Misplaced Pages

ARM Cortex-A

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The ARM Cortex-A is a group of 32-bit and 64-bit RISC ARM processor cores licensed by Arm Holdings . The cores are intended for application use. The group consists of 32-bit only cores: ARM Cortex-A5 , ARM Cortex-A7 , ARM Cortex-A8 , ARM Cortex-A9 , ARM Cortex-A12 , ARM Cortex-A15 , ARM Cortex-A17 MPCore , and ARM Cortex-A32 , 32/64-bit mixed operation cores: ARM Cortex-A35 , ARM Cortex-A53 , ARM Cortex-A55 , ARM Cortex-A57 , ARM Cortex-A72 , ARM Cortex-A73 , ARM Cortex-A75 , ARM Cortex-A76 , ARM Cortex-A77 , ARM Cortex-A78 , ARM Cortex-A710 , and ARM Cortex-A510 Refresh , and 64-bit only cores: ARM Cortex-A34 , ARM Cortex-A65 , ARM Cortex-A510 (2021) , ARM Cortex-A715 , ARM Cortex-A520 , and ARM Cortex-A720 .

#649350

91-814: The 32-bit ARM Cortex-A cores, except for the Cortex-A32, implement the ARMv7-A profile of the ARMv7 architecture . The main distinguishing feature of the ARMv7-A profile, compared to the other two profiles, the ARMv7-R profile implemented by the ARM Cortex-R cores and the ARMv7-M profile implemented by most of the ARM Cortex-M cores, is that only the ARMv7-A profile includes a memory management unit (MMU). Many modern operating systems require

182-539: A MMU to run. The 64-bit ARM Cortex-A cores as well as the 32-bit ARM Cortex-A32 implement the ARMv8-A profile of the ARMv8 architecture. Arm Holdings neither manufactures nor sells CPU devices based on its own designs, but rather licenses the processor architecture to interested parties. ARM offers a variety of licensing terms, varying in cost and deliverables. To all licensees, ARM provides an integratable hardware description of

273-505: A basic ALU operation, such as "add", with the access of one or more operands in memory (using addressing modes such as direct, indirect, indexed, etc.). Certain architectures may allow two or three operands (including the result) directly in memory or may be able to perform functions such as automatic pointer increment, etc. Software-implemented instruction sets may have even more complex and powerful instructions. Reduced instruction-set computers , RISC , were first widely implemented during

364-401: A cache line or virtual memory page boundary, for instance), and are therefore somewhat easier to optimize for speed. In early 1960s computers, main memory was expensive and very limited, even on mainframes. Minimizing the size of a program to make sure it would fit in the limited memory was often central. Thus the size of the instructions needed to perform a particular task, the code density ,

455-415: A conditional branch instruction will transfer control if the condition is true, so that execution proceeds to a different part of the program, and not transfer control if the condition is false, so that execution continues sequentially. Some instruction sets also have conditional moves, so that the move will be executed, and the data stored in the target location, if the condition is true, and not executed, and

546-852: A customer reaches foundry tapeout or prototyping. 75% of ARM's most recent IP over the last two years are included in ARM Flexible Access. As of October 2019: Arm provides a list of vendors who implement ARM cores in their design (application specific standard products (ASSP), microprocessor and microcontrollers). ARM cores are used in a number of products, particularly PDAs and smartphones . Some computing examples are Microsoft 's first generation Surface , Surface 2 and Pocket PC devices (following 2002 ), Apple 's iPads , and Asus 's Eee Pad Transformer tablet computers , and several Chromebook laptops. Others include Apple's iPhone smartphones and iPod portable media players , Canon PowerShot digital cameras , Nintendo Switch hybrid,

637-820: A design service foundry offers lower overall pricing (through subsidisation of the licence fee). For high volume mass-produced parts, the long term cost reduction achievable through lower wafer pricing reduces the impact of ARM's NRE ( non-recurring engineering ) costs, making the dedicated foundry a better choice. Companies that have developed chips with cores designed by Arm include Amazon.com 's Annapurna Labs subsidiary, Analog Devices , Apple , AppliedMicro (now: MACOM Technology Solutions ), Atmel , Broadcom , Cavium , Cypress Semiconductor , Freescale Semiconductor (now NXP Semiconductors ), Huawei , Intel , Maxim Integrated , Nvidia , NXP , Qualcomm , Renesas , Samsung Electronics , ST Microelectronics , Texas Instruments , and Xilinx . In February 2016, ARM announced

728-572: A given instruction may specify: More complex operations are built up by combining these simple instructions, which are executed sequentially, or as otherwise directed by control flow instructions. Examples of operations common to many instruction sets include: Processors may include "complex" instructions in their instruction set. A single "complex" instruction does something that may take many instructions on other computers. Such instructions are typified by instructions that take multiple steps, control multiple functional units, or otherwise appear on

819-593: A larger scale than the bulk of simple instructions implemented by the given processor. Some examples of "complex" instructions include: Complex instructions are more common in CISC instruction sets than in RISC instruction sets, but RISC instruction sets may include them as well. RISC instruction sets generally do not include ALU operations with memory operands, or instructions to move large blocks of memory, but most RISC instruction sets include SIMD or vector instructions that perform

910-799: A lawsuit settlement, and Intel took the opportunity to supplement their i960 line with the StrongARM. Intel later developed its own high performance implementation named XScale , which it has since sold to Marvell . Transistor count of the ARM core remained essentially the same throughout these changes; ARM2 had 30,000 transistors, while ARM6 grew only to 35,000. In 2005, about 98% of all mobile phones sold used at least one ARM processor. In 2010, producers of chips based on ARM architectures reported shipments of 6.1 billion ARM-based processors , representing 95% of smartphones , 35% of digital televisions and set-top boxes , and 10% of mobile computers . In 2011,

1001-504: A merchant foundry that holds an ARM licence, such as Samsung or Fujitsu, can offer fab customers reduced licensing costs. In exchange for acquiring the ARM core through the foundry's in-house design services, the customer can reduce or eliminate payment of ARM's upfront licence fee. Compared to dedicated semiconductor foundries (such as TSMC and UMC ) without in-house design services, Fujitsu/Samsung charge two- to three-times more per manufactured wafer . For low to mid volume applications,

SECTION 10

#1732852261650

1092-419: A period of rapidly growing memory subsystems. They sacrifice code density to simplify implementation circuitry, and try to increase performance via higher clock frequencies and more registers. A single RISC instruction typically performs only a single operation, such as an "add" of registers or a "load" from a memory location into a register. A RISC instruction set normally has a fixed instruction length , whereas

1183-547: A quirk of the 6502's design, the CPU left the memory untouched for half of the time. Thus by running the CPU at 1 MHz, the video system could read data during those down times, taking up the total 2 MHz bandwidth of the RAM. In the BBC Micro, the use of 4 MHz RAM allowed the same technique to be used, but running at twice the speed. This allowed it to outperform any similar machine on

1274-455: A ready-to-manufacture verified semiconductor intellectual property core . For these customers, Arm Holdings delivers a gate netlist description of the chosen ARM core, along with an abstracted simulation model and test programs to aid design integration and verification. More ambitious customers, including integrated device manufacturers (IDM) and foundry operators, choose to acquire the processor IP in synthesizable RTL ( Verilog ) form. With

1365-671: A simple chip design could nevertheless have extremely high performance, much higher than the latest 32-bit designs on the market. The second was a visit by Steve Furber and Sophie Wilson to the Western Design Center , a company run by Bill Mensch and his sister, which had become the logical successor to the MOS team and was offering new versions like the WDC 65C02 . The Acorn team saw high school students producing chip layouts on Apple II machines, which suggested that anyone could do it. In contrast,

1456-539: A single architecture for a series of five processors spanning a wide range of cost and performance. None of the five engineering design teams could count on being able to bring about adjustments in architectural specifications as a way of easing difficulties in achieving cost and performance objectives. Some virtual machines that support bytecode as their ISA such as Smalltalk , the Java virtual machine , and Microsoft 's Common Language Runtime , implement this by translating

1547-545: A single instruction. Some exotic instruction sets do not have an opcode field, such as transport triggered architectures (TTA), only operand(s). Most stack machines have " 0-operand " instruction sets in which arithmetic and logical operations lack any operand specifier fields; only instructions that push operands onto the evaluation stack or that pop operands from the stack into variables have operand specifiers. The instruction set carries out most ALU actions with postfix ( reverse Polish notation ) operations that work only on

1638-546: A small team to design the actual processor based on Wilson's ISA. The official Acorn RISC Machine project started in October 1983. Acorn chose VLSI Technology as the "silicon partner", as they were a source of ROMs and custom chips for Acorn. Acorn provided the design and VLSI provided the layout and production. The first samples of ARM silicon worked properly when first received and tested on 26 April 1985. Known as ARM1, these versions ran at 6 MHz. The first ARM application

1729-434: A special case; not only are they allowed to sell finished silicon containing ARM cores, they generally hold the right to re-manufacture ARM cores for other customers. Arm Holdings prices its IP based on perceived value. Lower performing ARM cores typically have lower licence costs than higher performing cores. In implementation terms, a synthesisable core costs more than a hard macro (blackbox) core. Complicating price matters,

1820-408: A standard and compatible application binary interface (ABI) for a particular ISA, machine code will run on future implementations of that ISA and operating system. However, if an ISA supports running multiple operating systems, it does not guarantee that machine code for one operating system will run on another operating system, unless the first operating system supports running machine code built for

1911-463: A typical CISC instruction set has instructions of widely varying length. However, as RISC computers normally require more and often longer instructions to implement a given task, they inherently make less optimal use of bus bandwidth and cache memories. Certain embedded RISC ISAs like Thumb and AVR32 typically exhibit very high density owing to a technique called code compression. This technique packs two 16-bit instructions into one 32-bit word, which

SECTION 20

#1732852261650

2002-820: A variety of licensing terms, varying in cost and deliverables. Arm Holdings provides to all licensees an integratable hardware description of the ARM core as well as complete software development toolset ( compiler , debugger , software development kit ), and the right to sell manufactured silicon containing the ARM CPU. SoC packages integrating ARM's core designs include Nvidia Tegra's first three generations, CSR plc's Quatro family, ST-Ericsson's Nova and NovaThor, Silicon Labs's Precision32 MCU, Texas Instruments's OMAP products, Samsung's Hummingbird and Exynos products, Apple's A4 , A5 , and A5X , and NXP 's i.MX . Fabless licensees, who wish to integrate an ARM core into their own chip design, are usually only interested in acquiring

2093-469: A visit to another design firm working on modern 32-bit CPU revealed a team with over a dozen members who were already on revision H of their design and yet it still contained bugs. This cemented their late 1983 decision to begin their own CPU design, the Acorn RISC Machine. The original Berkeley RISC designs were in some sense teaching systems, not designed specifically for outright performance. To

2184-529: A writable control store use it to allow the instruction set to be changed (for example, the Rekursiv processor and the Imsys Cjip ). CPUs designed for reconfigurable computing may use field-programmable gate arrays (FPGAs). An ISA can also be emulated in software by an interpreter . Naturally, due to the interpretation overhead, this is slower than directly running programs on the emulated hardware, unless

2275-415: Is 15 bytes (120 bits). Within an instruction set, different instructions may have different lengths. In some architectures, notably most reduced instruction set computers (RISC), instructions are a fixed length , typically corresponding with that architecture's word size . In other architectures, instructions have variable length , typically integral multiples of a byte or a halfword . Some, such as

2366-444: Is a complex issue. There were two stages in history for the microprocessor. The first was the CISC (Complex Instruction Set Computer), which had many different instructions. In the 1970s, however, places like IBM did research and found that many instructions in the set could be eliminated. The result was the RISC (Reduced Instruction Set Computer), an architecture that uses a smaller set of instructions. A simpler instruction set may offer

2457-658: Is a family of RISC instruction set architectures (ISAs) for computer processors . Arm Holdings develops the ISAs and licenses them to other companies, who build the physical devices that use the instruction set. It also designs and licenses cores that implement these ISAs. Due to their low costs, low power consumption, and low heat generation, ARM processors are useful for light, portable, battery-powered devices, including smartphones , laptops , and tablet computers , as well as embedded systems . However, ARM processors are also used for desktops and servers , including Fugaku ,

2548-599: Is due to the many addressing modes and optimizations (such as sub-register addressing, memory operands in ALU instructions, absolute addressing, PC-relative addressing, and register-to-register spills) that CISC ISAs offer. The size or length of an instruction varies widely, from as little as four bits in some microcontrollers to many hundreds of bits in some VLIW systems. Processors used in personal computers , mainframes , and supercomputers have minimum instruction sizes between 8 and 64 bits. The longest possible instruction on x86

2639-553: Is similar to the code density of RISC; the increased instruction density is offset by requiring more of the primitive instructions to do a task. There has been research into executable compression as a mechanism for improving code density. The mathematics of Kolmogorov complexity describes the challenges and limits of this. In practice, code density is also dependent on the compiler . Most optimizing compilers have options that control whether to optimize code generation for execution speed or for code density. For instance GCC has

2730-432: Is then unpacked at the decode stage and executed as two instructions. Minimal instruction set computers (MISC) are commonly a form of stack machine , where there are few separate instructions (8–32), so that multiple instructions can be fit into a single machine word. These types of cores often take little silicon to implement, so they can be easily realized in an FPGA or in a multi-core form. The code density of MISC

2821-497: The ARM with Thumb-extension have mixed variable encoding, that is two fixed, usually 32-bit and 16-bit encodings, where instructions cannot be mixed freely but must be switched between on a branch (or exception boundary in ARMv8). Fixed-length instructions are less complicated to handle than variable-length instructions for several reasons (not having to check whether an instruction straddles

ARM Cortex-A - Misplaced Pages Continue

2912-486: The CPU in a computer or a family of computers. A device or program that executes instructions described by that ISA, such as a central processing unit (CPU), is called an implementation of that ISA. In general, an ISA defines the supported instructions , data types , registers , the hardware support for managing main memory , fundamental features (such as the memory consistency , addressing modes , virtual memory ), and

3003-596: The PC ). The ARM2 had a transistor count of just 30,000, compared to Motorola's six-year-older 68000 model with around 68,000. Much of this simplicity came from the lack of microcode , which represents about one-quarter to one-third of the 68000's transistors, and the lack of (like most CPUs of the day) a cache . This simplicity enabled the ARM2 to have a low power consumption and simpler thermal packaging by having fewer powered transistors. Nevertheless, ARM2 offered better performance than

3094-680: The Wii security processor and 3DS handheld game consoles , and TomTom turn-by-turn navigation systems . In 2005, Arm took part in the development of Manchester University 's computer SpiNNaker , which used ARM cores to simulate the human brain . ARM chips are also used in Raspberry Pi , BeagleBoard , BeagleBone , PandaBoard , and other single-board computers , because they are very small, inexpensive, and consume very little power. The 32-bit ARM architecture ( ARM32 ), such as ARMv7-A (implementing AArch32; see section on Armv8-A for more on it),

3185-411: The compiler responsible for instruction issue and scheduling. Architectures with even less complexity have been studied, such as the minimal instruction set computer (MISC) and one-instruction set computer (OISC). These are theoretically important types, but have not been commercialized. Machine language is built up from discrete statements or instructions . On the processing architecture,

3276-518: The input/output model of implementations of the ISA. An ISA specifies the behavior of machine code running on implementations of that ISA in a fashion that does not depend on the characteristics of that implementation, providing binary compatibility between implementations. This enables multiple implementations of an ISA that differ in characteristics such as performance , physical size, and monetary cost (among other things), but that are capable of running

3367-529: The microarchitecture of a processor, engineers use blocks of "hard-wired" electronic circuitry (often designed separately) such as adders, multiplexers, counters, registers, ALUs, etc. Some kind of register transfer language is then often used to describe the decoding and sequencing of each instruction of an ISA using this physical microarchitecture. There are two basic ways to build a control unit to implement this description (although many designs use middle ways or compromises): Some microcoded CPU designs with

3458-457: The stack or in an implicit register. If some of the operands are given implicitly, fewer operands need be specified in the instruction. When a "destination operand" explicitly specifies the destination, an additional operand must be supplied. Consequently, the number of operands encoded in an instruction may differ from the mathematically necessary number of arguments for a logical or arithmetic operation (the arity ). Operands are either encoded in

3549-504: The x86 instruction set , but they have radically different internal designs. The concept of an architecture , distinct from the design of a specific machine, was developed by Fred Brooks at IBM during the design phase of System/360 . Prior to NPL [System/360], the company's computer designers had been free to honor cost objectives not only by selecting technologies but also by fashioning functional and architectural refinements. The SPREAD compatibility objective, in contrast, postulated

3640-431: The "opcode" representation of the instruction, or else are given as values or addresses following the opcode. Register pressure measures the availability of free registers at any point in time during the program execution. Register pressure is high when a large number of the available registers are in use; thus, the higher the register pressure, the more often the register contents must be spilled into memory. Increasing

3731-468: The 32-bit ARM architecture was the most widely used architecture in mobile devices and the most popular 32-bit one in embedded systems. In 2013, 10 billion were produced and "ARM-based chips are found in nearly 60 percent of the world's mobile devices". Arm Holdings's primary business is selling IP cores , which licensees use to create microcontrollers (MCUs), CPUs , and systems-on-chips based on those cores. The original design manufacturer combines

ARM Cortex-A - Misplaced Pages Continue

3822-752: The ARM core with other parts to produce a complete device, typically one that can be built in existing semiconductor fabrication plants (fabs) at low cost and still deliver substantial performance. The most successful implementation has been the ARM7TDMI with hundreds of millions sold. Atmel has been a precursor design center in the ARM7TDMI-based embedded system. The ARM architectures used in smartphones, PDAs and other mobile devices range from ARMv5 to ARMv8-A . In 2009, some manufacturers introduced netbooks based on ARM architecture CPUs, in direct competition with netbooks based on Intel Atom . Arm Holdings offers

3913-723: The ARM core, as well as complete software development toolset, and the right to sell manufactured silicon containing the ARM CPU. Integrated device manufacturers (IDM) receive the ARM Processor IP as synthesizable RTL (written in Verilog ). In this form, they have the ability to perform architectural level optimizations and extensions. This allows the manufacturer to achieve custom design goals, such as higher clock speed, very low power consumption, instruction set extensions, optimizations for size, debug support, etc. To determine which components have been included in an ARM IC chip, consult

4004-584: The ARM instruction sets. These cores must comply fully with the ARM architecture. Companies that have designed cores that implement an ARM architecture include Apple, AppliedMicro (now: Ampere Computing ), Broadcom, Cavium (now: Marvell), Digital Equipment Corporation , Intel, Nvidia, Qualcomm, Samsung Electronics, Fujitsu , and NUVIA Inc. (acquired by Qualcomm in 2021). On 16 July 2019, ARM announced ARM Flexible Access. ARM Flexible Access provides unlimited access to included ARM intellectual property (IP) for development. Per product licence fees are required once

4095-671: The ARM6, first released in early 1992. Apple used the ARM6-based ARM610 as the basis for their Apple Newton PDA. In 1994, Acorn used the ARM610 as the main central processing unit (CPU) in their RiscPC computers. DEC licensed the ARMv4 architecture and produced the StrongARM . At 233  MHz , this CPU drew only one watt (newer versions draw far less). This work was later passed to Intel as part of

4186-691: The ARMv8.2-A architecture. The Cortex-A510, A710 and A715 cores implement the ARMv9-A architecture. The Cortex-A520 and A720 cores implement the ARMv9.2-A architecture A typical top-down documentation tree is: IC Manufacturers usually have additional documents, including: evaluation board user manuals, application notes, getting started with development software, software library documents, errata, and more. ARM architecture#32-bit architecture ARM (stylised in lowercase as arm , formerly an acronym for Advanced RISC Machines and originally Acorn RISC Machine )

4277-578: The Built on ARM Cortex Technology licence, often shortened to Built on Cortex (BoC) licence. This licence allows companies to partner with ARM and make modifications to ARM Cortex designs. These design modifications will not be shared with other companies. These semi-custom core designs also have brand freedom, for example Kryo 280 . Companies that are current licensees of Built on ARM Cortex Technology include Qualcomm . Companies can also obtain an ARM architectural licence for designing their own CPU cores using

4368-419: The CPU can be in only one mode, but it can switch modes due to external events (interrupts) or programmatically. The original (and subsequent) ARM implementation was hardwired without microcode , like the much simpler 8-bit 6502 processor used in prior Acorn microcomputers. The 32-bit ARM architecture (and the 64-bit architecture for the most part) includes the following RISC features: To compensate for

4459-401: The CPU designs available. Their conclusion about the existing 16-bit designs was that they were a lot more expensive and were still "a bit crap", offering only slightly higher performance than their BBC Micro design. They also almost always demanded a large number of support chips to operate even at that level, which drove up the cost of the computer as a whole. These systems would simply not hit

4550-486: The DRAM chip. Berkeley's design did not consider page mode and treated all memory equally. The ARM design added special vector-like memory access instructions, the "S-cycles", that could be used to fill or save multiple registers in a single page using page mode. This doubled memory performance when they could be used, and was especially important for graphics performance. The Berkeley RISC designs used register windows to reduce

4641-444: The PC and the status flags. This decision halved the interrupt overhead. Another change, and among the most important in terms of practical real-world performance, was the modification of the instruction set to take advantage of page mode DRAM . Recently introduced, page mode allowed subsequent accesses of memory to run twice as fast if they were roughly in the same location, or "page", in

SECTION 50

#1732852261650

4732-571: The RISC's basic register-heavy and load/store concepts, ARM added a number of the well-received design notes of the 6502. Primary among them was the ability to quickly serve interrupts , which allowed the machines to offer reasonable input/output performance with no added external hardware. To offer interrupts with similar performance as the 6502, the ARM design limited its physical address space to 64 MB of total addressable space, requiring 26 bits of address. As instructions were 4 bytes (32 bits) long, and required to be aligned on 4-byte boundaries,

4823-654: The addition of simultaneous multithreading (SMT) for improved performance or fault tolerance . Acorn Computers ' first widely successful design was the BBC Micro , introduced in December 1981. This was a relatively conventional machine based on the MOS Technology 6502 CPU but ran at roughly double the performance of competing designs like the Apple II due to its use of faster dynamic random-access memory (DRAM). Typical DRAM of

4914-590: The architecture, ARMv7, defines three architecture "profiles": Although the architecture profiles were first defined for ARMv7, ARM subsequently defined the ARMv6-M architecture (used by the Cortex M0 / M0+ / M1 ) as a subset of the ARMv7-M profile with fewer instructions. Except in the M-profile, the 32-bit ARM architecture specifies several CPU modes, depending on the implemented architecture features. At any moment in time,

5005-595: The bytecode for commonly used code paths into native machine code. In addition, these virtual machines execute less frequently used code paths by interpretation (see: Just-in-time compilation ). Transmeta implemented the x86 instruction set atop VLIW processors in this fashion. An ISA may be classified in a number of different ways. A common classification is by architectural complexity . A complex instruction set computer (CISC) has many specialized instructions, some of which may only be rarely used in practical programs. A reduced instruction set computer (RISC) simplifies

5096-494: The contemporary 1987 IBM PS/2 Model 50 , which initially utilised an Intel 80286 , offering 1.8 MIPS @ 10 MHz, and later in 1987, the 2 MIPS of the PS/2 70, with its Intel 386 DX @ 16 MHz. A successor, ARM3, was produced with a 4 KB cache, which further improved performance. The address bus was extended to 32 bits in the ARM6, but program code still had to lie within the first 64 MB of memory in 26-bit compatibility mode, due to

5187-483: The design goal. They also considered the new 32-bit designs, but these cost even more and had the same issues with support chips. According to Sophie Wilson , all the processors tested at that time performed about the same, with about a 4 Mbit/s bandwidth. Two key events led Acorn down the path to ARM. One was the publication of a series of reports from the University of California, Berkeley , which suggested that

5278-524: The earlier 8-bit designs simply could not compete. Even newer 32-bit designs were also coming to market, such as the Motorola 68000 and National Semiconductor NS32016 . Acorn began considering how to compete in this market and produced a new paper design named the Acorn Business Computer . They set themselves the goal of producing a machine with ten times the performance of the BBC Micro, but at

5369-450: The era ran at about 2 MHz; Acorn arranged a deal with Hitachi for a supply of faster 4 MHz parts. Machines of the era generally shared memory between the processor and the framebuffer , which allowed the processor to quickly update the contents of the screen without having to perform separate input/output (I/O). As the timing of the video display is exacting, the video hardware had to have priority access to that memory. Due to

5460-406: The expression stack , not on data registers or arbitrary main memory cells. This can be very convenient for compiling high-level languages, because most arithmetic expressions can be easily translated into postfix notation. Conditional instructions often have a predicate field—a few bits that encode the specific condition to cause an operation to be performed rather than not performed. For example,

5551-414: The hardware running the emulator is an order of magnitude faster. Today, it is common practice for vendors of new ISAs or microarchitectures to make software emulators available to software developers before the hardware implementation is ready. Often the details of the implementation have a strong influence on the particular instructions selected for the instruction set. For example, many implementations of

SECTION 60

#1732852261650

5642-546: The instruction set includes support for something such as " fetch-and-add ", " load-link/store-conditional " (LL/SC), or "atomic compare-and-swap ". A given instruction set can be implemented in a variety of ways. All ways of implementing a particular instruction set provide the same programming model , and all implementations of that instruction set are able to run the same executables. The various ways of implementing an instruction set give different tradeoffs between cost, performance, power consumption, size, etc. When designing

5733-565: The interrupt itself. This meant FIQ requests did not have to save out their registers, further speeding interrupts. The first use of the ARM2 was the Acorn Archimedes personal computer models A305, A310, and A440 launched in 1987. According to the Dhrystone benchmark, the ARM2 was roughly seven times the performance of a typical 7 MHz 68000-based system like the Amiga or Macintosh SE . It

5824-658: The large number of bits needed to encode the three registers of a 3-operand instruction, RISC architectures that have 16-bit instructions are invariably 2-operand designs, such as the Atmel AVR, TI MSP430 , and some versions of ARM Thumb . RISC architectures that have 32-bit instructions are usually 3-operand designs, such as the ARM , AVR32 , MIPS , Power ISA , and SPARC architectures. Each instruction specifies some number of operands (registers, memory locations, or immediate values) explicitly . Some instructions give one or both operands implicitly, such as by being stored on top of

5915-421: The lower 2 bits of an instruction address were always zero. This meant the program counter (PC) only needed to be 24 bits, allowing it to be stored along with the eight bit processor flags in a single 32-bit register. That meant that upon receiving an interrupt, the entire machine state could be saved in a single operation, whereas had the PC been a full 32-bit value, it would require separate operations to store

6006-402: The manufacturer datasheet and related documentation. The Cortex-A5 / A7 / A8 / A9 / A12 / A15 / A17 cores implement the ARMv7-A architecture. The Cortex-A32 / A34 / A35 / A53 / A57 / A72 / A73 cores implement the ARMv8-A architecture. ARMv8-A architecture provides exclusive loads and stores instructions as synchronization primitives. The Cortex-A55 / A65 / A75 / A76 / A77 / A78 cores implement

6097-484: The market. 1981 was also the year that the IBM Personal Computer was introduced. Using the recently introduced Intel 8088 , a 16-bit CPU compared to the 6502's 8-bit design, it offered higher overall performance. Its introduction changed the desktop computer market radically: what had been largely a hobby and gaming market emerging over the prior five years began to change to a must-have business tool where

6188-530: The most fundamental abstractions in computing . An instruction set architecture is distinguished from a microarchitecture , which is the set of processor design techniques used, in a particular processor, to implement the instruction set. Processors with different microarchitectures can share a common instruction set. For example, the Intel Pentium and the AMD Athlon implement nearly identical versions of

6279-493: The number of register saves and restores performed in procedure calls ; the ARM design did not adopt this. Wilson developed the instruction set, writing a simulation of the processor in BBC ;BASIC that ran on a BBC Micro with a second 6502 processor . This convinced Acorn engineers they were on the right track. Wilson approached Acorn's CEO, Hermann Hauser , and requested more resources. Hauser gave his approval and assembled

6370-401: The number of registers in an architecture decreases register pressure but increases the cost. While embedded instruction sets such as Thumb suffer from extremely high register pressure because they have small register sets, general-purpose RISC ISAs like MIPS and Alpha enjoy low register pressure. CISC ISAs like x86-64 offer low register pressure despite having smaller register sets. This

6461-439: The operation to perform, such as add contents of memory to register —and zero or more operand specifiers, which may specify registers , memory locations, or literal data. The operand specifiers may have addressing modes determining their meaning or may be in fixed fields. In very long instruction word (VLIW) architectures, which include many microcode architectures, multiple simultaneous opcodes and operands are specified in

6552-447: The option -Os to optimize for small machine code size, and -O3 to optimize for execution speed at the cost of larger machine code. The instructions constituting a program are rarely specified using their internal, numeric form ( machine code ); they may be specified by programmers using an assembly language or, more commonly, may be generated from high-level programming languages by compilers . The design of instruction sets

6643-451: The other operating system. An ISA can be extended by adding instructions or other capabilities, or adding support for larger addresses and data values; an implementation of the extended ISA will still be able to execute machine code for versions of the ISA without those extensions. Machine code using those extensions will only run on implementations that support those extensions. The binary compatibility that they provide makes ISAs one of

6734-476: The potential for higher speeds, reduced processor size, and reduced power consumption. However, a more complex set may optimize common operations, improve memory and cache efficiency, or simplify programming. Some instruction set designers reserve one or more opcodes for some kind of system call or software interrupt . For example, MOS Technology 6502 uses 00 H , Zilog Z80 uses the eight codes C7,CF,D7,DF,E7,EF,F7,FF H while Motorola 68000 use codes in

6825-570: The processor by efficiently implementing only the instructions that are frequently used in programs, while the less common operations are implemented as subroutines, having their resulting additional processor execution time offset by infrequent use. Other types include very long instruction word (VLIW) architectures, and the closely related long instruction word (LIW) and explicitly parallel instruction computing (EPIC) architectures. These architectures seek to exploit instruction-level parallelism with less hardware than RISC and CISC by making

6916-475: The range A000..AFFF H . Fast virtual machines are much easier to implement if an instruction set meets the Popek and Goldberg virtualization requirements . The NOP slide used in immunity-aware programming is much easier to implement if the "unprogrammed" state of the memory is interpreted as a NOP . On systems with multiple processors, non-blocking synchronization algorithms are much easier to implement if

7007-503: The reserved bits for the status flags. In the late 1980s, Apple Computer and VLSI Technology started working with Acorn on newer versions of the ARM core. In 1990, Acorn spun off the design team into a new company named Advanced RISC Machines Ltd., which became ARM Ltd. when its parent company, Arm Holdings plc, floated on the London Stock Exchange and Nasdaq in 1998. The new Apple–ARM work would eventually evolve into

7098-488: The same arithmetic operation on multiple pieces of data at the same time. SIMD instructions have the ability of manipulating large vectors and matrices in minimal time. SIMD instructions allow easy parallelization of algorithms commonly involved in sound, image, and video processing. Various SIMD implementations have been brought to market under trade names such as MMX , 3DNow! , and AltiVec . On traditional architectures, an instruction includes an opcode that specifies

7189-433: The same machine code, so that a lower-performance, lower-cost machine can be replaced with a higher-cost, higher-performance machine without having to replace software. It also enables the evolution of the microarchitectures of the implementations of that ISA, so that a newer, higher-performance implementation of an ISA can run software that runs on previous generations of implementations. If an operating system maintains

7280-495: The same price. This would outperform and underprice the PC. At the same time, the recent introduction of the Apple Lisa brought the graphical user interface (GUI) concept to a wider audience and suggested the future belonged to machines with a GUI. The Lisa, however, cost $ 9,995, as it was packed with support chips, large amounts of memory, and a hard disk drive , all very expensive then. The engineers then began studying all of

7371-481: The simpler design, compared with processors like the Intel 80286 and Motorola 68020 , some additional design features were used: ARM includes integer arithmetic operations for add, subtract, and multiply; some versions of the architecture also support divide operations. Code density In computer science , an instruction set architecture ( ISA ) is an abstract model that generally defines how software controls

7462-498: The simulations on the ARM1 boards led to the late 1986 introduction of the ARM2 design running at 8 MHz, and the early 1987 speed-bumped version at 10 to 12 MHz. A significant change in the underlying architecture was the addition of a Booth multiplier , whereas formerly multiplication had to be carried out in software. Further, a new Fast Interrupt reQuest mode, FIQ for short, allowed registers 8 through 14 to be replaced as part of

7553-536: The synthesizable RTL, the customer has the ability to perform architectural level optimisations and extensions. This allows the designer to achieve exotic design goals not otherwise possible with an unmodified netlist ( high clock speed , very low power consumption, instruction set extensions, etc.). While Arm Holdings does not grant the licensee the right to resell the ARM architecture itself, licensees may freely sell manufactured products such as chip devices, evaluation boards and complete systems. Merchant foundries can be

7644-524: The target location not modified, if the condition is false. Similarly, IBM z/Architecture has a conditional store instruction. A few instruction sets include a predicate field in every instruction; this is called branch predication . Instruction sets may be categorized by the maximum number of operands explicitly specified in instructions. (In the examples that follow, a , b , and c are (direct or calculated) addresses referring to memory cells, while reg1 and so on refer to machine registers.) Due to

7735-449: The world's fastest supercomputer from 2020 to 2022. With over 230 billion ARM chips produced, since at least 2003, and with its dominance increasing every year , ARM is the most widely used family of instruction set architectures. There have been several generations of the ARM design. The original ARM1 used a 32-bit internal structure but had a 26-bit address space that limited it to 64 MB of main memory . This limitation

7826-749: Was an important characteristic of any instruction set. It remained important on the initially-tiny memories of minicomputers and then microprocessors. Density remains important today, for smartphone applications, applications downloaded into browsers over slow Internet connections, and in ROMs for embedded applications. A more general advantage of increased density is improved effectiveness of caches and instruction prefetch. Computers with high code density often have complex instructions for procedure entry, parameterized returns, loops, etc. (therefore retroactively named Complex Instruction Set Computers , CISC ). However, more typical, or frequent, "CISC" instructions merely combine

7917-508: Was as a second processor for the BBC Micro, where it helped in developing simulation software to finish development of the support chips (VIDC, IOC, MEMC), and sped up the CAD software used in ARM2 development. Wilson subsequently rewrote BBC BASIC in ARM assembly language . The in-depth knowledge gained from designing the instruction set enabled the code to be very dense, making ARM BBC BASIC an extremely good test for any ARM emulator. The result of

8008-458: Was often found on workstations. The graphics system was also simplified based on the same set of underlying assumptions about memory and timing. The result was a dramatically simplified design, offering performance on par with expensive workstations but at a price point similar to contemporary desktops. The ARM2 featured a 32-bit data bus , 26-bit address space and 27 32-bit registers , of which 16 are accessible at any one time (including

8099-620: Was removed in the ARMv3 series, which has a 32-bit address space, and several additional generations up to ARMv7 remained 32-bit. Released in 2011, the ARMv8-A architecture added support for a 64-bit address space and 64-bit arithmetic with its new 32-bit fixed-length instruction set. Arm Holdings has also released a series of additional instruction sets for different rules; the "Thumb" extension adds both 32- and 16-bit instructions for improved code density , while Jazelle added instructions for directly handling Java bytecode . More recent changes include

8190-559: Was the most widely used architecture in mobile devices as of 2011 . Since 1995, various versions of the ARM Architecture Reference Manual (see § External links ) have been the primary source of documentation on the ARM processor architecture and instruction set, distinguishing interfaces that all ARM processors are required to support (such as instruction semantics) from implementation details that may vary. The architecture has evolved over time, and version seven of

8281-488: Was twice as fast as an Intel 80386 running at 16 MHz, and about the same speed as a multi-processor VAX-11/784 superminicomputer . The only systems that beat it were the Sun SPARC and MIPS R2000 RISC-based workstations . Further, as the CPU was designed for high-speed I/O, it dispensed with many of the support chips seen in these machines; notably, it lacked any dedicated direct memory access (DMA) controller which

#649350