Misplaced Pages

BaBar experiment

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The BaBar experiment , or simply BaBar , is an international collaboration of more than 500 physicists and engineers studying the subatomic world at energies of approximately ten times the rest mass of a proton (~10  GeV ). Its design was motivated by the investigation of charge-parity violation . BaBar is located at the SLAC National Accelerator Laboratory , which is operated by Stanford University for the Department of Energy in California .

#435564

107-415: BaBar was set up to understand the disparity between the matter and antimatter content of the universe by measuring Charge Parity violation . CP symmetry is a combination of C harge-conjugation symmetry (C symmetry) and P arity symmetry (P symmetry), each of which are conserved separately except in weak interactions . BaBar focuses on the study of CP violation in the B meson system. The name of

214-404: A de Broglie wave in the manner of light . That is, under the appropriate conditions, electrons and other matter would show properties of either particles or waves. The corpuscular properties of a particle are demonstrated when it is shown to have a localized position in space along its trajectory at any given moment. The wave-like nature of light is displayed, for example, when a beam of light

321-648: A charged droplet of oil from falling as a result of gravity. This device could measure the electric charge from as few as 1–150 ions with an error margin of less than 0.3%. Comparable experiments had been done earlier by Thomson's team, using clouds of charged water droplets generated by electrolysis, and in 1911 by Abram Ioffe , who independently obtained the same result as Millikan using charged microparticles of metals, then published his results in 1913. However, oil drops were more stable than water drops because of their slower evaporation rate, and thus more suited to precise experimentation over longer periods of time. Around

428-410: A fourth state of matter in which the mean free path of the particles is so long that collisions may be ignored. In 1883, not yet well-known German physicist Heinrich Hertz tried to prove that cathode rays are electrically neutral and got what he interpreted as a confident absence of deflection in electrostatic, as opposed to magnetic, field. However, as J. J. Thomson explained in 1897, Hertz placed

535-494: A friction that slows the electron. This force is caused by a back-reaction of the electron's own field upon itself. Photons mediate electromagnetic interactions between particles in quantum electrodynamics . An isolated electron at a constant velocity cannot emit or absorb a real photon; doing so would violate conservation of energy and momentum . Instead, virtual photons can transfer momentum between two charged particles. This exchange of virtual photons, for example, generates

642-556: A half-integer value, expressed in units of the reduced Planck constant , ħ . Being fermions , no two electrons can occupy the same quantum state , per the Pauli exclusion principle . Like all elementary particles, electrons exhibit properties of both particles and waves : They can collide with other particles and can be diffracted like light. The wave properties of electrons are easier to observe with experiments than those of other particles like neutrons and protons because electrons have

749-622: A hot, radiation-dominated era. The antiuniverse would flow back in time from the Big Bang, becoming bigger as it does so, and would be also dominated by antimatter. Its spatial properties are inverted if compared to those in our universe, a situation analogous to creating electron – positron pairs in a vacuum . This model, devised by physicists from the Perimeter Institute for Theoretical Physics in Canada , proposes that temperature fluctuations in

856-429: A lower mass and hence a longer de Broglie wavelength for a given energy. Electrons play an essential role in numerous physical phenomena, such as electricity , magnetism , chemistry , and thermal conductivity ; they also participate in gravitational , electromagnetic , and weak interactions . Since an electron has charge, it has a surrounding electric field ; if that electron is moving relative to an observer,

963-460: A model of the electron – the Dirac equation , consistent with relativity theory, by applying relativistic and symmetry considerations to the hamiltonian formulation of the quantum mechanics of the electro-magnetic field. In order to resolve some problems within his relativistic equation, Dirac developed in 1930 a model of the vacuum as an infinite sea of particles with negative energy, later dubbed

1070-428: A non zero electric dipole moment would imply the existence of T-violating interactions in the vacuum corrections to the measured particle. So far all measurements are consistent with zero putting strong bounds on the properties of the yet unknown new CP-violating interactions. In the out-of-equilibrium decay scenario, the last condition states that the rate of a reaction which generates baryon-asymmetry must be less than

1177-456: A particle with a positive charge, such as the proton, and a repulsive force on a particle with a negative charge. The strength of this force in nonrelativistic approximation is determined by Coulomb's inverse square law . When an electron is in motion, it generates a magnetic field . The Ampère–Maxwell law relates the magnetic field to the mass motion of electrons (the current ) with respect to an observer. This property of induction supplies

SECTION 10

#1732852840436

1284-531: A process is able to happen at a different rate to its antimatter counterpart. In the Standard Model , CP violation appears as a complex phase in the quark mixing matrix of the weak interaction . There may also be a non-zero CP-violating phase in the neutrino mixing matrix , but this is currently unmeasured. The first in a series of basic physics principles to be violated was parity through Chien-Shiung Wu's experiment . This led to CP violation being verified in

1391-549: A single electron. This prohibition against more than one electron occupying the same quantum energy state became known as the Pauli exclusion principle . The physical mechanism to explain the fourth parameter, which had two distinct possible values, was provided by the Dutch physicists Samuel Goudsmit and George Uhlenbeck . In 1925, they suggested that an electron, in addition to the angular momentum of its orbit, possesses an intrinsic angular momentum and magnetic dipole moment . This

1498-482: A solution that determined the location of an electron over time, this wave equation also could be used to predict the probability of finding an electron near a position, especially a position near where the electron was bound in space, for which the electron wave equations did not change in time. This approach led to a second formulation of quantum mechanics (the first by Heisenberg in 1925), and solutions of Schrödinger's equation, like Heisenberg's, provided derivations of

1605-437: A surplus of the charge carrier, and which situation was a deficit. Between 1838 and 1851, British natural philosopher Richard Laming developed the idea that an atom is composed of a core of matter surrounded by subatomic particles that had unit electric charges . Beginning in 1846, German physicist Wilhelm Eduard Weber theorized that electricity was composed of positively and negatively charged fluids, and their interaction

1712-435: Is a subatomic particle with a negative one elementary electric charge . Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no known components or substructure. The electron's mass is approximately 1/1836 that of the proton . Quantum mechanical properties of the electron include an intrinsic angular momentum ( spin ) of

1819-407: Is a challenging problem of modern theoretical physics. The admission of the hypothesis of a finite radius of the electron is incompatible to the premises of the theory of relativity. On the other hand, a point-like electron (zero radius) generates serious mathematical difficulties due to the self-energy of the electron tending to infinity. Observation of a single electron in a Penning trap suggests

1926-463: Is a combination of the words electr ic and i on . The suffix - on which is now used to designate other subatomic particles, such as a proton or neutron, is in turn derived from electron. While studying electrical conductivity in rarefied gases in 1859, the German physicist Julius Plücker observed the radiation emitted from the cathode caused phosphorescent light to appear on the tube wall near

2033-488: Is actually smaller than its true value, and the charge decreases with increasing distance from the electron. This polarization was confirmed experimentally in 1997 using the Japanese TRISTAN particle accelerator. Virtual particles cause a comparable shielding effect for the mass of the electron. The interaction with virtual particles also explains the small (about 0.1%) deviation of the intrinsic magnetic moment of

2140-585: Is analogous to the rotation of the Earth on its axis as it orbits the Sun. The intrinsic angular momentum became known as spin , and explained the previously mysterious splitting of spectral lines observed with a high-resolution spectrograph ; this phenomenon is known as fine structure splitting. In his 1924 dissertation Recherches sur la théorie des quanta (Research on Quantum Theory), French physicist Louis de Broglie hypothesized that all matter can be represented as

2247-472: Is approximately 9.109 × 10  kg , or 5.489 × 10   Da . Due to mass–energy equivalence , this corresponds to a rest energy of 0.511 MeV (8.19 × 10  J) . The ratio between the mass of a proton and that of an electron is about 1836. Astronomical measurements show that the proton-to-electron mass ratio has held the same value, as is predicted by the Standard Model, for at least half

SECTION 20

#1732852840436

2354-516: Is dominated by antimatter. The state of the universe, as it is, does not violate the CPT symmetry , because the Big Bang could be considered as a double sided event, both classically and quantum mechanically, consisting of a universe-antiuniverse pair. This means that this universe is the charge (C), parity (P) and time (T) image of the anti-universe. This pair emerged from the Big Bang epochs not directly into

2461-524: Is given by with k B as the Boltzmann constant , ħ as the Planck constant divided by 2 π and c as the speed of light in vacuum, and ζ (3) as Apéry's constant . At the current CBR photon temperature of 2.725 K , this corresponds to a photon density n γ of around 411 CBR photons per cubic centimeter. Therefore, the asymmetry parameter η , as defined above, is not the "good" parameter. Instead,

2568-450: Is in existence, the Coulomb force from the ambient electric field surrounding an electron causes a created positron to be attracted to the original electron, while a created electron experiences a repulsion. This causes what is called vacuum polarization . In effect, the vacuum behaves like a medium having a dielectric permittivity more than unity . Thus the effective charge of an electron

2675-502: Is no experimental evidence of particle interactions where the conservation of baryon number is broken perturbatively : this would appear to suggest that all observed particle reactions have equal baryon number before and after. Mathematically, the commutator of the baryon number quantum operator with the (perturbative) Standard Model hamiltonian is zero: [ B , H ] = B H − H B = 0 {\displaystyle [B,H]=BH-HB=0} . However,

2782-556: Is one of humanity's earliest recorded experiences with electricity . In his 1600 treatise De Magnete , the English scientist William Gilbert coined the Neo-Latin term electrica , to refer to those substances with property similar to that of amber which attract small objects after being rubbed. Both electric and electricity are derived from the Latin ēlectrum (also the root of

2889-413: Is ongoing. The BaBar detector is cylindrical with the interaction region at the center. In the interaction region, 9  GeV electrons collide with 3.1 GeV antielectrons (sometimes called positrons ) to produce a center-of-mass collision energy of 10.58 GeV, corresponding to the ϒ (4S) resonance. The ϒ (4S) decays immediately into a pair of B mesons – half

2996-407: Is passed through parallel slits thereby creating interference patterns. In 1927, George Paget Thomson and Alexander Reid discovered the interference effect was produced when a beam of electrons was passed through thin celluloid foils and later metal films, and by American physicists Clinton Davisson and Lester Germer by the reflection of electrons from a crystal of nickel . Alexander Reid, who

3103-404: Is reasonably well established at about one atom per cubic meter. Assuming this is a typical density near a boundary, the gamma ray luminosity of the boundary interaction zone can be calculated. No such zones have been detected, but 30 years of research have placed bounds on how far they might be. On the basis of such analyses, it is now deemed unlikely that any region within the observable universe

3210-411: Is similarly required because otherwise equal numbers of left-handed baryons and right-handed anti-baryons would be produced, as well as equal numbers of left-handed anti-baryons and right-handed baryons. Finally, the interactions must be out of thermal equilibrium, since otherwise CPT symmetry would assure compensation between processes increasing and decreasing the baryon number. Currently, there

3317-461: The Dirac sea . This led him to predict the existence of a positron, the antimatter counterpart of the electron. This particle was discovered in 1932 by Carl Anderson , who proposed calling standard electrons negatrons and using electron as a generic term to describe both the positively and negatively charged variants. In 1947, Willis Lamb , working in collaboration with graduate student Robert Retherford , found that certain quantum states of

BaBar experiment - Misplaced Pages Continue

3424-454: The Lamb shift observed in spectral lines . The Compton Wavelength shows that near elementary particles such as the electron, the uncertainty of the energy allows for the creation of virtual particles near the electron. This wavelength explains the "static" of virtual particles around elementary particles at a close distance. An electron generates an electric field that exerts an attractive force on

3531-413: The Standard Model of particle physics. Individual electrons can now be easily confined in ultra small ( L = 20 nm , W = 20 nm ) CMOS transistors operated at cryogenic temperature over a range of −269 °C (4  K ) to about −258 °C (15  K ). The electron wavefunction spreads in a semiconductor lattice and negligibly interacts with the valence band electrons, so it can be treated in

3638-416: The absolute value of this function is squared , it gives the probability that a particle will be observed near a location—a probability density . Electrons are identical particles because they cannot be distinguished from each other by their intrinsic physical properties. In quantum mechanics, this means that a pair of interacting electrons must be able to swap positions without an observable change to

3745-414: The age of the universe . Electrons have an electric charge of −1.602 176 634 × 10 coulombs , which is used as a standard unit of charge for subatomic particles, and is also called the elementary charge . Within the limits of experimental accuracy, the electron charge is identical to the charge of a proton, but with the opposite sign. The electron is commonly symbolized by e , and

3852-722: The alloy of the same name ), which came from the Greek word for amber, ἤλεκτρον ( ēlektron ). In the early 1700s, French chemist Charles François du Fay found that if a charged gold-leaf is repulsed by glass rubbed with silk, then the same charged gold-leaf is attracted by amber rubbed with wool. From this and other results of similar types of experiments, du Fay concluded that electricity consists of two electrical fluids , vitreous fluid from glass rubbed with silk and resinous fluid from amber rubbed with wool. These two fluids can neutralize each other when combined. American scientist Ebenezer Kinnersley later also independently reached

3959-525: The cosmic microwave background (CMB) are due to the quantum-mechanical nature of space-time near the Big Bang singularity. This means that a point in the future of our universe and a point in the distant past of the anti-universe would provide fixed classical points, while all possible quantum-based permutations would exist in between. Quantum uncertainty causes the universe and antiuniverse to not be exact mirror images of each other. This model has not shown if it can reproduce certain observations regarding

4066-405: The double-slit experiment . The wave-like nature of the electron allows it to pass through two parallel slits simultaneously, rather than just one slit as would be the case for a classical particle. In quantum mechanics, the wave-like property of one particle can be described mathematically as a complex -valued function, the wave function , commonly denoted by the Greek letter psi ( ψ ). When

4173-462: The e / m ratio but did not take the step of interpreting their results as showing a new particle, while J. J. Thomson would subsequently in 1899 give estimates for the electron charge and mass as well: e  ~  6.8 × 10   esu and m  ~  3 × 10  g The name "electron" was adopted for these particles by the scientific community, mainly due to the advocation by G. F. FitzGerald , J. Larmor , and H. A. Lorentz . The term

4280-414: The muon and the tau , which are identical to the electron in charge, spin and interactions , but are more massive. Leptons differ from the other basic constituent of matter, the quarks , by their lack of strong interaction . All members of the lepton group are fermions because they all have half-odd integer spin; the electron has spin ⁠ 1 / 2 ⁠ . The invariant mass of an electron

4387-496: The neutral kaon system ( K / K meson pairs). The BaBar experiment has increased the accuracy to which this effect has been experimentally measured. Currently, results are consistent with the Standard Model , but further investigation of a greater variety of decay modes may reveal discrepancies in the future. The BaBar detector is a multilayer particle detector . Its large solid angle coverage (near hermetic ), vertex location with precision on

BaBar experiment - Misplaced Pages Continue

4494-544: The observable universe . Neither the standard model of particle physics nor the theory of general relativity provides a known explanation for why this should be so, and it is a natural assumption that the universe is neutral with all conserved charges . The Big Bang should have produced equal amounts of matter and antimatter . Since this does not seem to have been the case, it is likely some physical laws must have acted differently or did not exist for matter and/or antimatter. Several competing hypotheses exist to explain

4601-459: The spectral lines of the hydrogen atom. However, Bohr's model failed to account for the relative intensities of the spectral lines and it was unsuccessful in explaining the spectra of more complex atoms. Chemical bonds between atoms were explained by Gilbert Newton Lewis , who in 1916 proposed that a covalent bond between two atoms is maintained by a pair of electrons shared between them. Later, in 1927, Walter Heitler and Fritz London gave

4708-399: The spinon , the orbiton and the holon (or chargon). The electron can always be theoretically considered as a bound state of the three, with the spinon carrying the spin of the electron, the orbiton carrying the orbital degree of freedom and the chargon carrying the charge, but in certain conditions they can behave as independent quasiparticles . The issue of the radius of the electron

4815-599: The 1870s, the English chemist and physicist Sir William Crookes developed the first cathode-ray tube to have a high vacuum inside. He then showed in 1874 that the cathode rays can turn a small paddle wheel when placed in their path. Therefore, he concluded that the rays carried momentum. Furthermore, by applying a magnetic field, he was able to deflect the rays, thereby demonstrating that the beam behaved as though it were negatively charged. In 1879, he proposed that these properties could be explained by regarding cathode rays as composed of negatively charged gaseous molecules in

4922-420: The 1964 Fitch–Cronin experiment with neutral kaons , which resulted in the 1980 Nobel Prize in physics (direct CP violation, that is violation of CP symmetry in a decay process, was discovered later, in 1999). Due to CPT symmetry, violation of CP symmetry demands violation of time inversion symmetry, or T-symmetry . Despite the allowance for CP violation in the Standard Model, it is insufficient to account for

5029-447: The Big Bang model, matter decoupled from the cosmic background radiation (CBR) at a temperature of roughly 3000 kelvin , corresponding to an average kinetic energy of 3000 K / ( 10.08 × 10  K/eV ) = 0.3 eV . After the decoupling, the total number of CBR photons remains constant. Therefore, due to space-time expansion, the photon density decreases. The photon density at equilibrium temperature T per cubic centimeter,

5136-472: The Coulomb force. Energy emission can occur when a moving electron is deflected by a charged particle, such as a proton. The deceleration of the electron results in the emission of Bremsstrahlung radiation. An inelastic collision between a photon (light) and a solitary (free) electron is called Compton scattering . This collision results in a transfer of momentum and energy between the particles, which modifies

5243-426: The Standard Model in these decay processes, but still not at the gold standard 5 sigma level of significance. Baryon asymmetry Onia In physical cosmology , the baryon asymmetry problem, also known as the matter asymmetry problem or the matter–antimatter asymmetry problem, is the observed imbalance in baryonic matter (the type of matter experienced in everyday life) and antibaryonic matter in

5350-512: The Standard Model is known to violate the conservation of baryon number only non-perturbatively: a global U(1) anomaly. To account for baryon violation in baryogenesis, such events (including proton decay) can occur in Grand Unification Theories (GUTs) and supersymmetric (SUSY) models via hypothetical massive bosons such as the X boson . The second condition for generating baryon asymmetry—violation of charge-parity symmetry—is that

5457-493: The Standard Model predicts. In this type of decay, a B meson decays into a D or D* meson, a tau-lepton and an antineutrino. While the significance of the excess (3.4 sigma) is not enough to claim a break from the Standard Model, the results are a potential sign of something amiss and are likely to impact existing theories. In 2015 results from LHCb and the Belle experiment strengthen the evidence (to 3.9 sigma) of possible physics beyond

SECTION 50

#1732852840436

5564-420: The atmosphere. The antiparticle of the electron is called the positron ; it is identical to the electron, except that it carries electrical charge of the opposite sign. When an electron collides with a positron , both particles can be annihilated , producing gamma ray photons . The ancient Greeks noticed that amber attracted small objects when rubbed with fur. Along with lightning , this phenomenon

5671-480: The beginning of the twentieth century, it was found that under certain conditions a fast-moving charged particle caused a condensation of supersaturated water vapor along its path. In 1911, Charles Wilson used this principle to devise his cloud chamber so he could photograph the tracks of charged particles, such as fast-moving electrons. By 1914, experiments by physicists Ernest Rutherford , Henry Moseley , James Franck and Gustav Hertz had largely established

5778-402: The cathode; and the region of the phosphorescent light could be moved by application of a magnetic field. In 1869, Plücker's student Johann Wilhelm Hittorf found that a solid body placed in between the cathode and the phosphorescence would cast a shadow upon the phosphorescent region of the tube. Hittorf inferred that there are straight rays emitted from the cathode and that the phosphorescence

5885-549: The charge carriers were much heavier hydrogen or nitrogen atoms. Schuster's estimates would subsequently turn out to be largely correct. In 1892 Hendrik Lorentz suggested that the mass of these particles (electrons) could be a consequence of their electric charge. While studying naturally fluorescing minerals in 1896, the French physicist Henri Becquerel discovered that they emitted radiation without any exposure to an external energy source. These radioactive materials became

5992-588: The concept of an indivisible quantity of electric charge to explain the chemical properties of atoms. Irish physicist George Johnstone Stoney named this charge "electron" in 1891, and J. J. Thomson and his team of British physicists identified it as a particle in 1897 during the cathode-ray tube experiment . Electrons participate in nuclear reactions , such as nucleosynthesis in stars , where they are known as beta particles . Electrons can be created through beta decay of radioactive isotopes and in high-energy collisions, for instance, when cosmic rays enter

6099-430: The deflecting electrodes in a highly-conductive area of the tube, resulting in a strong screening effect close to their surface. The German-born British physicist Arthur Schuster expanded upon Crookes's experiments by placing metal plates parallel to the cathode rays and applying an electric potential between the plates. The field deflected the rays toward the positively charged plate, providing further evidence that

6206-532: The distributions of decay products. The data showed an asymmetry of up to 20% of CP-violation sensitive quantities, implying a breaking of CP-symmetry. This analysis will need to be confirmed by more data from subsequent runs of the LHC. One method to search for additional CP-violation is the search for electric dipole moments of fundamental or composed particles. The existence of electric dipole moments in equilibrium states requires violation of T-symmetry. That way finding

6313-427: The effects of quantum mechanics ; in reality, the so-called classical electron radius has little to do with the true fundamental structure of the electron. There are elementary particles that spontaneously decay into less massive particles. An example is the muon , with a mean lifetime of 2.2 × 10  seconds, which decays into an electron, a muon neutrino and an electron antineutrino . The electron, on

6420-450: The electron from the Bohr magneton (the anomalous magnetic moment ). The extraordinarily precise agreement of this predicted difference with the experimentally determined value is viewed as one of the great achievements of quantum electrodynamics . The apparent paradox in classical physics of a point particle electron having intrinsic angular momentum and magnetic moment can be explained by

6527-560: The electron has an intrinsic magnetic moment along its spin axis. It is approximately equal to one Bohr magneton , which is a physical constant that is equal to 9.274 010 0657 (29) × 10  J⋅T . The orientation of the spin with respect to the momentum of the electron defines the property of elementary particles known as helicity . The electron has no known substructure . Nevertheless, in condensed matter physics , spin–charge separation can occur in some materials. In such cases, electrons 'split' into three independent particles,

SECTION 60

#1732852840436

6634-456: The energy states of an electron in a hydrogen atom that were equivalent to those that had been derived first by Bohr in 1913, and that were known to reproduce the hydrogen spectrum. Once spin and the interaction between multiple electrons were describable, quantum mechanics made it possible to predict the configuration of electrons in atoms with atomic numbers greater than hydrogen. In 1928, building on Wolfgang Pauli's work, Paul Dirac produced

6741-516: The experiment is derived from the nomenclature for the B meson (symbol B ) and its antiparticle (symbol B , pronounced B bar ). The experiment's mascot was accordingly chosen to be Babar the Elephant . If CP symmetry holds, the decay rate of B mesons and their antiparticles should be equal. Analysis of secondary particles produced in the BaBar detector showed this

6848-448: The first high-energy particle collider was ADONE , which began operations in 1968. This device accelerated electrons and positrons in opposite directions, effectively doubling the energy of their collision when compared to striking a static target with an electron. The Large Electron–Positron Collider (LEP) at CERN , which was operational from 1989 to 2000, achieved collision energies of 209 GeV and made important measurements for

6955-406: The formation of virtual photons in the electric field generated by the electron. These photons can heuristically be thought of as causing the electron to shift about in a jittery fashion (known as zitterbewegung ), which results in a net circular motion with precession . This motion produces both the spin and the magnetic moment of the electron. In atoms, this creation of virtual photons explains

7062-559: The full explanation of the electron-pair formation and chemical bonding in terms of quantum mechanics . In 1919, the American chemist Irving Langmuir elaborated on the Lewis's static model of the atom and suggested that all electrons were distributed in successive "concentric (nearly) spherical shells, all of equal thickness". In turn, he divided the shells into a number of cells each of which contained one pair of electrons. With this model Langmuir

7169-421: The hydrogen atom, which should have the same energy, were shifted in relation to each other; the difference came to be called the Lamb shift . About the same time, Polykarp Kusch , working with Henry M. Foley , discovered the magnetic moment of the electron is slightly larger than predicted by Dirac's theory. This small difference was later called anomalous magnetic dipole moment of the electron. This difference

7276-432: The imbalance of matter and antimatter that resulted in baryogenesis . However, there is as of yet no consensus theory to explain the phenomenon, which has been described as "one of the great mysteries in physics ". In 1967, Andrei Sakharov proposed a set of three necessary conditions that a baryon -generating interaction must satisfy to produce matter and antimatter at different rates. These conditions were inspired by

7383-414: The inflation scenario, such as explaining the uniformity of the cosmos on large scales. However, it provides a natural and straightforward explanation for dark matter . Such a universe-antiuniverse pair would produce large numbers of superheavy neutrinos , also known as sterile neutrinos . These neutrinos might also be the source of recently observed bursts of high-energy cosmic rays . The challenges to

7490-698: The lowest energy particle in the bottomonium quark family, η b . Spokesperson Hassan Jawahery said: "These results were highly sought after for over 30 years and will have an important impact on our understanding of the strong interactions." In May 2012 BaBar reported that their recently analyzed data may suggest deviations from predictions of the Standard Model of particle physics. The experiments see two particle decays, B → D ∗ τ ν {\displaystyle B\to D^{*}\tau \nu } and B → D τ ν {\displaystyle B\to D\tau \nu } , happen more often than

7597-453: The luminosity that PEP-II was designed to deliver, and was produced along with a world record for stored current in an electron storage ring at 1.73  A , paired with a record 2.94 A of positrons . "For the BaBar experiment, higher luminosity means generating more collisions per second, which translates into more accurate results and the ability to find physics effects they otherwise couldn’t see." In 2008, BaBar physicists detected

7704-489: The magnetic field and the electron velocity. This centripetal force causes the electron to follow a helical trajectory through the field at a radius called the gyroradius . The acceleration from this curving motion induces the electron to radiate energy in the form of synchrotron radiation. The energy emission in turn causes a recoil of the electron, known as the Abraham–Lorentz–Dirac Force , which creates

7811-511: The magnetic field that drives an electric motor . The electromagnetic field of an arbitrary moving charged particle is expressed by the Liénard–Wiechert potentials , which are valid even when the particle's speed is close to that of light ( relativistic ). When an electron is moving through a magnetic field, it is subject to the Lorentz force that acts perpendicularly to the plane defined by

7918-426: The negatively charged particles produced by radioactive materials, by heated materials and by illuminated materials were universal. Thomson measured m / e for cathode ray "corpuscles", and made good estimates of the charge e , leading to value for the mass m , finding a value 1400 times less massive than the least massive ion known: hydrogen. In the same year Emil Wiechert and Walter Kaufmann also calculated

8025-566: The observed baryon asymmetry of the universe (BAU) given the limits on baryon number violation, meaning that beyond-Standard Model sources are needed. A possible new source of CP violation was found at the Large Hadron Collider (LHC) by the LHCb collaboration during the first three years of LHC operations (beginning March 2010). The experiment analyzed the decays of two particles, the bottom Lambda (Λ b ) and its antiparticle, and compared

8132-1001: The observer will observe it to generate a magnetic field . Electromagnetic fields produced from other sources will affect the motion of an electron according to the Lorentz force law . Electrons radiate or absorb energy in the form of photons when they are accelerated. Laboratory instruments are capable of trapping individual electrons as well as electron plasma by the use of electromagnetic fields. Special telescopes can detect electron plasma in outer space. Electrons are involved in many applications, such as tribology or frictional charging, electrolysis, electrochemistry, battery technologies, electronics , welding , cathode-ray tubes , photoelectricity, photovoltaic solar panels, electron microscopes , radiation therapy , lasers , gaseous ionization detectors , and particle accelerators . Interactions involving electrons with other subatomic particles are of interest in fields such as chemistry and nuclear physics . The Coulomb force interaction between

8239-637: The order of 10  μm (provided by a silicon vertex detector), good pion – kaon separation at multi- GeV momenta (provided by a novel Cherenkov detector), and few-percent precision electromagnetic calorimetry (CsI(Tl) scintillating crystals) allow a list of other scientific searches apart from CP violation in the B meson system. Studies of rare decays and searches for exotic particles and precision measurements of phenomena associated with mesons containing bottom and charm quarks , as well as phenomena associated with tau leptons are possible. The BaBar detector ceased operation on 7 April 2008, but data analysis

8346-430: The other hand, is thought to be stable on theoretical grounds: the electron is the least massive particle with non-zero electric charge, so its decay would violate charge conservation . The experimental lower bound for the electron's mean lifetime is 6.6 × 10 years, at a 90% confidence level . As with all particles, electrons can act as waves. This is called the wave–particle duality and can be demonstrated using

8453-551: The photon, have symmetric wave functions instead. In the case of antisymmetry, solutions of the wave equation for interacting electrons result in a zero probability that each pair will occupy the same location or state. This is responsible for the Pauli exclusion principle , which precludes any two electrons from occupying the same quantum state. This principle explains many of the properties of electrons. For example, it causes groups of bound electrons to occupy different orbitals in an atom, rather than all overlapping each other in

8560-425: The physics theories are then to explain how to produce the predominance of matter over antimatter, and also the magnitude of this asymmetry. An important quantifier is the asymmetry parameter , This quantity relates the overall number density difference between baryons and antibaryons ( n B and n B , respectively) and the number density of cosmic background radiation photons n γ . According to

8667-456: The positive protons within atomic nuclei and the negative electrons without allows the composition of the two known as atoms . Ionization or differences in the proportions of negative electrons versus positive nuclei changes the binding energy of an atomic system. The exchange or sharing of the electrons between two or more atoms is the main cause of chemical bonding . In 1838, British natural philosopher Richard Laming first hypothesized

8774-452: The positron is symbolized by e . The electron has an intrinsic angular momentum or spin of ⁠ ħ / 2 ⁠ . This property is usually stated by referring to the electron as a spin-1/2 particle. For such particles the spin magnitude is ⁠ ħ / 2 ⁠ , while the result of the measurement of a projection of the spin on any axis can only be ± ⁠ ħ / 2 ⁠ . In addition to spin,

8881-718: The preferred asymmetry parameter uses the entropy density s , because the entropy density of the universe remained reasonably constant throughout most of its evolution. The entropy density is with p and ρ as the pressure and density from the energy density tensor T μν , and g * as the effective number of degrees of freedom for "massless" particles (inasmuch as mc ≪ k B T holds) at temperature T , for bosons and fermions with g i and g j degrees of freedom at temperatures T i and T j respectively. Presently, s  =  7.04 n γ . Electron The electron ( e , or β in nuclear reactions)

8988-429: The rate of expansion of the universe. In this situation the particles and their corresponding antiparticles do not achieve thermal equilibrium due to rapid expansion decreasing the occurrence of pair-annihilation. Another possible explanation of the apparent baryon asymmetry is that matter and antimatter are essentially separated into different, widely distant regions of the universe . The formation of antimatter galaxies

9095-403: The rays carried negative charge. By measuring the amount of deflection for a given electric and magnetic field , in 1890 Schuster was able to estimate the charge-to-mass ratio of the ray components. However, this produced a value that was more than a thousand times greater than what was expected, so little credence was given to his calculations at the time. This is because it was assumed that

9202-529: The recent discoveries of the Cosmic microwave background and CP violation in the neutral kaon system. The three necessary "Sakharov conditions" are: Baryon number violation is a necessary condition to produce an excess of baryons over anti-baryons. But C-symmetry violation is also needed so that the interactions which produce more baryons than anti-baryons will not be counterbalanced by interactions which produce more anti-baryons than baryons. CP-symmetry violation

9309-450: The same conclusion. A decade later Benjamin Franklin proposed that electricity was not from different types of electrical fluid, but a single electrical fluid showing an excess (+) or deficit (−). He gave them the modern charge nomenclature of positive and negative respectively. Franklin thought of the charge carrier as being positive, but he did not correctly identify which situation was

9416-423: The same orbit. In a simplified picture, which often tends to give the wrong idea but may serve to illustrate some aspects, every photon spends some time as a combination of a virtual electron plus its antiparticle, the virtual positron, which rapidly annihilate each other shortly thereafter. The combination of the energy variation needed to create these particles, and the time during which they exist, fall under

9523-489: The single particle formalism, by replacing its mass with the effective mass tensor . In the Standard Model of particle physics, electrons belong to the group of subatomic particles called leptons , which are believed to be fundamental or elementary particles . Electrons have the lowest mass of any charged lepton (or electrically charged particle of any type) and belong to the first generation of fundamental particles. The second and third generation contain charged leptons,

9630-435: The state of the system. The wave function of fermions, including electrons, is antisymmetric, meaning that it changes sign when two electrons are swapped; that is, ψ ( r 1 , r 2 ) = − ψ ( r 2 , r 1 ) , where the variables r 1 and r 2 correspond to the first and second electrons, respectively. Since the absolute value is not changed by a sign swap, this corresponds to equal probabilities. Bosons , such as

9737-484: The structure of an atom as a dense nucleus of positive charge surrounded by lower-mass electrons. In 1913, Danish physicist Niels Bohr postulated that electrons resided in quantized energy states, with their energies determined by the angular momentum of the electron's orbit about the nucleus. The electrons could move between those states, or orbits, by the emission or absorption of photons of specific frequencies. By means of these quantized orbits, he accurately explained

9844-498: The subject of much interest by scientists, including the New Zealand physicist Ernest Rutherford who discovered they emitted particles. He designated these particles alpha and beta , on the basis of their ability to penetrate matter. In 1900, Becquerel showed that the beta rays emitted by radium could be deflected by an electric field, and that their mass-to-charge ratio was the same as for cathode rays. This evidence strengthened

9951-423: The term electrolion in 1881. Ten years later, he switched to electron to describe these elementary charges, writing in 1894: "... an estimate was made of the actual amount of this most remarkable fundamental unit of electricity, for which I have since ventured to suggest the name electron ". A 1906 proposal to change to electrion failed because Hendrik Lorentz preferred to keep electron . The word electron

10058-516: The threshold of detectability expressed by the Heisenberg uncertainty relation , Δ E  · Δ t  ≥  ħ . In effect, the energy needed to create these virtual particles, Δ E , can be "borrowed" from the vacuum for a period of time, Δ t , so that their product is no more than the reduced Planck constant , ħ ≈ 6.6 × 10  eV·s . Thus, for a virtual electron, Δ t is at most 1.3 × 10  s . While an electron–positron virtual pair

10165-489: The time B B and half the time B B . To detect the particles there are a series of subsystems arranged cylindrically around the interaction region. These subsystems are as follows, in order from inside to outside: On 9 October 2005, BaBar recorded a record luminosity just over 1 × 10 cms delivered by the PEP-II positron-electron collider . This represents 330% of

10272-426: The upper limit of the particle's radius to be 10  meters. The upper bound of the electron radius of 10  meters can be derived using the uncertainty relation in energy. There is also a physical constant called the " classical electron radius ", with the much larger value of 2.8179 × 10  m , greater than the radius of the proton. However, the terminology comes from a simplistic calculation that ignores

10379-482: The view that electrons existed as components of atoms. In 1897, the British physicist J. J. Thomson , with his colleagues John S. Townsend and H. A. Wilson , performed experiments indicating that cathode rays really were unique particles, rather than waves, atoms or molecules as was believed earlier. By 1899 he showed that their charge-to-mass ratio, e / m , was independent of cathode material. He further showed that

10486-468: The wavelength of the photon by an amount called the Compton shift . The maximum magnitude of this wavelength shift is h / m e c , which is known as the Compton wavelength . For an electron, it has a value of 2.43 × 10  m . When the wavelength of the light is long (for instance, the wavelength of the visible light is 0.4–0.7 μm) the wavelength shift becomes negligible. Such interaction between

10593-551: Was Thomson's graduate student, performed the first experiments but he died soon after in a motorcycle accident and is rarely mentioned. De Broglie's prediction of a wave nature for electrons led Erwin Schrödinger to postulate a wave equation for electrons moving under the influence of the nucleus in the atom. In 1926, this equation, the Schrödinger equation , successfully described how electron waves propagated. Rather than yielding

10700-416: Was able to qualitatively explain the chemical properties of all elements in the periodic table, which were known to largely repeat themselves according to the periodic law . In 1924, Austrian physicist Wolfgang Pauli observed that the shell-like structure of the atom could be explained by a set of four parameters that defined every quantum energy state, as long as each state was occupied by no more than

10807-734: Was caused by the rays striking the tube walls. Furthermore, he also discovered that these rays are deflected by magnets just like lines of current. In 1876, the German physicist Eugen Goldstein showed that the rays were emitted perpendicular to the cathode surface, which distinguished between the rays that were emitted from the cathode and the incandescent light. Goldstein dubbed the rays cathode rays . Decades of experimental and theoretical research involving cathode rays were important in J. J. Thomson 's eventual discovery of electrons. Goldstein also experimented with double cathodes and hypothesized that one ray may repulse another, although he didn't believe that any particles might be involved. During

10914-672: Was governed by the inverse square law . After studying the phenomenon of electrolysis in 1874, Irish physicist George Johnstone Stoney suggested that there existed a "single definite quantity of electricity", the charge of a monovalent ion . He was able to estimate the value of this elementary charge e by means of Faraday's laws of electrolysis . However, Stoney believed these charges were permanently attached to atoms and could not be removed. In 1881, German physicist Hermann von Helmholtz argued that both positive and negative charges were divided into elementary parts, each of which "behaves like atoms of electricity". Stoney initially coined

11021-426: Was later explained by the theory of quantum electrodynamics , developed by Sin-Itiro Tomonaga , Julian Schwinger and Richard Feynman in the late 1940s. With the development of the particle accelerator during the first half of the twentieth century, physicists began to delve deeper into the properties of subatomic particles . The first successful attempt to accelerate electrons using electromagnetic induction

11128-415: Was made in 1942 by Donald Kerst . His initial betatron reached energies of 2.3 MeV, while subsequent betatrons achieved 300 MeV. In 1947, synchrotron radiation was discovered with a 70 MeV electron synchrotron at General Electric . This radiation was caused by the acceleration of electrons through a magnetic field as they moved near the speed of light. With a beam energy of 1.5 GeV,

11235-509: Was not the case – in the summer of 2002, definitive results were published based on the analysis of 87 million B / B meson-pair events, clearly showing the decay rates were not equal. Consistent results were found by the Belle experiment at the KEK laboratory in Japan. CP violation was already predicted by the Standard Model of particle physics , and well established in

11342-413: Was originally coined by George Johnstone Stoney in 1891 as a tentative name for the basic unit of electrical charge (which had then yet to be discovered). The electron's charge was more carefully measured by the American physicists Robert Millikan and Harvey Fletcher in their oil-drop experiment of 1909, the results of which were published in 1911. This experiment used an electric field to prevent

11449-524: Was originally thought to explain the baryon asymmetry, as from a distance, antimatter atoms are indistinguishable from matter atoms; both produce light (photons) in the same way. Along the boundary between matter and antimatter regions, however, annihilation (and the subsequent production of gamma radiation ) would be detectable, depending on its distance and the density of matter and antimatter. Such boundaries, if they exist, would likely lie in deep intergalactic space. The density of matter in intergalactic space

#435564