Old Frisian was a West Germanic language spoken between the 8th and 16th centuries along the North Sea coast, roughly between the mouths of the Rhine and Weser rivers. The Frisian settlers on the coast of South Jutland (today's Northern Friesland ) also spoke Old Frisian, but there are no known medieval texts from this area. The language of the earlier inhabitants of the region between the Zuiderzee and Ems River (the Frisii mentioned by Tacitus ) is attested in only a few personal names and place-names. Old Frisian evolved into Middle Frisian , spoken from the 16th to the 19th century.
58-496: A coalfield is an area of certain uniform characteristics where coal is mined. The criteria for determining the approximate boundary of a coalfield are geographical and cultural, in addition to geological. A coalfield often groups the seams of coal, railroad companies, cultural groups, and watersheds and other geographical considerations. At one time the coalfield designation was an important category in business and industrial discussions. The terminology declined into unimportance as
116-512: A cyclothem . Cyclothems are thought to have their origin in glacial cycles that produced fluctuations in sea level , which alternately exposed and then flooded large areas of continental shelf. The woody tissue of plants is composed mainly of cellulose, hemicellulose, and lignin. Modern peat is mostly lignin, with a content of cellulose and hemicellulose ranging from 5% to 40%. Various other organic compounds, such as waxes and nitrogen- and sulfur-containing compounds, are also present. Lignin has
174-417: A process called carbonization . Carbonization proceeds primarily by dehydration , decarboxylation , and demethanation. Dehydration removes water molecules from the maturing coal via reactions such as Decarboxylation removes carbon dioxide from the maturing coal: while demethanation proceeds by reaction such as In these formulas, R represents the remainder of a cellulose or lignin molecule to which
232-893: A process known as "breaking". An unrelated sound change where /i/ became /iu/ if /u/ or /w/ followed in the next syllable occurred later, after I-mutation. Vowels were fronted or raised in before /i/ , /j/ a process called I-mutation : The old Germanic diphthongs * ai and * au become ē / ā and ā , respectively, in Old Frisian, as in ēn / ān ("one") from Proto-Germanic * ainaz , and brād from * braudą ("bread"). In comparison, these diphthongs become ā and ēa ( ān and brēad ) in Old English, and ē and ō ( ēn and brōd ) in Old Saxon. The diphthong * eu generally becomes ia , and Germanic * iu
290-457: A single or few words. Old Frisian had three genders (masculine, feminine, and neuter), two numbers (singular and plural), and four cases (Nominative, accusative, genitive, dative, although traces of an instrumental and locative case exist) Dual forms are unattested in Old Frisian but their presence is confirmed by their continued existence in later Frisian dialects until the mid-20th century. A significant portion of Old Frisian nouns fall into
348-527: A switch in fuels happened in London in the late sixteenth and early seventeenth centuries. Historian Ruth Goodman has traced the socioeconomic effects of that switch and its later spread throughout Britain and suggested that its importance in shaping the industrial adoption of coal has been previously underappreciated. The development of the Industrial Revolution led to the large-scale use of coal, as
406-549: A tenth. Indonesia and Australia export the most, followed by Russia . The word originally took the form col in Old English , from reconstructed Proto-Germanic * kula ( n ), from Proto-Indo-European root * g ( e ) u-lo- "live coal". Germanic cognates include the Old Frisian kole , Middle Dutch cole , Dutch kool , Old High German chol , German Kohle and Old Norse kol . Irish gual
464-403: A weight basis. This composition reflects partly the composition of the precursor plants. The second main fraction of coal is ash, an undesirable, noncombustable mixture of inorganic minerals. The composition of ash is often discussed in terms of oxides obtained after combustion in air: Of particular interest is the sulfur content of coal, which can vary from less than 1% to as much as 4%. Most of
522-406: A weight composition of about 54% carbon, 6% hydrogen, and 30% oxygen, while cellulose has a weight composition of about 44% carbon, 6% hydrogen, and 49% oxygen. Bituminous coal has a composition of about 84.4% carbon, 5.4% hydrogen, 6.7% oxygen, 1.7% nitrogen, and 1.8% sulfur, on a weight basis. The low oxygen content of coal shows that coalification removed most of the oxygen and much of the hydrogen
580-625: Is also a cognate via the Indo-European root. The conversion of dead vegetation into coal is called coalification . At various times in the geologic past, the Earth had dense forests in low-lying areas. In these wetlands, the process of coalification began when dead plant matter was protected from oxidation , usually by mud or acidic water, and was converted into peat . The resulting peat bogs , which trapped immense amounts of carbon, were eventually deeply buried by sediments. Then, over millions of years,
638-429: Is burned in a turbine). Hot exhaust gases from the turbine are used to raise steam in a heat recovery steam generator which powers a supplemental steam turbine . The overall plant efficiency when used to provide combined heat and power can reach as much as 94%. IGCC power plants emit less local pollution than conventional pulverized coal-fueled plants. Other ways to use coal are as coal-water slurry fuel (CWS), which
SECTION 10
#1732858448696696-594: Is entirely vertical; however, metamorphism may cause lateral changes of rank, irrespective of depth. For example, some of the coal seams of the Madrid, New Mexico coal field were partially converted to anthracite by contact metamorphism from an igneous sill while the remainder of the seams remained as bituminous coal. The earliest recognized use is from the Shenyang area of China where by 4000 BC Neolithic inhabitants had begun carving ornaments from black lignite. Coal from
754-455: Is made when metallurgical coal (also known as coking coal ) is baked in an oven without oxygen at temperatures as high as 1,000 °C, driving off the volatile constituents and fusing together the fixed carbon and residual ash. Metallurgical coke is used as a fuel and as a reducing agent in smelting iron ore in a blast furnace . The carbon monoxide produced by its combustion reduces hematite (an iron oxide ) to iron. Pig iron , which
812-409: Is more abundant, and anthracite. The % carbon in coal follows the order anthracite > bituminous > lignite > brown coal. The fuel value of coal varies in the same order. Some anthracite deposits contain pure carbon in the form of graphite . For bituminous coal, the elemental composition on a dry, ash-free basis of 84.4% carbon, 5.4% hydrogen, 6.7% oxygen, 1.7% nitrogen, and 1.8% sulfur, on
870-432: Is mostly carbon with variable amounts of other elements , chiefly hydrogen , sulfur , oxygen , and nitrogen . Coal is a type of fossil fuel , formed when dead plant matter decays into peat which is converted into coal by the heat and pressure of deep burial over millions of years. Vast deposits of coal originate in former wetlands called coal forests that covered much of the Earth's tropical land areas during
928-424: Is retained. These diphthongs initially began with a syllabic (stressed) i , but the stress later shifts to the second component, giving to iā and iū . For example, thiād ("people") and liūde from Proto-Germanic * þeudō and * liudīz . Old Frisian ( c. 1150 – c. 1550 ) retained grammatical cases . Some of the texts that are preserved from this period are from
986-606: Is too rich in dissolved carbon, is also produced. Old Frisian In the early Middle Ages, Frisia stretched from the area around Bruges , in what is now Belgium , to the Weser River in northern Germany . At the time, the Frisian language was spoken along the entire southern North Sea coast. This region is referred to as Greater Frisia or Magna Frisia , and many of the areas within it still treasure their Frisian heritage. However, by 1300, their territory had been pushed back to
1044-452: Is used as fuel. 27.6% of world energy was supplied by coal in 2017 and Asia used almost three-quarters of it. Other large-scale applications also exist. The energy density of coal is roughly 24 megajoules per kilogram (approximately 6.7 kilowatt-hours per kg). For a coal power plant with a 40% efficiency, it takes an estimated 325 kg (717 lb) of coal to power a 100 W lightbulb for one year. In 2022, 68% of global coal use
1102-691: The Bronze Age (3000–2000 BC), where it formed part of funeral pyres . In Roman Britain , with the exception of two modern fields, "the Romans were exploiting coals in all the major coalfields in England and Wales by the end of the second century AD". Evidence of trade in coal, dated to about AD 200, has been found at the Roman settlement at Heronbridge , near Chester ; and in the Fenlands of East Anglia , where coal from
1160-512: The Fushun mine in northeastern China was used to smelt copper as early as 1000 BC. Marco Polo , the Italian who traveled to China in the 13th century, described coal as "black stones ... which burn like logs", and said coal was so plentiful, people could take three hot baths a week. In Europe, the earliest reference to the use of coal as fuel is from the geological treatise On Stones (Lap. 16) by
1218-590: The Midlands was transported via the Car Dyke for use in drying grain. Coal cinders have been found in the hearths of villas and Roman forts , particularly in Northumberland , dated to around AD 400. In the west of England, contemporary writers described the wonder of a permanent brazier of coal on the altar of Minerva at Aquae Sulis (modern day Bath ), although in fact easily accessible surface coal from what became
SECTION 20
#17328584486961276-702: The Somerset coalfield was in common use in quite lowly dwellings locally. Evidence of coal's use for iron -working in the city during the Roman period has been found. In Eschweiler , Rhineland , deposits of bituminous coal were used by the Romans for the smelting of iron ore . No evidence exists of coal being of great importance in Britain before about AD 1000, the High Middle Ages . Coal came to be referred to as "seacoal" in
1334-491: The coal gap in the Permian–Triassic extinction event , where coal is rare. Favorable geography alone does not explain the extensive Carboniferous coal beds. Other factors contributing to rapid coal deposition were high oxygen levels, above 30%, that promoted intense wildfires and formation of charcoal that was all but indigestible by decomposing organisms; high carbon dioxide levels that promoted plant growth; and
1392-552: The palatalisation of velar consonants also found in Old English. For example, whereas the closely related Old Saxon and Old Dutch retain the velar in dag , Old Frisian has dei and Old English has dæġ [dæj] . When initial and followed by front vowels the Germanic /k/ , changed to the sounds /ts/ and /j/ . Proto-Germanic /ɣ/ became /j/ after /e/ , and word-initially before front vowels. Proto-Germanic /g/ , where it existed, became /dz/ . The Old Frisian for church
1450-444: The steam engine took over from the water wheel . In 1700, five-sixths of the world's coal was mined in Britain. Britain would have run out of suitable sites for watermills by the 1830s if coal had not been available as a source of energy. In 1947 there were some 750,000 miners in Britain, but the last deep coal mine in the UK closed in 2015. A grade between bituminous coal and anthracite
1508-462: The 12th or 13th century, but most are from the 14th and 15th centuries. Generally, all these texts are restricted to legal writings. Although the earliest written examples of Frisian—stray words in a Latin context—are from approximately the 9th century, there are a few examples of runic inscriptions from the region which are older and in a very early form of the Frisian language. These runic writings however usually consist of no more than inscriptions of
1566-407: The 13th century; the wharf where the material arrived in London was known as Seacoal Lane, so identified in a charter of King Henry III granted in 1253. Initially, the name was given because much coal was found on the shore, having fallen from the exposed coal seams on cliffs above or washed out of underwater coal outcrops, but by the time of Henry VIII , it was understood to derive from the way it
1624-533: The 20th century progressed, and was probably only referred to by a few small railroads and history buffs by the 1980s. Renewed interest in industrial heritage and coal mining history has brought the old names of the coalfields before a larger audience. Colombia has the largest coal reserves in Latin America and is a major exporter. Coal Coal is a combustible black or brownish-black sedimentary rock , formed as rock strata called coal seams . Coal
1682-578: The Carboniferous, and suggested that climatic and tectonic factors were a more plausible explanation, reconstruction of ancestral enzymes by phylogenetic analysis corroborated a hypothesis that lignin degrading enzymes appeared in fungi approximately 200 MYa. One likely tectonic factor was the Central Pangean Mountains , an enormous range running along the equator that reached its greatest elevation near this time. Climate modeling suggests that
1740-587: The Central Pangean Mountains contributed to the deposition of vast quantities of coal in the late Carboniferous. The mountains created an area of year-round heavy precipitation, with no dry season typical of a monsoon climate. This is necessary for the preservation of peat in coal swamps. Coal is known from Precambrian strata, which predate land plants. This coal is presumed to have originated from residues of algae. Sometimes coal seams (also known as coal beds) are interbedded with other sediments in
1798-563: The Greek scientist Theophrastus (c. 371–287 BC): Among the materials that are dug because they are useful, those known as anthrakes [coals] are made of earth, and, once set on fire, they burn like charcoal [anthrakes]. They are found in Liguria ;... and in Elis as one approaches Olympia by the mountain road; and they are used by those who work in metals. Outcrop coal was used in Britain during
List of coalfields - Misplaced Pages Continue
1856-583: The Zuiderzee (now the IJsselmeer ), and the Frisian language survives along the coast only as a substrate. A close relationship exists between Old Frisian and Old English ; this is due to a shared history, language and culture of the people from Northern Germany and Denmark who came to settle in England from around 400 A.D. onwards. Generally, Old Frisian phonologically resembles Old English. In particular, it shares
1914-469: The a-stem declension pattern. Most a-stem nouns are masculine or neuter. Certain words like dei "day" have "g" in the plural endings. All nouns in the ō-stem declension were feminine. The nominative Singular -e comes from the accusative case. There are some early Frisian names preserved in Latin texts, and some runic ( Futhorc ) inscriptions, but the oldest surviving texts in Old Frisian date from
1972-571: The environment , causing premature death and illness, and it is the largest anthropogenic source of carbon dioxide contributing to climate change . Fourteen billion tonnes of carbon dioxide were emitted by burning coal in 2020, which is 40% of total fossil fuel emissions and over 25% of total global greenhouse gas emissions . As part of worldwide energy transition , many countries have reduced or eliminated their use of coal power . The United Nations Secretary General asked governments to stop building new coal plants by 2020. Global coal use
2030-430: The evolution of the first trees . But bacteria and fungi did not immediately evolve the ability to decompose lignin, so the wood did not fully decay but became buried under sediment, eventually turning into coal. About 300 million years ago, mushrooms and other fungi developed this ability, ending the main coal-formation period of earth's history. Although some authors pointed at some evidence of lignin degradation during
2088-512: The factors involved in coalification, temperature is much more important than either pressure or time of burial. Subbituminous coal can form at temperatures as low as 35 to 80 °C (95 to 176 °F) while anthracite requires a temperature of at least 180 to 245 °C (356 to 473 °F). Although coal is known from most geologic periods , 90% of all coal beds were deposited in the Carboniferous and Permian periods. Paradoxically, this
2146-498: The form of iron pyrite (FeS 2 ). Being a dense mineral, it can be removed from coal by mechanical means, e.g. by froth flotation . Some sulfate occurs in coal, especially weathered samples. It is not volatilized and can be removed by washing. Minor components include: As minerals, Hg, As, and Se are not problematic to the environment, especially since they are only trace components. They become however mobile (volatile or water-soluble) when these minerals are combusted. Most coal
2204-514: The gradual spread of the shift from th to d from south to north, beginning in southern Germany in the 9th century, but not reaching Frisian until the 13th or 14th century. Another feature shared between Old Frisian and Old English is the Anglo-Frisian brightening, which fronted a to æ except in certain conditions: Much later, after breaking, /æ/ became /e/ . Before /xx/ , /xs/ , /xt/ , short /e/ , /i/ became /iu/ in
2262-475: The heat and pressure of deep burial caused the loss of water, methane and carbon dioxide and increased the proportion of carbon. The grade of coal produced depended on the maximum pressure and temperature reached, with lignite (also called "brown coal") produced under relatively mild conditions, and sub-bituminous coal , bituminous coal , or anthracite coal (also called "hard coal" or "black coal") produced in turn with increasing temperature and pressure. Of
2320-431: The increasing tendency of the anthracite to break with a conchoidal fracture , similar to the way thick glass breaks. As geological processes apply pressure to dead biotic material over time, under suitable conditions, its metamorphic grade or rank increases successively into: There are several international standards for coal. The classification of coal is generally based on the content of volatiles . However
2378-518: The late Carboniferous ( Pennsylvanian ) and Permian times. Coal is used primarily as a fuel. While coal has been known and used for thousands of years, its usage was limited until the Industrial Revolution . With the invention of the steam engine , coal consumption increased. In 2020, coal supplied about a quarter of the world's primary energy and over a third of its electricity . Some iron and steel -making and other industrial processes burn coal. The extraction and burning of coal damages
List of coalfields - Misplaced Pages Continue
2436-453: The morphology and some properties of the original plant. In many coals, individual macerals can be identified visually. Some macerals include: In coalification huminite is replaced by vitreous (shiny) vitrinite . Maturation of bituminous coal is characterized by bitumenization , in which part of the coal is converted to bitumen , a hydrocarbon-rich gel. Maturation to anthracite is characterized by debitumenization (from demethanation) and
2494-405: The most important distinction is between thermal coal (also known as steam coal), which is burnt to generate electricity via steam; and metallurgical coal (also known as coking coal), which is burnt at high temperature to make steel . Hilt's law is a geological observation that (within a small area) the deeper the coal is found, the higher its rank (or grade). It applies if the thermal gradient
2552-407: The nature of Carboniferous forests, which included lycophyte trees whose determinate growth meant that carbon was not tied up in heartwood of living trees for long periods. One theory suggested that about 360 million years ago, some plants evolved the ability to produce lignin , a complex polymer that made their cellulose stems much harder and more woody. The ability to produce lignin led to
2610-455: The number of double bonds between carbon). As carbonization proceeds, aliphatic compounds convert to aromatic compounds . Similarly, aromatic rings fuse into polyaromatic compounds (linked rings of carbon atoms). The structure increasingly resembles graphene , the structural element of graphite. Chemical changes are accompanied by physical changes, such as decrease in average pore size. The macerals are coalified plant parts that retain
2668-456: The pre-combustion treatment, turbine technology (e.g. supercritical steam generator ) and the age of the plant. A few integrated gasification combined cycle (IGCC) power plants have been built, which burn coal more efficiently. Instead of pulverizing the coal and burning it directly as fuel in the steam-generating boiler, the coal is gasified to create syngas , which is burned in a gas turbine to produce electricity (just like natural gas
2726-427: The reacting groups are attached. Dehydration and decarboxylation take place early in coalification, while demethanation begins only after the coal has already reached bituminous rank. The effect of decarboxylation is to reduce the percentage of oxygen, while demethanation reduces the percentage of hydrogen. Dehydration does both, and (together with demethanation) reduces the saturation of the carbon backbone (increasing
2784-399: The sulfur and most of the nitrogen is incorporated into the organic fraction in the form of organosulfur compounds and organonitrogen compounds . This sulfur and nitrogen are strongly bound within the hydrocarbon matrix. These elements are released as SO 2 and NO x upon combustion. They cannot be removed, economically at least, otherwise. Some coals contain inorganic sulfur, mainly in
2842-415: The world's coal-generated electricity. Efforts around the world to reduce the use of coal have led some regions to switch to natural gas and renewable energy . In 2018 coal-fired power station capacity factor averaged 51%, that is they operated for about half their available operating hours. Coke is a solid carbonaceous residue that is used in manufacturing steel and other iron-containing products. Coke
2900-488: Was tzirke or tzerke , in Old English it was ċiriċe [ˈtʃiritʃe] , while Old Saxon and Old Dutch have the unpalatalised kirika . Palatalization postdated fronting, and predated monophthongization and i-umlaut. Between vowels, h generally disappears ( sian from * sehwaną ), as in Old English and Old Dutch. Word-initial h- on the other hand is retained. Old Frisian retains th in all positions for longer than Old Dutch and Old Saxon do, showing
2958-574: Was 8.3 billion tonnes in 2022, and is set to remain at record levels in 2023. To meet the Paris Agreement target of keeping global warming below 2 °C (3.6 °F) coal use needs to halve from 2020 to 2030, and "phasing down" coal was agreed upon in the Glasgow Climate Pact . The largest consumer and importer of coal in 2020 was China , which accounts for almost half the world's annual coal production, followed by India with about
SECTION 50
#17328584486963016-574: Was based on the trading of this commodity. Coal continues to arrive on beaches around the world from both natural erosion of exposed coal seams and windswept spills from cargo ships. Many homes in such areas gather this coal as a significant, and sometimes primary, source of home heating fuel. Coal consists mainly of a black mixture of diverse organic compounds and polymers. Of course, several kinds of coals exist, with variable dark colors and variable compositions. Young coals (brown coal, lignite) are not black. The two main black coals are bituminous, which
3074-504: Was carried to London by sea. In 1257–1259, coal from Newcastle upon Tyne was shipped to London for the smiths and lime -burners building Westminster Abbey . Seacoal Lane and Newcastle Lane, where coal was unloaded at wharves along the River Fleet , still exist. These easily accessible sources had largely become exhausted (or could not meet the growing demand) by the 13th century, when underground extraction by shaft mining or adits
3132-602: Was developed in the Soviet Union , or in an MHD topping cycle . However these are not widely used due to lack of profit. In 2017 38% of the world's electricity came from coal, the same percentage as 30 years previously. In 2018 global installed capacity was 2 TW (of which 1TW is in China) which was 30% of total electricity generation capacity. The most dependent major country is South Africa, with over 80% of its electricity generated by coal; but China alone generates more than half of
3190-408: Was developed. The alternative name was "pitcoal", because it came from mines. Cooking and home heating with coal (in addition to firewood or instead of it) has been done in various times and places throughout human history, especially in times and places where ground-surface coal was available and firewood was scarce, but a widespread reliance on coal for home hearths probably never existed until such
3248-490: Was during the Late Paleozoic icehouse , a time of global glaciation . However, the drop in global sea level accompanying the glaciation exposed continental shelves that had previously been submerged, and to these were added wide river deltas produced by increased erosion due to the drop in base level . These widespread areas of wetlands provided ideal conditions for coal formation. The rapid formation of coal ended with
3306-606: Was once known as "steam coal" as it was widely used as a fuel for steam locomotives . In this specialized use, it is sometimes known as "sea coal" in the United States. Small "steam coal", also called dry small steam nuts (DSSN), was used as a fuel for domestic water heating . Coal played an important role in industry in the 19th and 20th century. The predecessor of the European Union , the European Coal and Steel Community ,
3364-430: Was used for electricity generation. Coal burnt in coal power stations to generate electricity is called thermal coal . It is usually pulverized and then burned in a furnace with a boiler . The furnace heat converts boiler water to steam , which is then used to spin turbines which turn generators and create electricity. The thermodynamic efficiency of this process varies between about 25% and 50% depending on
#695304