Misplaced Pages

Cango Caves

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The Precambrian ( / p r i ˈ k æ m b r i . ə n , - ˈ k eɪ m -/ pree- KAM -bree-ən, -⁠KAYM- ; or Pre-Cambrian , sometimes abbreviated pC , or Cryptozoic ) is the earliest part of Earth's history , set before the current Phanerozoic Eon. The Precambrian is so named because it preceded the Cambrian , the first period of the Phanerozoic Eon , which is named after Cambria , the Latinized name for Wales , where rocks from this age were first studied. The Precambrian accounts for 88% of the Earth's geologic time.

#947052

81-607: The Cango Caves are located in Precambrian limestones at the foothills of the Swartberg range near the town of Oudtshoorn , in the Western Cape Province of South Africa . The principal cave is one of the country's finest, best known, and most popular tourist caves and attracts many visitors from overseas. Although the extensive system of tunnels and chambers go on for over 4 km ( 2 + 1 ⁄ 2  mi), only about

162-697: A supereon , but this is also an informal term, not defined by the ICS in its chronostratigraphic guide. Eozoic (from eo- "earliest") was a synonym for pre-Cambrian , or more specifically Archean . A specific date for the origin of life has not been determined. Carbon found in 3.8 billion-year-old rocks (Archean Eon) from islands off western Greenland may be of organic origin. Well-preserved microscopic fossils of bacteria older than 3.46 billion years have been found in Western Australia . Probable fossils 100 million years older have been found in

243-638: A football field, and is named Van Zyl Hall in his honor. Further exploration was done and a second chamber discovered in 1792. The caves soon became a popular place to visit. In 1829 Dr Andrew Smith visited the Cango Caves, which contained much to tempt his scientific curiosity. A.J.H. Goodwin, an archaeologist at the University of Cape Town , carried out a test excavation in the Cango Caves in 1930 which found stone artefacts and other cultural material. The Cango Caves Ordinance of 1971 gave certain legal powers over

324-531: A formal proposal to the ICS for the establishment of the Anthropocene Series/Epoch. Nevertheless, the definition of the Anthropocene as a geologic time period rather than a geologic event remains controversial and difficult. An international working group of the ICS on pre-Cryogenian chronostratigraphic subdivision have outlined a template to improve the pre-Cryogenian geologic time scale based on

405-461: A geochronologic unit can be changed (and is more often subject to change) when refined by geochronometry while the equivalent chronostratigraphic unit (the revision of which is less frequent) remains unchanged. For example, in early 2022, the boundary between the Ediacaran and Cambrian periods (geochronologic units) was revised from 541 Ma to 538.8 Ma but the rock definition of the boundary (GSSP) at

486-617: A machine-readable Resource Description Framework / Web Ontology Language representation of the time scale, which is available through the Commission for the Management and Application of Geoscience Information GeoSciML project as a service and at a SPARQL end-point. Some other planets and satellites in the Solar System have sufficiently rigid structures to have preserved records of their own histories, for example, Venus , Mars and

567-713: A possible 2450 Ma red alga from the Kola Peninsula , 1650 Ma carbonaceous biosignatures in north China, the 1600 Ma Rafatazmia , and a possible 1047 Ma Bangiomorpha red alga from the Canadian Arctic. The earliest fossils widely accepted as complex multicellular organisms date from the Ediacaran Period. A very diverse collection of soft-bodied forms is found in a variety of locations worldwide and date to between 635 and 542 Ma. These are referred to as Ediacaran or Vendian biota . Hard-shelled creatures appeared toward

648-471: A quarter of this is open to visitors, who may proceed into the cave only in groups supervised by a guide. Cave paintings and artifacts indicate that the caves were in use throughout prehistory over a long period during the Middle and Later Stone Ages . The caves were rediscovered in modern times in 1780 by a local farmer named Jacobus Van Zyl. The chamber he first was lowered down into was found to be as long as

729-471: A relative interval of geologic time. A chronostratigraphic unit is a body of rock, layered or unlayered, that is defined between specified stratigraphic horizons which represent specified intervals of geologic time. They include all rocks representative of a specific interval of geologic time, and only this time span. Eonothem, erathem, system, series, subseries, stage, and substage are the hierarchical chronostratigraphic units. A geochronologic unit

810-429: A specific and reliable order. This allows for a correlation of strata even when the horizon between them is not continuous. The geologic time scale is divided into chronostratigraphic units and their corresponding geochronologic units. The subdivisions Early and Late are used as the geochronologic equivalents of the chronostratigraphic Lower and Upper , e.g., Early Triassic Period (geochronologic unit)

891-532: A system/series (early/middle/late); however, the International Commission on Stratigraphy advocates for all new series and subseries to be named for a geographic feature in the vicinity of its stratotype or type locality . The name of stages should also be derived from a geographic feature in the locality of its stratotype or type locality. Informally, the time before the Cambrian is often referred to as

SECTION 10

#1732851296948

972-458: A wider sense, correlating strata across national and continental boundaries based on their similarity to each other. Many of the names below erathem/era rank in use on the modern ICC/GTS were determined during the early to mid-19th century. During the 19th century, the debate regarding Earth's age was renewed, with geologists estimating ages based on denudation rates and sedimentary thicknesses or ocean chemistry, and physicists determining ages for

1053-494: Is a numeric-only, chronologic reference point used to define the base of geochronologic units prior to the Cryogenian. These points are arbitrarily defined. They are used where GSSPs have not yet been established. Research is ongoing to define GSSPs for the base of all units that are currently defined by GSSAs. The standard international units of the geologic time scale are published by the International Commission on Stratigraphy on

1134-479: Is a subdivision of geologic time. It is a numeric representation of an intangible property (time). These units are arranged in a hierarchy: eon, era, period, epoch, subepoch, age, and subage. Geochronology is the scientific branch of geology that aims to determine the age of rocks, fossils, and sediments either through absolute (e.g., radiometric dating ) or relative means (e.g., stratigraphic position , paleomagnetism , stable isotope ratios ). Geochronometry

1215-475: Is a way of representing deep time based on events that have occurred throughout Earth's history , a time span of about 4.54 ± 0.05 Ga (4.54 billion years). It chronologically organises strata, and subsequently time, by observing fundamental changes in stratigraphy that correspond to major geological or paleontological events. For example, the Cretaceous–Paleogene extinction event , marks

1296-651: Is known to occur during the RNA replication of extant coronaviruses . Evidence of the details of plate motions and other tectonic activity in the Precambrian is difficult to interpret. It is generally believed that small proto-continents existed before 4280 Ma, and that most of the Earth's landmasses collected into a single supercontinent around 1130 Ma. The supercontinent, known as Rodinia , broke up around 750 Ma. A number of glacial periods have been identified going as far back as

1377-484: Is said to have calculated that he was 25 km ( 15 + 1 ⁄ 2  mi) from the entrance, and 275 m (902 ft) underground; his route apparently followed an underground river. So far, explorers are finding more and more caves to support this story. The first rough survey was done in 1897, mapping out the first 26 chambers. In 1956 the South African Spelaeological Association

1458-401: Is the field of geochronology that numerically quantifies geologic time. A Global Boundary Stratotype Section and Point (GSSP) is an internationally agreed-upon reference point on a stratigraphic section that defines the lower boundaries of stages on the geologic time scale. (Recently this has been used to define the base of a system) A Global Standard Stratigraphic Age (GSSA)

1539-663: Is the responsibility of the International Commission on Stratigraphy (ICS), a constituent body of the International Union of Geological Sciences (IUGS), whose primary objective is to precisely define global chronostratigraphic units of the International Chronostratigraphic Chart (ICC) that are used to define divisions of geologic time. The chronostratigraphic divisions are in turn used to define geochronologic units. The geologic time scale

1620-514: Is thought that the Earth coalesced from material in orbit around the Sun at roughly 4,543 Ma, and may have been struck by another planet called Theia shortly after it formed, splitting off material that formed the Moon (see Giant-impact hypothesis ). A stable crust was apparently in place by 4,433 Ma, since zircon crystals from Western Australia have been dated at 4,404 ± 8 Ma. The term "Precambrian"

1701-524: Is thought to have formed about 1300-900 Ma, to have included most or all of Earth's continents and to have broken up into eight continents around 750–600 million years ago. Eon (geology) The geologic time scale or geological time scale ( GTS ) is a representation of time based on the rock record of Earth . It is a system of chronological dating that uses chronostratigraphy (the process of relating strata to time) and geochronology (a scientific branch of geology that aims to determine

SECTION 20

#1732851296948

1782-627: Is used by geologists and paleontologists for general discussions not requiring a more specific eon name. However, both the United States Geological Survey and the International Commission on Stratigraphy regard the term as informal. Because the span of time falling under the Precambrian consists of three eons (the Hadean , the Archean , and the Proterozoic ), it is sometimes described as

1863-573: Is used in place of Lower Triassic System (chronostratigraphic unit). Rocks representing a given chronostratigraphic unit are that chronostratigraphic unit, and the time they were laid down in is the geochronologic unit, e.g., the rocks that represent the Silurian System are the Silurian System and they were deposited during the Silurian Period. This definition means the numeric age of

1944-598: The Anthropocene is a proposed epoch/series for the most recent time in Earth's history. While still informal, it is a widely used term to denote the present geologic time interval, in which many conditions and processes on Earth are profoundly altered by human impact. As of April 2022 the Anthropocene has not been ratified by the ICS; however, in May 2019 the Anthropocene Working Group voted in favour of submitting

2025-529: The Brothers of Purity , who wrote on the processes of stratification over the passage of time in their treatises . Their work likely inspired that of the 11th-century Persian polymath Avicenna (Ibn Sînâ, 980–1037) who wrote in The Book of Healing (1027) on the concept of stratification and superposition, pre-dating Nicolas Steno by more than six centuries. Avicenna also recognised fossils as "petrifications of

2106-521: The Huronian epoch, roughly 2400–2100 Ma. One of the best studied is the Sturtian-Varangian glaciation, around 850–635 Ma, which may have brought glacial conditions all the way to the equator, resulting in a " Snowball Earth ". The atmosphere of the early Earth is not well understood. Most geologists believe it was composed primarily of nitrogen, carbon dioxide, and other relatively inert gases, and

2187-477: The Precambrian or pre-Cambrian (Supereon). While a modern geological time scale was not formulated until 1911 by Arthur Holmes , the broader concept that rocks and time are related can be traced back to (at least) the philosophers of Ancient Greece . Xenophanes of Colophon (c. 570–487  BCE ) observed rock beds with fossils of shells located above the sea-level, viewed them as once living organisms, and used this to imply an unstable relationship in which

2268-511: The geologic time scale . It spans from the formation of Earth about 4.6 billion years ago ( Ga ) to the beginning of the Cambrian Period, about 538.8 million years ago ( Ma ), when hard-shelled creatures first appeared in abundance. Relatively little is known about the Precambrian, despite it making up roughly seven-eighths of the Earth's history , and what is known has largely been discovered from

2349-482: The oxygen catastrophe . At first, oxygen would have quickly combined with other elements in Earth's crust, primarily iron, removing it from the atmosphere. After the supply of oxidizable surfaces ran out, oxygen would have begun to accumulate in the atmosphere, and the modern high-oxygen atmosphere would have developed. Evidence for this lies in older rocks that contain massive banded iron formations that were laid down as iron oxides. A terminology has evolved covering

2430-401: The 1960s onwards. The Precambrian fossil record is poorer than that of the succeeding Phanerozoic , and fossils from the Precambrian (e.g. stromatolites ) are of limited biostratigraphic use. This is because many Precambrian rocks have been heavily metamorphosed , obscuring their origins, while others have been destroyed by erosion, or remain deeply buried beneath Phanerozoic strata. It

2511-552: The Adventure Tour. The smallest passage that tourists will have to pass through on the Adventure Tour is just under 15 cm to exit. Visiting the caves are considered to be part of exploring the scenic Route 62 . The Cinema Museum in London holds film of a visit to the caves in the 1930s. Precambrian The Precambrian is an informal unit of geologic time, subdivided into three eons ( Hadean , Archean , Proterozoic ) of

Cango Caves - Misplaced Pages Continue

2592-668: The Commission on Stratigraphy (applied in 1965) to become a member commission of IUGS led to the founding of the ICS. One of the primary objectives of the ICS is "the establishment, publication and revision of the ICS International Chronostratigraphic Chart which is the standard, reference global Geological Time Scale to include the ratified Commission decisions". Following on from Holmes, several A Geological Time Scale books were published in 1982, 1989, 2004, 2008, 2012, 2016, and 2020. However, since 2013,

2673-464: The Earth's Moon . Dominantly fluid planets, such as the giant planets , do not comparably preserve their history. Apart from the Late Heavy Bombardment , events on other planets probably had little direct influence on the Earth, and events on Earth had correspondingly little effect on those planets. Construction of a time scale that links the planets is, therefore, of only limited relevance to

2754-515: The Earth's time scale, except in a Solar System context. The existence, timing, and terrestrial effects of the Late Heavy Bombardment are still a matter of debate. The geologic history of Earth's Moon has been divided into a time scale based on geomorphological markers, namely impact cratering , volcanism , and erosion . This process of dividing the Moon's history in this manner means that

2835-447: The ICS has taken responsibility for producing and distributing the ICC citing the commercial nature, independent creation, and lack of oversight by the ICS on the prior published GTS versions (GTS books prior to 2013) although these versions were published in close association with the ICS. Subsequent Geologic Time Scale books (2016 and 2020 ) are commercial publications with no oversight from

2916-404: The ICS, and do not entirely conform to the chart produced by the ICS. The ICS produced GTS charts are versioned (year/month) beginning at v2013/01. At least one new version is published each year incorporating any changes ratified by the ICS since the prior version. The following five timelines show the geologic time scale to scale. The first shows the entire time from the formation of the Earth to

2997-415: The ICS. While some regional terms are still in use, the table of geologic time conforms to the nomenclature , ages, and colour codes set forth by the International Commission on Stratigraphy in the official International Chronostratigraphic Chart. The International Commission on Stratigraphy also provide an online interactive version of this chart. The interactive version is based on a service delivering

3078-665: The International Chronostratigraphic Chart; however, regional terms are still in use in some areas. The numeric values on the International Chronostratigrahpic Chart are represented by the unit Ma (megaannum, for 'million years '). For example, 201.4 ± 0.2 Ma, the lower boundary of the Jurassic Period, is defined as 201,400,000 years old with an uncertainty of 200,000 years. Other SI prefix units commonly used by geologists are Ga (gigaannum, billion years), and ka (kiloannum, thousand years), with

3159-445: The action of gravity. However, it is now known that not all sedimentary layers are deposited purely horizontally, but this principle is still a useful concept. The principle of lateral continuity that states layers of sediments extend laterally in all directions until either thinning out or being cut off by a different rock layer, i.e. they are laterally continuous. Layers do not extend indefinitely; their limits are controlled by

3240-505: The age of rocks). It is used primarily by Earth scientists (including geologists , paleontologists , geophysicists , geochemists , and paleoclimatologists ) to describe the timing and relationships of events in geologic history. The time scale has been developed through the study of rock layers and the observation of their relationships and identifying features such as lithologies , paleomagnetic properties, and fossils . The definition of standardised international units of geologic time

3321-409: The amount and type of sediment in a sedimentary basin , and the geometry of that basin. The principle of cross-cutting relationships that states a rock that cuts across another rock must be younger than the rock it cuts across. The law of included fragments that states small fragments of one type of rock that are embedded in a second type of rock must have formed first, and were included when

Cango Caves - Misplaced Pages Continue

3402-508: The base of the Cambrian, and thus the boundary between the Ediacaran and Cambrian systems (chronostratigraphic units) has not been changed; rather, the absolute age has merely been refined. Chronostratigraphy is the element of stratigraphy that deals with the relation between rock bodies and the relative measurement of geological time. It is the process where distinct strata between defined stratigraphic horizons are assigned to represent

3483-518: The bodies of plants and animals", with the 13th-century Dominican bishop Albertus Magnus (c. 1200–1280) extending this into a theory of a petrifying fluid. These works appeared to have little influence on scholars in Medieval Europe who looked to the Bible to explain the origins of fossils and sea-level changes, often attributing these to the ' Deluge ', including Ristoro d'Arezzo in 1282. It

3564-505: The caves to what was then the Administrator of the Cape; legally, these same powers now devolve to the local government members of the executive. However, day-to-day management of the caves is the responsibility of the municipality of Oudtshoorn . Mr. Johnny van Wassenaer, the cave’s first official guide is purported to have walked 29 hours to find the end of the caves in 1898. When there, he

3645-502: The chamber of most of its water and crawled through what was previously an underwater passage. This led to the discovery of more caves, called Cango III. Altogether these caves are about 1,000 m (3,300 ft) long. The biggest of the chambers, stretches about 300 m (980 ft). Digby Ellis and Dave Land added 290 m (950 ft) to Cango III when they discovered a crawlway in December 1977. A further 90 m (300 ft)

3726-520: The cooling of the Earth or the Sun using basic thermodynamics or orbital physics. These estimations varied from 15,000 million years to 0.075 million years depending on method and author, but the estimations of Lord Kelvin and Clarence King were held in high regard at the time due to their pre-eminence in physics and geology. All of these early geochronometric determinations would later prove to be incorrect. The discovery of radioactive decay by Henri Becquerel , Marie Curie , and Pierre Curie laid

3807-401: The current scheme based upon numerical ages. Such a system could rely on events in the stratigraphic record and be demarcated by GSSPs . The Precambrian could be divided into five "natural" eons, characterized as follows: The movement of Earth's plates has caused the formation and break-up of continents over time, including occasional formation of a supercontinent containing most or all of

3888-453: The developments in mass spectrometry pioneered by Francis William Aston , Arthur Jeffrey Dempster , and Alfred O. C. Nier during the early to mid- 20th century would finally allow for the accurate determination of radiometric ages, with Holmes publishing several revisions to his geological time-scale with his final version in 1960. The establishment of the IUGS in 1961 and acceptance of

3969-404: The different layers of stone unless they had been upon the shore and had been covered over by earth newly thrown up by the sea which then became petrified? And if the above-mentioned Deluge had carried them to these places from the sea, you would find the shells at the edge of one layer of rock only, not at the edge of many where may be counted the winters of the years during which the sea multiplied

4050-453: The early years of the Earth's existence, as radiometric dating has allowed absolute dates to be assigned to specific formations and features. The Precambrian is divided into three eons: the Hadean (4567.3–4031 Ma), Archean (4031-2500 Ma) and Proterozoic (2500-538.8 Ma). See Timetable of the Precambrian . It has been proposed that the Precambrian should be divided into eons and eras that reflect stages of planetary evolution, rather than

4131-741: The end of that time span, marking the beginning of the Phanerozoic Eon. By the middle of the following Cambrian Period, a very diverse fauna is recorded in the Burgess Shale , including some which may represent stem groups of modern taxa. The increase in diversity of lifeforms during the early Cambrian is called the Cambrian explosion of life. While land seems to have been devoid of plants and animals, cyanobacteria and other microbes formed prokaryotic mats that covered terrestrial areas. Tracks from an animal with leg-like appendages have been found in what

SECTION 50

#1732851296948

4212-631: The floor. In 1972 James Craig-Smith, Luther Terblanche and Dart Ruiters widened an obstructed passage to discover Cango II. It stretches 270 m (890 ft) beyond the end of the Devil’s Kitchen. At the end of Cango II there is a shaft that descends 20 m (66 ft) to a chamber filled with water. This water flowed in the direction of Cango I. In August 1975, during a symposium on cave biology, an exploration team led by Hans Oosthuizen, Luther Terblanche, Michale Schultz, Digby Ellis, Jean Paul Matisse, Bob Mann, Florus Koper and Peter Breedt drained

4293-414: The foundational principles of determining the correlation of strata relative to geologic time. Over the course of the 18th-century geologists realised that: The apparent, earliest formal division of the geologic record with respect to time was introduced during the era of Biblical models by Thomas Burnet who applied a two-fold terminology to mountains by identifying " montes primarii " for rock formed at

4374-458: The geologic time scale of Earth. This table is arranged with the most recent geologic periods at the top, and the oldest at the bottom. The height of each table entry does not correspond to the duration of each subdivision of time. As such, this table is not to scale and does not accurately represent the relative time-spans of each geochronologic unit. While the Phanerozoic Eon looks longer than

4455-492: The ground work for radiometric dating, but the knowledge and tools required for accurate determination of radiometric ages would not be in place until the mid-1950s. Early attempts at determining ages of uranium minerals and rocks by Ernest Rutherford , Bertram Boltwood , Robert Strutt , and Arthur Holmes, would culminate in what are considered the first international geological time scales by Holmes in 1911 and 1913. The discovery of isotopes in 1913 by Frederick Soddy , and

4536-541: The landmass. The earliest known supercontinent was Vaalbara . It formed from proto-continents and was a supercontinent 3.636 billion years ago. Vaalbara broke up c. 2.845–2.803 Ga ago. The supercontinent Kenorland was formed c. 2.72 Ga ago and then broke sometime after 2.45–2.1 Ga into the proto-continent cratons called Laurentia , Baltica , Yilgarn craton and Kalahari . The supercontinent Columbia , or Nuna, formed 2.1–1.8 billion years ago and broke up about 1.3–1.2 billion years ago. The supercontinent Rodinia

4617-913: The latter often represented in calibrated units ( before present ). The names of geologic time units are defined for chronostratigraphic units with the corresponding geochronologic unit sharing the same name with a change to the suffix (e.g. Phanerozoic Eonothem becomes the Phanerozoic Eon). Names of erathems in the Phanerozoic were chosen to reflect major changes in the history of life on Earth: Paleozoic (old life), Mesozoic (middle life), and Cenozoic (new life). Names of systems are diverse in origin, with some indicating chronologic position (e.g., Paleogene), while others are named for lithology (e.g., Cretaceous), geography (e.g., Permian ), or are tribal (e.g., Ordovician ) in origin. Most currently recognised series and subseries are named for their position within

4698-561: The layers of sand and mud brought down by the neighboring rivers and spread them over its shores. And if you wish to say that there must have been many deluges in order to produce these layers and the shells among them it would then become necessary for you to affirm that such a deluge took place every year. These views of da Vinci remained unpublished, and thus lacked influence at the time; however, questions of fossils and their significance were pursued and, while views against Genesis were not readily accepted and dissent from religious doctrine

4779-537: The litho- and biostratigraphic differences around the world in time equivalent rocks. The ICS has long worked to reconcile conflicting terminology by standardising globally significant and identifiable stratigraphic horizons that can be used to define the lower boundaries of chronostratigraphic units. Defining chronostratigraphic units in such a manner allows for the use of global, standardised nomenclature. The International Chronostratigraphic Chart represents this ongoing effort. Several key principles are used to determine

4860-607: The lower boundary of the Paleogene System/Period and thus the boundary between the Cretaceous and Paleogene systems/periods. For divisions prior to the Cryogenian , arbitrary numeric boundary definitions ( Global Standard Stratigraphic Ages , GSSAs) are used to divide geologic time. Proposals have been made to better reconcile these divisions with the rock record. Historically, regional geologic time scales were used due to

4941-408: The pertinent time span. As of April 2022 these proposed changes have not been accepted by the ICS. The proposed changes (changes from the current scale [v2023/09]) are italicised: Proposed pre-Cambrian timeline (GTS2012), shown to scale: Current ICC pre-Cambrian timeline (v2023/09), shown to scale: The following table summarises the major events and characteristics of the divisions making up

SECTION 60

#1732851296948

5022-452: The present, but this gives little space for the most recent eon. The second timeline shows an expanded view of the most recent eon. In a similar way, the most recent era is expanded in the third timeline, the most recent period is expanded in the fourth timeline, and the most recent epoch is expanded in the fifth timeline. Horizontal scale is Millions of years (above timelines) / Thousands of years (below timeline) First suggested in 2000,

5103-485: The principles of superposition, original horizontality, lateral continuity, and cross-cutting relationships. From this Steno reasoned that strata were laid down in succession and inferred relative time (in Steno's belief, time from Creation ). While Steno's principles were simple and attracted much attention, applying them proved challenging. These basic principles, albeit with improved and more nuanced interpretations, still form

5184-521: The relative relationships of rocks and thus their chronostratigraphic position. The law of superposition that states that in undeformed stratigraphic sequences the oldest strata will lie at the bottom of the sequence, while newer material stacks upon the surface. In practice, this means a younger rock will lie on top of an older rock unless there is evidence to suggest otherwise. The principle of original horizontality that states layers of sediments will originally be deposited horizontally under

5265-467: The rest, it merely spans ~539 million years (~12% of Earth's history), whilst the previous three eons collectively span ~3,461 million years (~76% of Earth's history). This bias toward the most recent eon is in part due to the relative lack of information about events that occurred during the first three eons compared to the current eon (the Phanerozoic). The use of subseries/subepochs has been ratified by

5346-630: The rock record to bring it in line with the post-Tonian geologic time scale. This work assessed the geologic history of the currently defined eons and eras of the pre-Cambrian, and the proposals in the "Geological Time Scale" books 2004, 2012, and 2020. Their recommend revisions of the pre-Cryogenian geologic time scale were (changes from the current scale [v2023/09] are italicised): Proposed pre-Cambrian timeline (Shield et al. 2021, ICS working group on pre-Cryogenian chronostratigraphy), shown to scale: Current ICC pre-Cambrian timeline (v2023/09), shown to scale: The book, Geologic Time Scale 2012,

5427-526: The same area. However, there is evidence that life could have evolved over 4.280 billion years ago. There is a fairly solid record of bacterial life throughout the remainder (Proterozoic Eon) of the Precambrian. Complex multicellular organisms may have appeared as early as 2100 Ma. However, the interpretation of ancient fossils is problematic, and "... some definitions of multicellularity encompass everything from simple bacterial colonies to badgers." Other possible early complex multicellular organisms include

5508-474: The sea had at times transgressed over the land and at other times had regressed . This view was shared by a few of Xenophanes's contemporaries and those that followed, including Aristotle (384–322 BCE) who (with additional observations) reasoned that the positions of land and sea had changed over long periods of time. The concept of deep time was also recognised by Chinese naturalist Shen Kuo (1031–1095) and Islamic scientist -philosophers, notably

5589-544: The second rock was forming. The relationships of unconformities which are geologic features representing a gap in the geologic record. Unconformities are formed during periods of erosion or non-deposition, indicating non-continuous sediment deposition. Observing the type and relationships of unconformities in strata allows geologist to understand the relative timing the strata. The principle of faunal succession (where applicable) that states rock strata contain distinctive sets of fossils that succeed each other vertically in

5670-537: The time during which the rocks were laid down, and the collection of rocks themselves (i.e., it was correct to say Tertiary rocks, and Tertiary Period). Only the Quaternary division is retained in the modern geologic time scale, while the Tertiary division was in use until the early 21st century. The Neptunism and Plutonism theories would compete into the early 19th century with a key driver for resolution of this debate being

5751-730: The time of the 'Deluge', and younger " monticulos secundarios" formed later from the debris of the " primarii" . Anton Moro (1687–1784) also used primary and secondary divisions for rock units but his mechanism was volcanic. In this early version of the Plutonism theory, the interior of Earth was seen as hot, and this drove the creation of primary igneous and metamorphic rocks and secondary rocks formed contorted and fossiliferous sediments. These primary and secondary divisions were expanded on by Giovanni Targioni Tozzetti (1712–1783) and Giovanni Arduino (1713–1795) to include tertiary and quaternary divisions. These divisions were used to describe both

5832-562: The time scale boundaries do not imply fundamental changes in geological processes, unlike Earth's geologic time scale. Five geologic systems/periods ( Pre-Nectarian , Nectarian , Imbrian , Eratosthenian , Copernican ), with the Imbrian divided into two series/epochs (Early and Late) were defined in the latest Lunar geologic time scale. The Moon is unique in the Solar System in that it is the only other body from which humans have rock samples with

5913-526: The work of James Hutton (1726–1797), in particular his Theory of the Earth , first presented before the Royal Society of Edinburgh in 1785. Hutton's theory would later become known as uniformitarianism , popularised by John Playfair (1748–1819) and later Charles Lyell (1797–1875) in his Principles of Geology . Their theories strongly contested the 6,000 year age of the Earth as suggested determined by James Ussher via Biblical chronology that

5994-429: Was accepted at the time by western religion. Instead, using geological evidence, they contested Earth to be much older, cementing the concept of deep time. During the early 19th century William Smith , Georges Cuvier , Jean d'Omalius d'Halloy , and Alexandre Brongniart pioneered the systematic division of rocks by stratigraphy and fossil assemblages. These geologists began to use the local names given to rock units in

6075-614: Was added in June 1978. All these extensions were surveyed in August 1978 by Dave Land, Charles Maxwell, Brian Russell and Dave Crombie. Tours are conducted at regular intervals on most days—there is a "Standard Tour" which takes an hour and an "Adventure Tour" which takes an hour and a half. The "Adventure Tour" consists of crawling through narrow passages and climbing up steep rock formations guided by small lights. The caves contain halls and limestone formations (on both tours) as well as small passages on

6156-415: Was in some places unwise, scholars such as Girolamo Fracastoro shared da Vinci's views, and found the attribution of fossils to the 'Deluge' absurd. Niels Stensen, more commonly known as Nicolas Steno (1638–1686), is credited with establishing four of the guiding principles of stratigraphy. In De solido intra solidum naturaliter contento dissertationis prodromus Steno states: Respectively, these are

6237-482: Was lacking in free oxygen . There is, however, evidence that an oxygen-rich atmosphere existed since the early Archean. At present, it is still believed that molecular oxygen was not a significant fraction of Earth's atmosphere until after photosynthetic life forms evolved and began to produce it in large quantities as a byproduct of their metabolism . This radical shift from a chemically inert to an oxidizing atmosphere caused an ecological crisis , sometimes called

6318-846: Was mud 551 million years ago. The RNA world hypothesis asserts that RNA evolved before coded proteins and DNA genomes. During the Hadean Eon (4,567–4,031 Ma) abundant geothermal microenvironments were present that may have had the potential to support the synthesis and replication of RNA and thus possibly the evolution of a primitive life form. It was shown that porous rock systems comprising heated air-water interfaces could allow ribozyme - catalyzed RNA replication of sense and antisense strands that could be followed by strand-dissociation, thus enabling combined synthesis, release and folding of active ribozymes. This primitive RNA replicative system also may have been able to undergo template strand switching during replication ( genetic recombination ) as

6399-535: Was not until the Italian Renaissance when Leonardo da Vinci (1452–1519) would reinvigorate the relationships between stratification, relative sea-level change, and time, denouncing attribution of fossils to the 'Deluge': Of the stupidity and ignorance of those who imagine that these creatures were carried to such places distant from the sea by the Deluge...Why do we find so many fragments and whole shells between

6480-465: Was tasked to draw up an accurate mapping of the Cango Caves, and look for alternative entrances. Their results indicated that the caves were 775 m (2,543 ft) long in a single line, and that they never rise nor fell more than 16 m (52 ft). These were called Cango I. The nearest point to the surface in the caves is at the top of the shaft in the Devil's Kitchen, 52.6 m (173 ft) from

6561-476: Was the last commercial publication of an international chronostratigraphic chart that was closely associated with the ICS. It included a proposal to substantially revise the pre-Cryogenian time scale to reflect important events such as the formation of the Solar System and the Great Oxidation Event , among others, while at the same time maintaining most of the previous chronostratigraphic nomenclature for

#947052