conservation in

2304-437: A subset of protein domains which are found across a range of different proteins with a particularly versatile structure. Examples can be found among extracellular proteins associated with clotting, fibrinolysis, complement, the extracellular matrix, cell surface adhesion molecules and cytokine receptors. Four concrete examples of widespread protein modules are the following domains: SH2 , immunoglobulin , fibronectin type 3 and

2400-410: Is phosphorylation . This modification is primarily an inhibitor of PDZ domain and ligand activity. In some examples, phosphorylation of amino acid side chains eliminates the ability of the PDZ domain to form hydrogen bonds , disrupting the normal binding patterns. The end result is a loss of PDZ domain function and further signaling. Another way phosphorylation can disrupt regular PDZ domain function

2496-577: Is a decrease in energy and loss of entropy with increasing tertiary structure formation. The local roughness of the funnel reflects kinetic traps, corresponding to the accumulation of misfolded intermediates. A folding chain progresses toward lower intra-chain free-energies by increasing its compactness. The chain's conformational options become increasingly narrowed ultimately toward one native structure. The organisation of large proteins by structural domains represents an advantage for protein folding, with each domain being able to individually fold, accelerating

2592-464: Is a locally acting feedback mechanism. The ligands for receptors are as diverse as their receptors. GPCRs (7TMs) are a particularly vast family, with at least 810 members. There are also LGICs for at least a dozen endogenous ligands, and many more receptors possible through different subunit compositions. Some common examples of ligands and receptors include: Some example ionotropic (LGIC) and metabotropic (specifically, GPCRs) receptors are shown in

2688-481: Is an acronym derived from the names of the first proteins in which the domain was observed. Post-synaptic density protein 95 (PSD-95) is a synaptic protein found only in the brain. Drosophila disc large tumor suppressor (Dlg1) and zona occludens 1 (ZO-1) both play an important role at cell junctions and in cell signaling complexes. Since the discovery of PDZ domains more than 20 years ago, hundreds of additional PDZ domains have been identified. The first published use of

2784-561: Is by altering the charge ratio and further affecting binding and signaling. In rare cases researchers have seen post-translational modifications activate PDZ domain activity but these cases are few. Another post-translational modification that can regulate PDZ domains is the formation of disulfide bridges . Many PDZ domains contain cysteines and are susceptible to disulfide bond formation in oxidizing conditions . This modification acts primarily as an inhibitor of PDZ domain function. Protein-protein interactions have been observed to alter

2880-403: Is considered as a progressive organisation of an ensemble of partially folded structures through which a protein passes on its way to the folded structure. This has been described in terms of a folding funnel , in which an unfolded protein has a large number of conformational states available and there are fewer states available to the folded protein. A funnel implies that for protein folding there

2976-858: Is currently one known virus containing PDZ domains: Structural domain In molecular biology , a protein domain is a region of a protein 's polypeptide chain that is self-stabilizing and that folds independently from the rest. Each domain forms a compact folded three-dimensional structure . Many proteins consist of several domains, and a domain may appear in a variety of different proteins. Molecular evolution uses domains as building blocks and these may be recombined in different arrangements to create proteins with different functions. In general, domains vary in length from between about 50 amino acids up to 250 amino acids in length. The shortest domains, such as zinc fingers , are stabilized by metal ions or disulfide bridges . Domains often form functional units, such as

PDZ domain - Misplaced Pages Continue

3072-399: Is essential for the generation of the domain databases, especially as the number of known protein structures is increasing. Although the boundaries of a domain can be determined by visual inspection, construction of an automated method is not straightforward. Problems occur when faced with domains that are discontinuous or highly associated. The fact that there is no standard definition of what

3168-405: Is no obvious sequence similarity between them. The active site is located at a cleft between the two β-barrel domains, in which functionally important residues are contributed from each domain. Genetically engineered mutants of the chymotrypsin serine protease were shown to have some proteinase activity even though their active site residues were abolished and it has therefore been postulated that

3264-515: Is one of the most common enzyme folds. It is seen in many different enzyme families catalysing completely unrelated reactions. The α/β-barrel is commonly called the TIM barrel named after triose phosphate isomerase, which was the first such structure to be solved. It is currently classified into 26 homologous families in the CATH domain database. The TIM barrel is formed from a sequence of β-α-β motifs closed by

3360-489: Is protein regions that behave approximately as rigid units in the course of structural fluctuations, has been introduced by Potestio et al. and, among other applications was also used to compare the consistency of the dynamics-based domain subdivisions with standard structure-based ones. The method, termed PiSQRD , is publicly available in the form of a webserver. The latter allows users to optimally subdivide single-chain or multimeric proteins into quasi-rigid domains based on

3456-411: Is referred to as its endogenous ligand. E.g. the endogenous ligand for the nicotinic acetylcholine receptor is acetylcholine , but it can also be activated by nicotine and blocked by curare . Receptors of a particular type are linked to specific cellular biochemical pathways that correspond to the signal. While numerous receptors are found in most cells, each receptor will only bind with ligands of

3552-427: Is that of a single domain repeated in tandem. The domains may interact with each other ( domain-domain interaction ) or remain isolated, like beads on string. The giant 30,000 residue muscle protein titin comprises about 120 fibronectin-III-type and Ig-type domains. In the serine proteases, a gene duplication event has led to the formation of a two β-barrel domain enzyme. The repeats have diverged so widely that there

3648-496: Is the main difference between definitions of structural domains and evolutionary/functional domains. An evolutionary domain will be limited to one or two connections between domains, whereas structural domains can have unlimited connections, within a given criterion of the existence of a common core. Several structural domains could be assigned to an evolutionary domain. A superdomain consists of two or more conserved domains of nominally independent origin, but subsequently inherited as

3744-411: Is the measure of the bound ligand to activate its receptor. Not every ligand that binds to a receptor also activates that receptor. The following classes of ligands exist: Note that the idea of receptor agonism and antagonism only refers to the interaction between receptors and ligands and not to their biological effects. A receptor which is capable of producing a biological response in the absence of

3840-558: Is the α/β-barrel super-fold, as described previously. The majority of proteins, two-thirds in unicellular organisms and more than 80% in metazoa, are multidomain proteins. However, other studies concluded that 40% of prokaryotic proteins consist of multiple domains while eukaryotes have approximately 65% multi-domain proteins. Many domains in eukaryotic multidomain proteins can be found as independent proteins in prokaryotes, suggesting that domains in multidomain proteins have once existed as independent proteins. For example, vertebrates have

3936-983: Is used to define domains in the FSSP domain database. Swindells (1995) developed a method, DETECTIVE, for identification of domains in protein structures based on the idea that domains have a hydrophobic interior. Deficiencies were found to occur when hydrophobic cores from different domains continue through the interface region. RigidFinder is a novel method for identification of protein rigid blocks (domains and loops) from two different conformations. Rigid blocks are defined as blocks where all inter residue distances are conserved across conformations. The method RIBFIND developed by Pandurangan and Topf identifies rigid bodies in protein structures by performing spacial clustering of secondary structural elements in proteins. The RIBFIND rigid bodies have been used to flexibly fit protein structures into cryo electron microscopy density maps. A general method to identify dynamical domains , that

PDZ domain - Misplaced Pages Continue

4032-593: The cytoskeleton . Glutamate receptor interacting protein (GRIP) is a post-synaptic protein that interacts with AMPA receptors in a fashion analogous to PSD-95 interactions with NMDA receptors. When researchers noticed apparent structural homology between the C-termini of AMPA receptors and NMDA receptors, they attempted to determine if a similar PDZ interaction was occurring. A yeast two-hybrid system helped them discover that out of GRIP's seven PDZ domains, two (domains four and five) were essential for binding of GRIP to

4128-495: The human protein tyrosine phosphatase non-receptor type 4 (PTPN4) is regulated by PDZ domains. This protein is involved in regulating cell death . Normally the PDZ domain of this enzyme is unbound. In this unbound state the enzyme is active and prevents cell signaling for apoptosis . Binding the PDZ domain of this phosphatase results in a loss of enzyme activity, which leads to apoptosis. The normal regulation of this enzyme prevents cells from prematurely going through apoptosis. When

4224-484: The kringle . Molecular evolution gives rise to families of related proteins with similar sequence and structure. However, sequence similarities can be extremely low between proteins that share the same structure. Protein structures may be similar because proteins have diverged from a common ancestor. Alternatively, some folds may be more favored than others as they represent stable arrangements of secondary structures and some proteins may converge towards these folds over

4320-422: The receptor theory of pharmacology stated that a drug's effect is directly proportional to the number of receptors that are occupied. Furthermore, a drug effect ceases as a drug-receptor complex dissociates. Ariëns & Stephenson introduced the terms "affinity" & "efficacy" to describe the action of ligands bound to receptors. In contrast to the accepted Occupation Theory , Rate Theory proposes that

4416-438: The secondary structure differs across PDZ domains. This domain tends to be globular with a diameter of about 35 Å. When studied, PDZ domains are usually isolated as monomers , however some PDZ proteins form dimers . The function of PDZ dimers as compared to monomers is not yet known. A commonly accepted theory for the binding pocket of the PDZ domain is that it is constituted by several hydrophobic amino acids, apart from

4512-462: The β-hairpin motif consists of two adjacent antiparallel β-strands joined by a small loop. It is present in most antiparallel β structures both as an isolated ribbon and as part of more complex β-sheets. Another common super-secondary structure is the β-α-β motif, which is frequently used to connect two parallel β-strands. The central α-helix connects the C-termini of the first strand to the N-termini of

4608-539: The AMPA subunit called GluR2. This interaction is vital for proper localization of AMPA receptors, which play a large part in memory storage . Other researchers discovered that domains six and seven of GRIP are responsible for connecting GRIP to a family of receptor tyrosine kinases called ephrin receptors , which are important signaling proteins. A clinical study concluded that Fraser syndrome , an autosomal recessive syndrome that can cause severe deformations, can be caused by

4704-475: The C-terminus of NMDA receptors and anchor them in the membrane at the point of neurotransmitter release. The first two PDZ domains can also interact in a similar fashion with Shaker-type K+ channels . A PDZ interaction between PSD-95, nNOS and syntrophin is mediated by the second PDZ domain. The third and final PDZ domain links to cysteine-rich PDZ-binding protein ( CRIPT ), which allows PSD-95 to associate with

4800-471: The C-terminus of mGluR5. HOMER expression is measured at high levels during embryologic stages in rats, suggesting an important developmental function. There are roughly 260 PDZ domains in humans. Several proteins contain multiple PDZ domains, so the number of unique PDZ-containing proteins is closer to 180. In the table below are some of the better studied members of this family: The table below contains all known PDZ proteins in humans (alphabetical): There

4896-514: The GLGF sequence mentioned earlier, the mainchain atoms of which form a nest (protein structural motif) binding the C-terminal carboxylate of the protein or peptide ligand. Most PDZ domains have such a binding site located between one of the β-strands and the long α-helix. PDZ domains have two main functions: Localizing cellular elements, and regulating cellular pathways. The first discovered function of

SECTION 50

#1732851094532

4992-432: The PDZ domains was to anchor receptor proteins in the membrane to cytoskeletal components. PDZ domains also have regulatory functions on different signaling pathways. Any protein may have one or several PDZ domains, which can be identical or unique (see figure to right). This variety allows these proteins to be very versatile in their interactions. Different PDZ domains in the same protein can have different roles, each binding

5088-443: The activation of receptors is directly proportional to the total number of encounters of a drug with its receptors per unit time. Pharmacological activity is directly proportional to the rates of dissociation and association, not the number of receptors occupied: As a drug approaches a receptor, the receptor alters the conformation of its binding site to produce drug—receptor complex. In some receptor systems (e.g. acetylcholine at

5184-452: The body can interpret. WHRN proteins contains three PDZ domains. The domains located near the N-terminus bind to receptor proteins and other signaling components. When the one of these PDZ domains is inhibited, the signaling pathways of the neurons are disrupted, resulting in auditory, visual, and vestibular impairment. This regulation is thought to be based on the physical positioning WHRN and

5280-500: The calcium-binding EF hand domain of calmodulin . Because they are independently stable, domains can be "swapped" by genetic engineering between one protein and another to make chimeric proteins . The concept of the domain was first proposed in 1973 by Wetlaufer after X-ray crystallographic studies of hen lysozyme and papain and by limited proteolysis studies of immunoglobulins . Wetlaufer defined domains as stable units of protein structure that could fold autonomously. In

5376-492: The cell membrane. Scientists have demonstrated that when the Ser-411 residue of the β2-AR PDZ binding domain, which interacts directly with EBP50, is phosphorylated, the receptor is degraded. If Ser-411 is left unmodified, the receptor is recycled. The role played by PDZ domains and their binding sites indicate a regulative relevance beyond simply receptor protein localization. PDZ domains are being studied further to better understand

5472-405: The cell, and include cytoplasmic receptors and nuclear receptors . A molecule that binds to a receptor is called a ligand and can be a protein, peptide (short protein), or another small molecule , such as a neurotransmitter , hormone , pharmaceutical drug, toxin, calcium ion or parts of the outside of a virus or microbe. An endogenously produced substance that binds to a particular receptor

5568-411: The cell. 4 examples of intracellular LGIC are shown below: Many genetic disorders involve hereditary defects in receptor genes. Often, it is hard to determine whether the receptor is nonfunctional or the hormone is produced at decreased level; this gives rise to the "pseudo-hypo-" group of endocrine disorders , where there appears to be a decreased hormonal level while in fact it is the receptor that

5664-495: The cleaved segments with that of the native structure. Potential domain boundaries can be identified at a site where the interface area was at a minimum. Other methods have used measures of solvent accessibility to calculate compactness. The PUU algorithm incorporates a harmonic model used to approximate inter-domain dynamics. The underlying physical concept is that many rigid interactions will occur within each domain and loose interactions will occur between domains. This algorithm

5760-458: The collective modes of fluctuation of the system. By default the latter are calculated through an elastic network model; alternatively pre-calculated essential dynamical spaces can be uploaded by the user. A large fraction of domains are of unknown function. A  domain of unknown function  (DUF) is a protein domain that has no characterized function. These families have been collected together in the  Pfam database using

5856-416: The common material used by nature to generate new sequences; they can be thought of as genetically mobile units, referred to as 'modules'. Often, the C and N termini of domains are close together in space, allowing them to easily be "slotted into" parent structures during the process of evolution. Many domain families are found in all three forms of life, Archaea , Bacteria and Eukarya . Protein modules are

SECTION 60

#1732851094532

5952-937: The course of evolution. There are currently about 110,000 experimentally determined protein 3D structures deposited within the Protein Data Bank (PDB). However, this set contains many identical or very similar structures. All proteins should be classified to structural families to understand their evolutionary relationships. Structural comparisons are best achieved at the domain level. For this reason many algorithms have been developed to automatically assign domains in proteins with known 3D structure (see § Domain definition from structural co-ordinates ). The CATH domain database classifies domains into approximately 800 fold families; ten of these folds are highly populated and are referred to as 'super-folds'. Super-folds are defined as folds for which there are at least three structures without significant sequence similarity. The most populated

6048-431: The domain interface. Protein folding - the unsolved problem  : Since the seminal work of Anfinsen in the early 1960s, the goal to completely understand the mechanism by which a polypeptide rapidly folds into its stable native conformation remains elusive. Many experimental folding studies have contributed much to our understanding, but the principles that govern protein folding are still based on those discovered in

6144-530: The domain. Domains have limits on size. The size of individual structural domains varies from 36 residues in E-selectin to 692 residues in lipoxygenase-1, but the majority, 90%, have fewer than 200 residues with an average of approximately 100 residues. Very short domains, less than 40 residues, are often stabilised by metal ions or disulfide bonds. Larger domains, greater than 300 residues, are likely to consist of multiple hydrophobic cores. Many proteins have

6240-543: The duplication event enhanced the enzyme's activity. Modules frequently display different connectivity relationships, as illustrated by the kinesins and ABC transporters . The kinesin motor domain can be at either end of a polypeptide chain that includes a coiled-coil region and a cargo domain. ABC transporters are built with up to four domains consisting of two unrelated modules, ATP-binding cassette and an integral membrane module, arranged in various combinations. Not only do domains recombine, but there are many examples of

6336-403: The dynamic behavior of receptors have been used to gain understanding of their mechanisms of action. Ligand binding is an equilibrium process. Ligands bind to receptors and dissociate from them according to the law of mass action in the following equation, for a ligand L and receptor, R. The brackets around chemical species denote their concentrations. One measure of how well a molecule fits

6432-501: The early methods of domain assignment and in several of the more recent methods. One of the first algorithms used a Cα-Cα distance map together with a hierarchical clustering routine that considered proteins as several small segments, 10 residues in length. The initial segments were clustered one after another based on inter-segment distances; segments with the shortest distances were clustered and considered as single segments thereafter. The stepwise clustering finally included

6528-399: The effect of a single ligand , and integration allows the signal to be incorporated into another biochemical pathway. Receptor proteins can be classified by their location. Cell surface receptors , also known as transmembrane receptors, include ligand-gated ion channels , G protein-coupled receptors , and enzyme-linked hormone receptors . Intracellular receptors are those found inside

6624-418: The effectiveness of PDZ domains binding to ligands. These studies show that allosteric effects of certain proteins can affect the binding affinity for different substrates . Different PDZ domains can even have this allosteric effect on each other. This PDZ-PDZ interaction only acts as an inhibitor. Other experiments have shown that certain enzymes can enhance the binding of PDZ domains. Researchers found that

6720-677: The entire protein or individual domains. They can however be inferred by comparing different structures of a protein (as in Database of Molecular Motions ). They can also be suggested by sampling in extensive molecular dynamics trajectories and principal component analysis, or they can be directly observed using spectra measured by neutron spin echo spectroscopy. The importance of domains as structural building blocks and elements of evolution has brought about many automated methods for their identification and classification in proteins of known structure. Automatic procedures for reliable domain assignment

6816-442: The first and last strand hydrogen bonding together, forming an eight stranded barrel. There is debate about the evolutionary origin of this domain. One study has suggested that a single ancestral enzyme could have diverged into several families, while another suggests that a stable TIM-barrel structure has evolved through convergent evolution. The TIM-barrel in pyruvate kinase is 'discontinuous', meaning that more than one segment of

6912-419: The folding of an isolated domain can take place at the same rate or sometimes faster than that of the integrated domain, suggesting that unfavourable interactions with the rest of the protein can occur during folding. Several arguments suggest that the slowest step in the folding of large proteins is the pairing of the folded domains. This is either because the domains are not folded entirely correctly or because

7008-447: The folding process and reducing a potentially large combination of residue interactions. Furthermore, given the observed random distribution of hydrophobic residues in proteins, domain formation appears to be the optimal solution for a large protein to bury its hydrophobic residues while keeping the hydrophilic residues at the surface. However, the role of inter-domain interactions in protein folding and in energetics of stabilisation of

7104-414: The following major categories, among others: Membrane receptors may be isolated from cell membranes by complex extraction procedures using solvents , detergents , and/or affinity purification . The structures and actions of receptors may be studied by using biophysical methods such as X-ray crystallography , NMR , circular dichroism , and dual polarisation interferometry . Computer simulations of

7200-441: The full protein. Go also exploited the fact that inter-domain distances are normally larger than intra-domain distances; all possible Cα-Cα distances were represented as diagonal plots in which there were distinct patterns for helices, extended strands and combinations of secondary structures. The method by Sowdhamini and Blundell clusters secondary structures in a protein based on their Cα-Cα distances and identifies domains from

7296-577: The inhibition of the constitutive activity of the cannabinoid receptor. The GABA A receptor has constitutive activity and conducts some basal current in the absence of an agonist. This allows beta carboline to act as an inverse agonist and reduce the current below basal levels. Mutations in receptors that result in increased constitutive activity underlie some inherited diseases, such as precocious puberty (due to mutations in luteinizing hormone receptors) and hyperthyroidism (due to mutations in thyroid-stimulating hormone receptors). Early forms of

7392-450: The most well documented PDZ proteins are PSD-95 , GRIP , and HOMER . PSD-95 is a brain synaptic protein with three PDZ domains, each with unique properties and structures that allow PSD-95 to function in many ways. In general, the first two PDZ domains interact with receptors and the third interacts with cytoskeleton-related proteins. The main receptors associated with PSD-95 are NMDA receptors . The first two PDZ domains of PSD-95 bind to

7488-447: The native structure, probably differs for each protein. In T4 lysozyme, the influence of one domain on the other is so strong that the entire molecule is resistant to proteolytic cleavage. In this case, folding is a sequential process where the C-terminal domain is required to fold independently in an early step, and the other domain requires the presence of the folded C-terminal domain for folding and stabilisation. It has been found that

7584-472: The neuromuscular junction in smooth muscle), agonists are able to elicit maximal response at very low levels of receptor occupancy (<1%). Thus, that system has spare receptors or a receptor reserve. This arrangement produces an economy of neurotransmitter production and release. Cells can increase ( upregulate ) or decrease ( downregulate ) the number of receptors to a given hormone or neurotransmitter to alter their sensitivity to different molecules. This

7680-535: The one with the lowest energy, the whole process would take billions of years. Proteins typically fold within 0.1 and 1000 seconds. Therefore, the protein folding process must be directed some way through a specific folding pathway. The forces that direct this search are likely to be a combination of local and global influences whose effects are felt at various stages of the reaction. Advances in experimental and theoretical studies have shown that folding can be viewed in terms of energy landscapes, where folding kinetics

7776-459: The past domains have been described as units of: Each definition is valid and will often overlap, i.e. a compact structural domain that is found amongst diverse proteins is likely to fold independently within its structural environment. Nature often brings several domains together to form multidomain and multifunctional proteins with a vast number of possibilities. In a multidomain protein, each domain may fulfill its own function independently, or in

7872-414: The pattern in their dendrograms . As the procedure does not consider the protein as a continuous chain of amino acids there are no problems in treating discontinuous domains. Specific nodes in these dendrograms are identified as tertiary structural clusters of the protein, these include both super-secondary structures and domains. The DOMAK algorithm is used to create the 3Dee domain database. It calculates

7968-536: The phrase “PDZ domain” was not in a paper, but a letter. In September 1995, Dr. Mary B. Kennedy of the California Institute of Technology wrote a letter of correction to Trends in Biomedical Sciences. Earlier that year, another set of scientists had claimed to discover a new protein domain which they called a DHR domain. Dr. Kennedy refuted that her lab had previously described exactly the same domain as

8064-414: The polypeptide is required to form the domain. This is likely to be the result of the insertion of one domain into another during the protein's evolution. It has been shown from known structures that about a quarter of structural domains are discontinuous. The inserted β-barrel regulatory domain is 'continuous', made up of a single stretch of polypeptide. The primary structure (string of amino acids) of

8160-413: The polypeptide is usually much tighter in the interior than the exterior of the domain producing a solid-like core and a fluid-like surface. Core residues are often conserved in a protein family , whereas the residues in loops are less conserved, unless they are involved in the protein's function. Protein tertiary structure can be divided into four main classes based on the secondary structural content of

8256-732: The prefix DUF followed by a number, with examples being DUF2992 and DUF1220. There are now over 3,000 DUF families within the Pfam database representing over 20% of known families. Surprisingly, the number of DUFs in Pfam has increased from 20% (in 2010) to 22% (in 2019), mostly due to an increasing number of new genome sequences . Pfam release 32.0 (2019) contained 3,961 DUFs. Receptor (biochemistry) In biochemistry and pharmacology , receptors are chemical structures, composed of protein , that receive and transduce signals that may be integrated into biological systems. These signals are typically chemical messengers which bind to

8352-539: The protein ezrin enhances the binding of the PDZ protein NHERF1 . PDZ proteins are a family of proteins that contain the PDZ domain. This sequence of amino-acids is found in many thousands of known proteins. PDZ domain proteins are widespread in eukaryotes and eubacteria , whereas there are very few examples of the protein in archaea . PDZ domains are often associated with other protein domains and these combinations allow them to carry out their specific functions. Three of

8448-403: The receptor to the cytoskeleton and keep it in place. Without such an interaction, receptors would diffuse out of the synapse due to the fluid nature of the lipid membrane. PDZ domains are also utilized to localize elements other than receptor proteins. In the human brain, nitric oxide often acts in the synapse to modify cGMP levels in response to NMDA receptor activation. In order to ensure

8544-505: The regulation of the PTPN4 enzyme is lost, there is increased oncogenic activity as the cells are able to proliferate . PDZ domains also have a regulatory role in mechanosensory signaling in proprioceptors and vestibular and auditory hair cells . The protein Whirlin (WHRN) localizes in the post-synaptic neurons of hair cells that transform mechanical movement into action potentials that

8640-456: The right place at the right time. Proteins with PDZ domains bind different components to ensure correct arrangements. In the neuron , making sense of neurotransmitter activity requires specific receptors to be located in the lipid membrane at the synapse. PDZ domains are crucial to this receptor localization process. Proteins with PDZ domains generally associate with both the C-terminus of the receptor and cytoskeletal elements in order to anchor

8736-415: The role they play in different signaling pathways. Research has increased as these domains have been linked to different diseases including cancer as discussed above. PDZ domain function can be both inhibited and activated by various mechanisms. Two of the most prevalent include allosteric interactions and posttranslational modifications. The most common post-traslational modification seen on PDZ domains

8832-492: The second strand, packing its side chains against the β-sheet and therefore shielding the hydrophobic residues of the β-strands from the surface. Covalent association of two domains represents a functional and structural advantage since there is an increase in stability when compared with the same structures non-covalently associated. Other, advantages are the protection of intermediates within inter-domain enzymatic clefts that may otherwise be unstable in aqueous environments, and

8928-488: The selectivity of its PDZ domain. Regulation of receptor proteins occurs when the PDZ domain on the EBP50 protein binds to the C-terminus of the beta-2 adrenergic receptor (β2-AR). EBP50 also associates with a complex that connects to actin , thus serving as a link between the cytoskeleton and β2-AR. The β2-AR receptor is eventually endocytosed, where it will either be consigned to a lysosome for degradation or recycled back to

9024-482: The small adjustments required for their interaction are energetically unfavourable, such as the removal of water from the domain interface. Protein domain dynamics play a key role in a multitude of molecular recognition and signaling processes. Protein domains, connected by intrinsically disordered flexible linker domains, induce long-range allostery via protein domain dynamics . The resultant dynamic modes cannot be generally predicted from static structures of either

9120-597: The table below. The chief neurotransmitters are glutamate and GABA; other neurotransmitters are neuromodulatory . This list is by no means exhaustive. Enzyme linked receptors include Receptor tyrosine kinases (RTKs), serine/threonine-specific protein kinase, as in bone morphogenetic protein and guanylate cyclase, as in atrial natriuretic factor receptor. Of the RTKs, 20 classes have been identified, with 58 different RTKs as members. Some examples are shown below: Receptors may be classed based on their mechanism or on their position in

9216-421: The very first studies of folding. Anfinsen showed that the native state of a protein is thermodynamically stable, the conformation being at a global minimum of its free energy. Folding is a directed search of conformational space allowing the protein to fold on a biologically feasible time scale. The Levinthal paradox states that if an averaged sized protein would sample all possible conformations before finding

#531468