Misplaced Pages

Digital imaging

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Digital imaging or digital image acquisition is the creation of a digital representation of the visual characteristics of an object, such as a physical scene or the interior structure of an object. The term is often assumed to imply or include the processing , compression , storage , printing and display of such images. A key advantage of a digital image , versus an analog image such as a film photograph , is the ability to digitally propagate copies of the original subject indefinitely without any loss of image quality.

#628371

103-424: Digital imaging can be classified by the type of electromagnetic radiation or other waves whose variable attenuation , as they pass through or reflect off objects, conveys the information that constitutes the image . In all classes of digital imaging, the information is converted by image sensors into digital signals that are processed by a computer and made output as a visible-light image. For example,

206-435: A magnetic-dipole –type that dies out with distance from the current. In a similar manner, moving charges pushed apart in a conductor by a changing electrical potential (such as in an antenna) produce an electric-dipole –type electrical field, but this also declines with distance. These fields make up the near field. Neither of these behaviours is responsible for EM radiation. Instead, they only efficiently transfer energy to

309-422: A microwave oven . These interactions produce either electric currents or heat, or both. Like radio and microwave, infrared (IR) also is reflected by metals (and also most EMR, well into the ultraviolet range). However, unlike lower-frequency radio and microwave radiation, Infrared EMR commonly interacts with dipoles present in single molecules, which change as atoms vibrate at the ends of a single chemical bond. It

412-461: A transverse wave , where the electric field E and the magnetic field B are both perpendicular to the direction of wave propagation. The electric and magnetic parts of the field in an electromagnetic wave stand in a fixed ratio of strengths to satisfy the two Maxwell equations that specify how one is produced from the other. In dissipation-less (lossless) media, these E and B fields are also in phase, with both reaching maxima and minima at

515-440: A vacuum , electromagnetic waves travel at the speed of light , commonly denoted c . There, depending on the frequency of oscillation, different wavelengths of electromagnetic spectrum are produced. In homogeneous, isotropic media, the oscillations of the two fields are on average perpendicular to each other and perpendicular to the direction of energy and wave propagation, forming a transverse wave . Electromagnetic radiation

618-611: A wave form of the electric and magnetic equations , thus uncovering the wave-like nature of electric and magnetic fields and their symmetry . Because the speed of EM waves predicted by the wave equation coincided with the measured speed of light , Maxwell concluded that light itself is an EM wave. Maxwell's equations were confirmed by Heinrich Hertz through experiments with radio waves. Maxwell's equations established that some charges and currents ( sources ) produce local electromagnetic fields near them that do not radiate. Currents directly produce magnetic fields, but such fields of

721-575: A bulk collection of charges which are spread out over large numbers of affected atoms. In electrical conductors , such induced bulk movement of charges ( electric currents ) results in absorption of the EMR, or else separations of charges that cause generation of new EMR (effective reflection of the EMR). An example is absorption or emission of radio waves by antennas, or absorption of microwaves by water or other molecules with an electric dipole moment, as for example inside

824-411: A certain minimum frequency, which depended on the particular metal, no current would flow regardless of the intensity. These observations appeared to contradict the wave theory, and for years physicists tried in vain to find an explanation. In 1905, Einstein explained this puzzle by resurrecting the particle theory of light to explain the observed effect. Because of the preponderance of evidence in favor of

927-412: A commonplace example. The digitalization of analog real-world data is known as digitizing , and involves sampling (discretization) and quantization . Projectional imaging of digital radiography can be done by X-ray detectors that directly convert the image to digital format. Alternatively, phosphor plate radiography is where the image is first taken on a photostimulable phosphor (PSP) plate which

1030-605: A component wave is said to be monochromatic . A monochromatic electromagnetic wave can be characterized by its frequency or wavelength, its peak amplitude, its phase relative to some reference phase, its direction of propagation, and its polarization. Interference is the superposition of two or more waves resulting in a new wave pattern. If the fields have components in the same direction, they constructively interfere, while opposite directions cause destructive interference. Additionally, multiple polarization signals can be combined (i.e. interfered) to form new states of polarization, which

1133-399: A continuum of richness. The richness of a medium comprises four aspects: the availability of instant feedback, which allows questions to be asked and answered; the use of multiple cues, such as physical presence, vocal inflection, body gestures, words, numbers and graphic symbols; the use of natural language, which can be used to convey an understanding of a broad set of concepts and ideas; and

SECTION 10

#1732858606629

1236-405: A deeper level of richness because of their ability to reproduce information. Sheer, V. C. (January–March 2011). Teenagers' use of MSN features, discussion topics, and online friendship development: the impact of media richness and communication control. Communication Quarterly, 59(1). A digital photograph may be created directly from a physical scene by a camera or similar device. Alternatively,

1339-480: A digital image and determine if it has been altered . Previously digital imaging depended on chemical and mechanical processes, now all these processes have converted to electronic. A few things need to take place for digital imaging to occur, the light energy converts to electrical energy – think of a grid with millions of little solar cells. Each condition generates a specific electrical charge. Charges for each of these "solar cells" are transported and communicated to

1442-411: A digital image may be obtained from another image in an analog medium, such as photographs , photographic film , or printed paper, by an image scanner or similar device. Many technical images—such as those acquired with tomographic equipment , side-scan sonar , or radio telescopes —are actually obtained by complex processing of non-image data. Weather radar maps as seen on television news are

1545-496: A fluorescence on a nearby plate of coated glass. In one month, he discovered X-rays' main properties. The last portion of the EM spectrum to be discovered was associated with radioactivity . Henri Becquerel found that uranium salts caused fogging of an unexposed photographic plate through a covering paper in a manner similar to X-rays, and Marie Curie discovered that only certain elements gave off these rays of energy, soon discovering

1648-417: A fluoroscopic digital radiograph . Square wave signals were detected on the fluorescent screen of a fluoroscope to create the image. The charge-coupled device was invented by Willard S. Boyle and George E. Smith at Bell Labs in 1969. While researching MOS technology, they realized that an electric charge was the analogy of the magnetic bubble and that it could be stored on a tiny MOS capacitor . As it

1751-576: A higher energy (and hence shorter wavelength) than gamma rays and vice versa. The origin of the ray differentiates them, gamma rays tend to be natural phenomena originating from the unstable nucleus of an atom and X-rays are electrically generated (and hence man-made) unless they are as a result of bremsstrahlung X-radiation caused by the interaction of fast moving particles (such as beta particles) colliding with certain materials, usually of higher atomic numbers. EM radiation (the designation 'radiation' excludes static electric and magnetic and near fields )

1854-519: A linear medium such as a vacuum. However, in nonlinear media, such as some crystals , interactions can occur between light and static electric and magnetic fields—these interactions include the Faraday effect and the Kerr effect . In refraction , a wave crossing from one medium to another of different density alters its speed and direction upon entering the new medium. The ratio of the refractive indices of

1957-539: A lower energy level, it emits a photon of light at a frequency corresponding to the energy difference. Since the energy levels of electrons in atoms are discrete, each element and each molecule emits and absorbs its own characteristic frequencies. Immediate photon emission is called fluorescence , a type of photoluminescence . An example is visible light emitted from fluorescent paints, in response to ultraviolet ( blacklight ). Many other fluorescent emissions are known in spectral bands other than visible light. Delayed emission

2060-432: A luxury medium of communication and sharing to more of a fleeting moment in time. Subjects have also changed. Pictures used to be primarily taken of people and family. Now, we take them of anything. We can document our day and share it with everyone with the touch of our fingers. In 1826 Niepce was the first to develop a photo which used lights to reproduce images, the advancement of photography has drastically increased over

2163-418: A modem". The process "is also environmentally friendly since it does not require chemical processing". Digital imaging is also frequently used to help document and record historical, scientific and personal life events. Benefits also exist regarding photographs . Digital imaging will reduce the need for physical contact with original images. Furthermore, digital imaging creates the possibility of reconstructing

SECTION 20

#1732858606629

2266-462: A more engaging learning environment, while in healthcare, it assists in complex surgical procedures. The military uses DIAR for training purposes and battlefield visualization. In retail, customers can virtually try on clothes or visualize furniture in their home before making a purchase. With continuous advancements in technology, the future of DIAR is expected to witness more realistic overlays, improved 3D object modeling, and seamless integration with

2369-538: A new way to communicate and it is rapidly increasing as time goes by, which has affected the world around us. A study done by Basey, Maines, Francis, and Melbourne found that drawings used in class have a significant negative effect on lower-order content for student's lab reports, perspectives of labs, excitement, and time efficiency of learning. Documentation style learning has no significant effects on students in these areas. He also found that students were more motivated and excited to learn when using digital imaging. In

2472-417: A particular star. Spectroscopy is also used in the determination of the distance of a star, using the red shift . When any wire (or other conducting object such as an antenna ) conducts alternating current , electromagnetic radiation is propagated at the same frequency as the current. As a wave, light is characterized by a velocity (the speed of light ), wavelength , and frequency . As particles, light

2575-528: A punched data card or tape that was recreated as an image. In 1957, Russell A. Kirsch produced a device that generated digital data that could be stored in a computer; this used a drum scanner and photomultiplier tube. Digital imaging was developed in the 1960s and 1970s, largely to avoid the operational weaknesses of film cameras , for scientific and military missions including the KH-11 program. As digital technology became cheaper in later decades, it replaced

2678-417: A receiver very close to the source, such as inside a transformer . The near field has strong effects its source, with any energy withdrawn by a receiver causing increased load (decreased electrical reactance ) on the source. The near field does not propagate freely into space, carrying energy away without a distance limit, but rather oscillates, returning its energy to the transmitter if it is not absorbed by

2781-467: A receiver. By contrast, the far field is composed of radiation that is free of the transmitter, in the sense that the transmitter requires the same power to send changes in the field out regardless of whether anything absorbs the signal, e.g. a radio station does not need to increase its power when more receivers use the signal. This far part of the electromagnetic field is electromagnetic radiation. The far fields propagate (radiate) without allowing

2884-424: A significant role in enhancing the user experience, providing realistic overlays of digital information onto the real world, thereby bridging the gap between the physical and the virtual realms. DIAR is employed in numerous sectors including entertainment, education, healthcare, military, and retail. In entertainment, DIAR is used to create immersive gaming experiences and interactive movies. In education, it provides

2987-445: A third type of radiation, which in 1903 Rutherford named gamma rays . In 1910 British physicist William Henry Bragg demonstrated that gamma rays are electromagnetic radiation, not particles, and in 1914 Rutherford and Edward Andrade measured their wavelengths, finding that they were similar to X-rays but with shorter wavelengths and higher frequency, although a 'cross-over' between X and gamma rays makes it possible to have X-rays with

3090-431: A very large (ideally infinite) distance from the source. Both types of waves can have a waveform which is an arbitrary time function (so long as it is sufficiently differentiable to conform to the wave equation). As with any time function, this can be decomposed by means of Fourier analysis into its frequency spectrum , or individual sinusoidal components, each of which contains a single frequency, amplitude and phase. Such

3193-464: A wave is its rate of oscillation and is measured in hertz , the SI unit of frequency, where one hertz is equal to one oscillation per second. Light usually has multiple frequencies that sum to form the resultant wave. Different frequencies undergo different angles of refraction, a phenomenon known as dispersion . A monochromatic wave (a wave of a single frequency) consists of successive troughs and crests, and

Digital imaging - Misplaced Pages Continue

3296-518: Is quantized and proportional to frequency according to Planck's equation E = hf , where E is the energy per photon, f is the frequency of the photon, and h is the Planck constant . Thus, higher frequency photons have more energy. For example, a 10  Hz gamma ray photon has 10 times the energy of a 10  Hz extremely low frequency radio wave photon. The effects of EMR upon chemical compounds and biological organisms depend both upon

3399-452: Is a form of social media where anyone is allowed to shoot, edit, and share photos of whatever they want with friends and family. Facebook, snapshot, vine and twitter are also ways people express themselves with little or no words and are able to capture every moment that is important. Lasting memories that were hard to capture, is now easy because everyone is now able to take pictures and edit it on their phones or laptops. Photography has become

3502-472: Is a more subtle affair. Some experiments display both the wave and particle natures of electromagnetic waves, such as the self-interference of a single photon . When a single photon is sent through an interferometer , it passes through both paths, interfering with itself, as waves do, yet is detected by a photomultiplier or other sensitive detector only once. A quantum theory of the interaction between electromagnetic radiation and matter such as electrons

3605-404: Is a stream of photons . Each has an energy related to the frequency of the wave given by Planck's relation E = hf , where E is the energy of the photon, h is the Planck constant , 6.626 × 10 J·s, and f is the frequency of the wave. In a medium (other than vacuum), velocity factor or refractive index are considered, depending on frequency and application. Both of these are ratios of

3708-523: Is associated with those EM waves that are free to propagate themselves ("radiate") without the continuing influence of the moving charges that produced them, because they have achieved sufficient distance from those charges. Thus, EMR is sometimes referred to as the far field , while the near field refers to EM fields near the charges and current that directly produced them, specifically electromagnetic induction and electrostatic induction phenomena. In quantum mechanics , an alternate way of viewing EMR

3811-515: Is at the forefront of this 'revolution,' with its mission to digitize the world's books. Such digitization will make the books searchable, thus making participating libraries, such as Stanford University and the University of California Berkeley, accessible worldwide. Digital imaging also benefits the medical world because it "allows the electronic transmission of images to third-party providers, referring dentists, consultants, and insurance carriers via

3914-422: Is called phosphorescence . The modern theory that explains the nature of light includes the notion of wave–particle duality. Together, wave and particle effects fully explain the emission and absorption spectra of EM radiation. The matter-composition of the medium through which the light travels determines the nature of the absorption and emission spectrum. These bands correspond to the allowed energy levels in

4017-563: Is classified by wavelength into radio , microwave , infrared , visible , ultraviolet , X-rays and gamma rays . Arbitrary electromagnetic waves can be expressed by Fourier analysis in terms of sinusoidal waves ( monochromatic radiation ), which in turn can each be classified into these regions of the EMR spectrum. For certain classes of EM waves, the waveform is most usefully treated as random , and then spectral analysis must be done by slightly different mathematical techniques appropriate to random or stochastic processes . In such cases,

4120-424: Is commonly referred to as "light", EM, EMR, or electromagnetic waves. The position of an electromagnetic wave within the electromagnetic spectrum can be characterized by either its frequency of oscillation or its wavelength. Electromagnetic waves of different frequency are called by different names since they have different sources and effects on matter. In order of increasing frequency and decreasing wavelength,

4223-677: Is consequently absorbed by a wide range of substances, causing them to increase in temperature as the vibrations dissipate as heat. The same process, run in reverse, causes bulk substances to radiate in the infrared spontaneously (see thermal radiation section below). Infrared radiation is divided into spectral subregions. While different subdivision schemes exist, the spectrum is commonly divided as near-infrared (0.75–1.4 μm), short-wavelength infrared (1.4–3 μm), mid-wavelength infrared (3–8 μm), long-wavelength infrared (8–15 μm) and far infrared (15–1000 μm). MOS capacitor Too Many Requests If you report this error to

Digital imaging - Misplaced Pages Continue

4326-729: Is described by the theory of quantum electrodynamics . Electromagnetic waves can be polarized , reflected, refracted, or diffracted , and can interfere with each other. In homogeneous, isotropic media, electromagnetic radiation is a transverse wave , meaning that its oscillations are perpendicular to the direction of energy transfer and travel. It comes from the following equations : ∇ ⋅ E = 0 ∇ ⋅ B = 0 {\displaystyle {\begin{aligned}\nabla \cdot \mathbf {E} &=0\\\nabla \cdot \mathbf {B} &=0\end{aligned}}} These equations predicate that any electromagnetic wave must be

4429-453: Is known as parallel polarization state generation . The energy in electromagnetic waves is sometimes called radiant energy . An anomaly arose in the late 19th century involving a contradiction between the wave theory of light and measurements of the electromagnetic spectra that were being emitted by thermal radiators known as black bodies . Physicists struggled with this problem unsuccessfully for many years, and it later became known as

4532-432: Is quickly becoming both smarter and simpler. Although functions on today's programs reach the level of precise editing and even rendering 3-D images, user interfaces are designed to be friendly to advanced users as well as first-time fans. The Internet allows editing, viewing, and sharing digital photos and graphics. A quick browse around the web can easily turn up graphic artwork from budding artists, news photos from around

4635-524: Is subsequently scanned by a mechanism called photostimulated luminescence . Finally, a digital image can also be computed from a geometric model or mathematical formula. In this case, the name image synthesis is more appropriate, and it is more often known as rendering . Digital image authentication is an issue for the providers and producers of digital images such as health care organizations, law enforcement agencies, and insurance companies. There are methods emerging in forensic photography to analyze

4738-477: Is that it consists of photons , uncharged elementary particles with zero rest mass which are the quanta of the electromagnetic field , responsible for all electromagnetic interactions. Quantum electrodynamics is the theory of how EMR interacts with matter on an atomic level. Quantum effects provide additional sources of EMR, such as the transition of electrons to lower energy levels in an atom and black-body radiation . The energy of an individual photon

4841-572: Is that it has been expanded to camera phones. We are able to take cameras with us wherever as well as send photos instantly to others. It is easy for people to us as well as help in the process of self-identification for the younger generation Critics of digital imaging cite several negative consequences. An increased "flexibility in getting better quality images to the readers" will tempt editors, photographers and journalists to manipulate photographs. In addition, "staff photographers will no longer be photojournalists, but camera operators... as editors have

4944-486: Is the emission spectrum of nebulae . Rapidly moving electrons are most sharply accelerated when they encounter a region of force, so they are responsible for producing much of the highest frequency electromagnetic radiation observed in nature. These phenomena can aid various chemical determinations for the composition of gases lit from behind (absorption spectra) and for glowing gases (emission spectra). Spectroscopy (for example) determines what chemical elements comprise

5047-648: The Planck energy or exceeding it (far too high to have ever been observed) will require new physical theories to describe. When radio waves impinge upon a conductor , they couple to the conductor, travel along it and induce an electric current on the conductor surface by moving the electrons of the conducting material in correlated bunches of charge. Electromagnetic radiation phenomena with wavelengths ranging from as long as one meter to as short as one millimeter are called microwaves; with frequencies between 300 MHz (0.3 GHz) and 300 GHz. At radio and microwave frequencies, EMR interacts with matter largely as

5150-473: The Planck–Einstein equation . In quantum theory (see first quantization ) the energy of the photons is thus directly proportional to the frequency of the EMR wave. Likewise, the momentum p of a photon is also proportional to its frequency and inversely proportional to its wavelength: The source of Einstein's proposal that light was composed of particles (or could act as particles in some circumstances)

5253-455: The pinned photodiode (PPD). It was invented by Nobukazu Teranishi , Hiromitsu Shiraki and Yasuo Ishihara at NEC in 1980. It was a photodetector structure with low lag, low noise , high quantum efficiency and low dark current . In 1987, the PPD began to be incorporated into most CCD devices, becoming a fixture in consumer electronic video cameras and then digital still cameras . Since then,

SECTION 50

#1732858606629

5356-418: The ultraviolet catastrophe . In 1900, Max Planck developed a new theory of black-body radiation that explained the observed spectrum. Planck's theory was based on the idea that black bodies emit light (and other electromagnetic radiation) only as discrete bundles or packets of energy. These packets were called quanta . In 1905, Albert Einstein proposed that light quanta be regarded as real particles. Later

5459-537: The Internet of Things (IoT). The incorporation of haptic feedback in DIAR systems could further enhance the user experience by adding a sense of touch to the visual overlays. Additionally, advancements in artificial intelligence and machine learning are expected to further improve the context-appropriateness and realism of the overlaid digital images. Although theories are quickly becoming realities in today's technological society,

5562-530: The PPD has been used in nearly all CCD sensors and then CMOS sensors. The NMOS active-pixel sensor (APS) was invented by Olympus in Japan during the mid-1980s. This was enabled by advances in MOS semiconductor device fabrication , with MOSFET scaling reaching smaller micron and then sub-micron levels. The NMOS APS was fabricated by Tsutomu Nakamura's team at Olympus in 1985. The CMOS active-pixel sensor (CMOS sensor)

5665-432: The atoms in the star's atmosphere. A similar phenomenon occurs for emission , which is seen when an emitting gas glows due to excitation of the atoms from any mechanism, including heat. As electrons descend to lower energy levels, a spectrum is emitted that represents the jumps between the energy levels of the electrons, but lines are seen because again emission happens only at particular energies after excitation. An example

5768-413: The atoms. Dark bands in the absorption spectrum are due to the atoms in an intervening medium between source and observer. The atoms absorb certain frequencies of the light between emitter and detector/eye, then emit them in all directions. A dark band appears to the detector, due to the radiation scattered out of the light beam . For instance, dark bands in the light emitted by a distant star are due to

5871-403: The average number of photons in the cube of the relevant wavelength is much smaller than 1. It is not so difficult to experimentally observe non-uniform deposition of energy when light is absorbed, however this alone is not evidence of "particulate" behavior. Rather, it reflects the quantum nature of matter . Demonstrating that the light itself is quantized, not merely its interaction with matter,

5974-421: The chance to send information (such as appearance) with little or no distortion. The Media Richness Theory provides a framework for describing a medium's ability to communicate information without loss or distortion. This theory has provided the chance to understand human behavior in communication technologies. The article written by Daft and Lengel (1984,1986) states the following: Communication media fall along

6077-408: The combined energy transfer of many photons. In contrast, high frequency ultraviolet, X-rays and gamma rays are ionizing – individual photons of such high frequency have enough energy to ionize molecules or break chemical bonds . Ionizing radiation can cause chemical reactions and damage living cells beyond simply heating, and can be a health hazard and dangerous. James Clerk Maxwell derived

6180-400: The distance between two adjacent crests or troughs is called the wavelength . Waves of the electromagnetic spectrum vary in size, from very long radio waves longer than a continent to very short gamma rays smaller than atom nuclei. Frequency is inversely proportional to wavelength, according to the equation: where v is the speed of the wave ( c in a vacuum or less in other media), f is

6283-524: The electromagnetic spectrum includes: radio waves , microwaves , infrared , visible light , ultraviolet , X-rays , and gamma rays . Electromagnetic waves are emitted by electrically charged particles undergoing acceleration , and these waves can subsequently interact with other charged particles, exerting force on them. EM waves carry energy, momentum , and angular momentum away from their source particle and can impart those quantities to matter with which they interact. Electromagnetic radiation

SECTION 60

#1732858606629

6386-447: The electromagnetic vacuum. The behavior of EM radiation and its interaction with matter depends on its frequency, and changes qualitatively as the frequency changes. Lower frequencies have longer wavelengths, and higher frequencies have shorter wavelengths, and are associated with photons of higher energy. There is no fundamental limit known to these wavelengths or energies, at either end of the spectrum, although photons with energies near

6489-573: The environment surrounding the field. From cameras and webcams to printers and scanners, the hardware is becoming sleeker, thinner, faster, and cheaper. As the cost of equipment decreases, the market for new enthusiasts widens, allowing more consumers to experience the thrill of creating their own images. Everyday personal laptops, family desktops, and company computers are able to handle photographic software. Our computers are more powerful machines with increasing capacities for running programs of any kind—especially digital imaging software. And that software

6592-490: The field of education. The field of medical imaging In the field of technology, digital image processing has become more useful than analog image processing when considering the modern technological advancement. Digital Imaging for Augmented Reality (DIAR) is a comprehensive field within the broader context of Augmented Reality (AR) technologies. It involves the creation, manipulation, and interpretation of digital images for use in augmented reality environments. DIAR plays

6695-527: The fields present in the same space due to other causes. Further, as they are vector fields, all magnetic and electric field vectors add together according to vector addition . For example, in optics two or more coherent light waves may interact and by constructive or destructive interference yield a resultant irradiance deviating from the sum of the component irradiances of the individual light waves. The electromagnetic fields of light are not affected by traveling through static electric or magnetic fields in

6798-460: The firmware to be interpreted. The firmware is what understands and translates the color and other light qualities. Pixels are what is noticed next, with varying intensities they create and cause different colors, creating a picture or image. Finally, the firmware records the information for a future date and for reproduction. There are several benefits of digital imaging. First, the process enables easy access of photographs and word documents. Google

6901-562: The first black-and-white digital cameras in the 1980s. Color was eventually added to the CCD and is a usual feature of cameras today. Great strides have been made in the field of digital imaging. Negatives and exposure are foreign concepts to many, and the first digital image in 1920 led eventually to cheaper equipment, increasingly powerful yet simple software, and the growth of the Internet. The constant advancement and production of physical equipment and hardware related to digital imaging has affected

7004-553: The first photograph ever produced, View from the Window at Le Gras , was in 1826 by Frenchman Joseph Nicéphore Niépce . When Joseph was 28, he was discussing with his brother Claude about the possibility of reproducing images with light. His focus on his new innovations began in 1816. He was in fact more interested in creating an engine for a boat. Joseph and his brother focused on that for quite some time and Claude successfully promoted his innovation moving and advancing him to England. Joseph

7107-406: The frequency and λ is the wavelength. As waves cross boundaries between different media, their speeds change but their frequencies remain constant. Electromagnetic waves in free space must be solutions of Maxwell's electromagnetic wave equation . Two main classes of solutions are known, namely plane waves and spherical waves. The plane waves may be viewed as the limiting case of spherical waves at

7210-473: The individual frequency components are represented in terms of their power content, and the phase information is not preserved. Such a representation is called the power spectral density of the random process. Random electromagnetic radiation requiring this kind of analysis is, for example, encountered in the interior of stars, and in certain other very wideband forms of radiation such as the Zero point wave field of

7313-540: The intense radiation of radium . The radiation from pitchblende was differentiated into alpha rays ( alpha particles ) and beta rays ( beta particles ) by Ernest Rutherford through simple experimentation in 1899, but these proved to be charged particulate types of radiation. However, in 1900 the French scientist Paul Villard discovered a third neutrally charged and especially penetrating type of radiation from radium, and after he described it, Rutherford realized it must be yet

7416-800: The known speed of light. Maxwell therefore suggested that visible light (as well as invisible infrared and ultraviolet rays by inference) all consisted of propagating disturbances (or radiation) in the electromagnetic field. Radio waves were first produced deliberately by Heinrich Hertz in 1887, using electrical circuits calculated to produce oscillations at a much lower frequency than that of visible light, following recipes for producing oscillating charges and currents suggested by Maxwell's equations. Hertz also developed ways to detect these waves, and produced and characterized what were later termed radio waves and microwaves . Wilhelm Röntgen discovered and named X-rays . After experimenting with high voltages applied to an evacuated tube on 8 November 1895, he noticed

7519-447: The media determines the degree of refraction, and is summarized by Snell's law . Light of composite wavelengths (natural sunlight) disperses into a visible spectrum passing through a prism, because of the wavelength-dependent refractive index of the prism material ( dispersion ); that is, each component wave within the composite light is bent a different amount. EM radiation exhibits both wave properties and particle properties at

7622-620: The medium of visible light allows digital photography (including digital videography ) with various kinds of digital cameras (including digital video cameras ). X-rays allow digital X-ray imaging ( digital radiography , fluoroscopy , and CT ), and gamma rays allow digital gamma ray imaging (digital scintigraphy , SPECT , and PET ). Sound allows ultrasonography (such as medical ultrasonography ) and sonar , and radio waves allow radar . Digital imaging lends itself well to image analysis by software , as well as to image editing (including image manipulation). Before digital imaging,

7725-465: The most widely used image file format on the Internet . These different scanning ideas were the basis of the first designs of digital camera. Early cameras took a long time to capture an image and were poorly suited for consumer purposes. It was not until the adoption of the CCD ( charge-coupled device ) that the digital camera really took off. The CCD became part of the imaging systems used in telescopes,

7828-407: The nearby violet light. Ritter's experiments were an early precursor to what would become photography. Ritter noted that the ultraviolet rays (which at first were called "chemical rays") were capable of causing chemical reactions. In 1862–64 James Clerk Maxwell developed equations for the electromagnetic field which suggested that waves in the field would travel with a speed that was very close to

7931-453: The old film methods for many purposes. In the early 1960s, while developing compact, lightweight, portable equipment for the onboard nondestructive testing of naval aircraft, Frederick G. Weighart and James F. McNulty (U.S. radio engineer) at Automation Industries, Inc., then, in El Segundo, California co-invented the first apparatus to generate a digital image in real-time, which image was

8034-425: The only ones who see benefits in databases such as these. Criminal investigation offices, such as police precincts, state crime labs, and even federal bureaus have realized the importance of digital imaging in analyzing fingerprints and evidence, making arrests, and maintaining safe communities. As the field of digital imaging evolves, so does our ability to protect the public. Digital imaging can be closely related to

8137-401: The particle of light was given the name photon , to correspond with other particles being described around this time, such as the electron and proton . A photon has an energy, E , proportional to its frequency, f , by where h is the Planck constant , λ {\displaystyle \lambda } is the wavelength and c is the speed of light . This is sometimes known as

8240-464: The personal focus of the medium (pp. 83). The more a medium is able to communicate the accurate appearance, social cues and other such characteristics the more rich it becomes. Photography has become a natural part of how we communicate. For example, most phones have the ability to send pictures in text messages. Apps Snapchat and Vine have become increasingly popular for communicating. Sites like Instagram and Facebook have also allowed users to reach

8343-442: The power to decide what they want 'shot'". Electromagnetic radiation In physics , electromagnetic radiation ( EMR ) consists of waves of the electromagnetic (EM) field , which propagate through space and carry momentum and electromagnetic radiant energy . Classically , electromagnetic radiation consists of electromagnetic waves , which are synchronized oscillations of electric and magnetic fields . In

8446-428: The radiation's power and its frequency. EMR of lower energy ultraviolet or lower frequencies (i.e., near ultraviolet , visible light, infrared, microwaves, and radio waves) is non-ionizing because its photons do not individually have enough energy to ionize atoms or molecules or to break chemical bonds . The effect of non-ionizing radiation on chemical systems and living tissue is primarily simply heating, through

8549-636: The range of possibilities for digital imaging is wide open. One major application that is still in the works is that of child safety and protection. How can we use digital imaging to better protect our kids? Kodak 's program, Kids Identification Digital Software (KIDS) may answer that question. The beginnings include a digital imaging kit to be used to compile student identification photos, which would be useful during medical emergencies and crimes. More powerful and advanced versions of applications such as these are still developing, with increased features constantly being tested and added. But parents and schools aren't

8652-470: The red part of the spectrum, through an increase in the temperature recorded with a thermometer . These "calorific rays" were later termed infrared. In 1801, German physicist Johann Wilhelm Ritter discovered ultraviolet in an experiment similar to Herschel's, using sunlight and a glass prism. Ritter noted that invisible rays near the violet edge of a solar spectrum dispersed by a triangular prism darkened silver chloride preparations more quickly than did

8755-414: The representation reality. But we allow ourselves to be taken in by that representation, and only that 'representation' is able to show the liveliness of the absentee in a believable way." Therefore, digital imaging allows ourselves to be represented in a way so as to reflect our social presence. Photography is a medium used to capture specific moments visually. Through photography our culture has been given

8858-412: The same points in space (see illustrations). In the far-field EM radiation which is described by the two source-free Maxwell curl operator equations, a time-change in one type of field is proportional to the curl of the other. These derivatives require that the E and B fields in EMR are in-phase (see mathematics section below). An important aspect of light's nature is its frequency . The frequency of

8961-464: The same time (see wave-particle duality ). Both wave and particle characteristics have been confirmed in many experiments. Wave characteristics are more apparent when EM radiation is measured over relatively large timescales and over large distances while particle characteristics are more evident when measuring small timescales and distances. For example, when electromagnetic radiation is absorbed by matter, particle-like properties will be more obvious when

9064-504: The sense of their presence to the virtual world. The presence of those images acts as an extension of oneself to others, giving a digital representation of what it is they are doing and who they are with. Digital imaging in the sense of cameras on phones helps facilitate this effect of presence with friends on social media. Alexander (2012) states, "presence and representation is deeply engraved into our reflections on images...this is, of course, an altered presence...nobody confuses an image with

9167-487: The social presence theory especially when referring to the social media aspect of images captured by our phones. There are many different definitions of the social presence theory but two that clearly define what it is would be "the degree to which people are perceived as real" (Gunawardena, 1995), and "the ability to project themselves socially and emotionally as real people" (Garrison, 2000). Digital imaging allows one to manifest their social life through images in order to give

9270-472: The source, the power density of EM radiation from an isotropic source decreases with the inverse square of the distance from the source; this is called the inverse-square law . This is in contrast to dipole parts of the EM field, the near field, which varies in intensity according to an inverse cube power law, and thus does not transport a conserved amount of energy over distances but instead fades with distance, with its energy (as noted) rapidly returning to

9373-539: The speed in a medium to speed in a vacuum. Electromagnetic radiation of wavelengths other than those of visible light were discovered in the early 19th century. The discovery of infrared radiation is ascribed to astronomer William Herschel , who published his results in 1800 before the Royal Society of London . Herschel used a glass prism to refract light from the Sun and detected invisible rays that caused heating beyond

9476-410: The term associated with the changing static electric field of the particle and the magnetic term that results from the particle's uniform velocity are both associated with the near field, and do not comprise electromagnetic radiation. Electric and magnetic fields obey the properties of superposition . Thus, a field due to any particular particle or time-varying electric or magnetic field contributes to

9579-475: The transmitter or absorbed by a nearby receiver (such as a transformer secondary coil). In the Liénard–Wiechert potential formulation of the electric and magnetic fields due to motion of a single particle (according to Maxwell's equations), the terms associated with acceleration of the particle are those that are responsible for the part of the field that is regarded as electromagnetic radiation. By contrast,

9682-427: The transmitter to affect them. This causes them to be independent in the sense that their existence and their energy, after they have left the transmitter, is completely independent of both transmitter and receiver. Due to conservation of energy , the amount of power passing through any spherical surface drawn around the source is the same. Because such a surface has an area proportional to the square of its distance from

9785-504: The visual contents of partially damaged photographs, thus eliminating the potential that the original would be modified or destroyed. In addition, photographers will be "freed from being 'chained' to the darkroom," will have more time to shoot and will be able to cover assignments more effectively. Digital imaging 'means' that "photographers no longer have to rush their film to the office, so they can stay on location longer while still meeting deadlines". Another advantage to digital photography

9888-519: The wave theory, however, Einstein's ideas were met initially with great skepticism among established physicists. Eventually Einstein's explanation was accepted as new particle-like behavior of light was observed, such as the Compton effect . As a photon is absorbed by an atom , it excites the atom, elevating an electron to a higher energy level (one that is on average farther from the nucleus). When an electron in an excited molecule or atom descends to

9991-428: The way we interacted with our environment over the years. Part of the world is experienced differently through visual imagining of lasting memories, it has become a new form of communication with friends, family and love ones around the world without face to face interactions. Through photography it is easy to see those that you have never seen before and feel their presence without them being around, for example Instagram

10094-454: The world, corporate images of new products and services, and much more. The Internet has clearly proven itself a catalyst in fostering the growth of digital imaging. Online photo sharing of images changes the way we understand photography and photographers. Online sites such as Flickr , Shutterfly, and Instagram give billions the capability to share their photography, whether they are amateurs or professionals. Photography has gone from being

10197-509: The years. Everyone is now a photographer in their own way, whereas during the early 1800s and 1900s the expense of lasting photos was highly valued and appreciated by consumers and producers. According to the magazine article on five ways digital camera changed us states the following:The impact on professional photographers has been dramatic. Once upon a time a photographer wouldn't dare waste a shot unless they were virtually certain it would work."The use of digital imaging( photography) has changed

10300-666: Was able to focus on the photograph and finally in 1826, he was able to produce his first photograph of a view through his window. This took 8 hours or more of exposure to light. The first digital image was produced in 1920, by the Bartlane cable picture transmission system . British inventors, Harry G. Bartholomew and Maynard D. McFarlane, developed this method. The process consisted of "a series of negatives on zinc plates that were exposed for varying lengths of time, thus producing varying densities". The Bartlane cable picture transmission system generated at both its transmitter and its receiver end

10403-422: Was an experimental anomaly not explained by the wave theory: the photoelectric effect , in which light striking a metal surface ejected electrons from the surface, causing an electric current to flow across an applied voltage . Experimental measurements demonstrated that the energy of individual ejected electrons was proportional to the frequency , rather than the intensity , of the light. Furthermore, below

10506-404: Was fairly straightforward to fabricate a series of MOS capacitors in a row, they connected a suitable voltage to them so that the charge could be stepped along from one to the next. The CCD is a semiconductor circuit that was later used in the first digital video cameras for television broadcasting . Early CCD sensors suffered from shutter lag . This was largely resolved with the invention of

10609-634: Was later developed by Eric Fossum 's team at the NASA Jet Propulsion Laboratory in 1993. By 2007, sales of CMOS sensors had surpassed CCD sensors. An important development in digital image compression technology was the discrete cosine transform (DCT). DCT compression is used in JPEG , which was introduced by the Joint Photographic Experts Group in 1992. JPEG compresses images down to much smaller file sizes, and has become

#628371