Misplaced Pages

Aryl hydrocarbon receptor

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
#733266

105-497: 196 11622 ENSG00000106546 ENSMUSG00000019256 P35869 P30561 NM_001621 NM_013464 NM_001314027 NP_001612 NP_001300956 NP_038492 The aryl hydrocarbon receptor (also known as AhR , AHR , ahr , ahR , AH receptor , or as the dioxin receptor ) is a protein that in humans is encoded by the AHR gene . The aryl hydrocarbon receptor is a transcription factor that regulates gene expression. It

210-516: A carboxyl group, and a variable side chain are bonded . Only proline differs from this basic structure as it contains an unusual ring to the N-end amine group, which forces the CO–NH amide moiety into a fixed conformation. The side chains of the standard amino acids, detailed in the list of standard amino acids , have a great variety of chemical structures and properties; it is the combined effect of all of

315-470: A gene may be duplicated before it can mutate freely. However, this can also lead to complete loss of gene function and thus pseudo-genes . More commonly, single amino acid changes have limited consequences although some can change protein function substantially, especially in enzymes . For instance, many enzymes can change their substrate specificity by one or a few mutations. Changes in substrate specificity are facilitated by substrate promiscuity , i.e.

420-455: A glutamine -rich (Q-rich) domain is located in the C-terminal region of the protein and is involved in co-activator recruitment and transactivation. AhR ligands have been generally classified into two categories, synthetic or naturally occurring. The first ligands to be discovered were synthetic aromatic hydrocarbons such as the polychlorinated dibenzodioxins , dibenzofurans , biphenyls and

525-553: A ]pyrene (BaP), a ligand for AhR, induces its own metabolism and bioactivation to a toxic metabolite via the induction of CYP1A1 and CYP1B1 in several tissues. The second approach to toxicity is the result of aberrant changes in global gene transcription beyond those observed in the "AhR gene battery." These global changes in gene expression lead to adverse changes in cellular processes and function. Microarray analysis has proved most beneficial in understanding and characterizing this response. Xenobiotic metabolizing enzymes help with

630-436: A carbon source. Glutamine synthesis from glutamate and ammonia is catalyzed by the enzyme glutamine synthetase . The majority of glutamine production occurs in muscle tissue, accounting for about 90% of all glutamine synthesized. Glutamine is also released, in small amounts, by the lungs and brain. Although the liver is capable of glutamine synthesis, its role in glutamine metabolism is more regulatory than productive, as

735-408: A clear endogenous ligand, AhR appears to play a role in the differentiation of many developmental pathways, including hematopoiesis, lymphoid systems, T-cells, neurons, and hepatocytes. AhR has also been found to have an important function in hematopoietic stem cells: AhR antagonism promotes their self-renewal and ex-vivo expansion and is involved in megakaryocyte differentiation. In adulthood, signaling

840-552: A combination of sequence, structure and function, and they can be combined in many different ways. In an early study of 170,000 proteins, about two-thirds were assigned at least one domain, with larger proteins containing more domains (e.g. proteins larger than 600 amino acids having an average of more than 5 domains). Most proteins consist of linear polymers built from series of up to 20 different L -α- amino acids. All proteinogenic amino acids possess common structural features, including an α-carbon to which an amino group,

945-403: A defined conformation . Proteins can interact with many types of molecules, including with other proteins , with lipids , with carbohydrates , and with DNA . It has been estimated that average-sized bacteria contain about 2 million proteins per cell (e.g. E. coli and Staphylococcus aureus ). Smaller bacteria, such as Mycoplasma or spirochetes contain fewer molecules, on

1050-834: A detailed review of the vegetable proteins at the Connecticut Agricultural Experiment Station . Then, working with Lafayette Mendel and applying Liebig's law of the minimum , which states that growth is limited by the scarcest resource, to the feeding of laboratory rats, the nutritionally essential amino acids were established. The work was continued and communicated by William Cumming Rose . The difficulty in purifying proteins in large quantities made them very difficult for early protein biochemists to study. Hence, early studies focused on proteins that could be purified in large quantities, including those of blood, egg whites, and various toxins, as well as digestive and metabolic enzymes obtained from slaughterhouses. In

1155-407: A dimer of Hsp90 , prostaglandin E synthase 3 (PTGES3, p23) and a single molecule of the immunophilin -like AH receptor-interacting protein , also known as hepatitis B virus X-associated protein 2 (XAP2), AhR interacting protein ( AIP ), and AhR-activated 9 (ARA9). The dimer of Hsp90, along with PTGES3 (p23), has a multifunctional role in the protection of the receptor from proteolysis, constraining

SECTION 10

#1732844047734

1260-492: A glycoprotein that inhibits angiogenesis, and matrix metalloproteinase 2 (MMP-2). The extracellular matrix itself appears to play an important regulatory role in TGF-β signaling. Upon ligand binding to AhR, AIP is released resulting in exposure of the NLS, which is located in the bHLH region, leading to import into the nucleus. It is presumed that once in the nucleus, Hsp90 dissociates exposing

1365-478: A little ambiguous and can overlap in meaning. Protein is generally used to refer to the complete biological molecule in a stable conformation , whereas peptide is generally reserved for a short amino acid oligomers often lacking a stable 3D structure. But the boundary between the two is not well defined and usually lies near 20–30 residues. Polypeptide can refer to any single linear chain of amino acids, usually regardless of length, but often implies an absence of

1470-410: A particular cell or cell type is known as its proteome . The chief characteristic of proteins that also allows their diverse set of functions is their ability to bind other molecules specifically and tightly. The region of the protein responsible for binding another molecule is known as the binding site and is often a depression or "pocket" on the molecular surface. This binding ability is mediated by

1575-527: A placebo (median 3 vs. median 4), fewer hospitalizations for sickle cell pain (median 2 vs. median 3), and fewer days in the hospital (median 6.5 days vs. median 11 days). Subjects who received L-glutamine oral powder also had fewer occurrences of acute chest syndrome (a life-threatening complication of sickle cell disease) compared with patients who received a placebo (8.6 percent vs. 23.1 percent). Common side effects of L-glutamine oral powder include constipation, nausea, headache, abdominal pain, cough, pain in

1680-500: A protein carries out its function: for example, enzyme kinetics studies explore the chemical mechanism of an enzyme's catalytic activity and its relative affinity for various possible substrate molecules. By contrast, in vivo experiments can provide information about the physiological role of a protein in the context of a cell or even a whole organism . In silico studies use computational methods to study proteins. Proteins may be purified from other cellular components using

1785-411: A protein is defined by the sequence of a gene, which is encoded in the genetic code . In general, the genetic code specifies 20 standard amino acids; but in certain organisms the genetic code can include selenocysteine and—in certain archaea — pyrrolysine . Shortly after or even during synthesis, the residues in a protein are often chemically modified by post-translational modification , which alters

1890-539: A protein that fold into distinct structural units. Domains usually also have specific functions, such as enzymatic activities (e.g. kinase ) or they serve as binding modules (e.g. the SH3 domain binds to proline-rich sequences in other proteins). Short amino acid sequences within proteins often act as recognition sites for other proteins. For instance, SH3 domains typically bind to short PxxP motifs (i.e. 2 prolines [P], separated by two unspecified amino acids [x], although

1995-486: A role in biological recognition phenomena involving cells and proteins. Receptors and hormones are highly specific binding proteins. Transmembrane proteins can also serve as ligand transport proteins that alter the permeability of the cell membrane to small molecules and ions. The membrane alone has a hydrophobic core through which polar or charged molecules cannot diffuse . Membrane proteins contain internal channels that allow such molecules to enter and exit

2100-406: A series of purification steps may be necessary to obtain protein sufficiently pure for laboratory applications. To simplify this process, genetic engineering is often used to add chemical features to proteins that make them easier to purify without affecting their structure or activity. Here, a "tag" consisting of a specific amino acid sequence, often a series of histidine residues (a " His-tag "),

2205-432: A solution known as a crude lysate . The resulting mixture can be purified using ultracentrifugation , which fractionates the various cellular components into fractions containing soluble proteins; membrane lipids and proteins; cellular organelles , and nucleic acids . Precipitation by a method known as salting out can concentrate the proteins from this lysate. Various types of chromatography are then used to isolate

SECTION 20

#1732844047734

2310-403: A source of carbon and nitrogen for use in other metabolic processes. Glutamine is present in serum at higher concentrations than other amino acids and is essential for many cellular functions. Examples include the synthesis of nucleotides and non-essential amino acids . One of the most important functions of glutamine is its ability to be converted into α-KG, which helps to maintain the flow of

2415-441: A variety of techniques such as ultracentrifugation , precipitation , electrophoresis , and chromatography ; the advent of genetic engineering has made possible a number of methods to facilitate purification. To perform in vitro analysis, a protein must be purified away from other cellular components. This process usually begins with cell lysis , in which a cell's membrane is disrupted and its internal contents released into

2520-487: Is a cytosolic transcription factor that is normally inactive, bound to several co-chaperones . Upon ligand binding to chemicals such as 2,3,7,8-tetrachlorodibenzo- p -dioxin (TCDD), the chaperones dissociate resulting in AhR translocating into the nucleus and dimerizing with ARNT ( AhR nuclear translocator ) , leading to changes in gene transcription . The AhR protein contains several domains critical for function and

2625-443: Is a selective aryl hydrocarbon receptor modulator (SAhRM). Other SAhRMs include microbial-derived 1,4-dihydroxy-2-naphthoic acid and plant-derived 3,3'-diindolylmethane. Indolocarbazole (ICZ) is one of the strongest non-halogenated agonists for AhR in vitro reported. Ligand-independent AhR activity can be seen in mammalian AhR. The mammalian AhR needs no exogenous ligand-dependent activation to be functional, and this appears to be

2730-404: Is an α-amino acid that is used in the biosynthesis of proteins . Its side chain is similar to that of glutamic acid , except the carboxylic acid group is replaced by an amide . It is classified as a charge-neutral, polar amino acid. It is non-essential and conditionally essential in humans, meaning the body can usually synthesize sufficient amounts of it, but in some instances of stress,

2835-418: Is associated with the stress response and mutations in AhR are associated with major depressive disorder. The adaptive response is manifested as the induction of xenobiotic metabolizing enzymes. Evidence of this response was first observed from the induction of cytochrome P450, family 1, subfamily A, polypeptide 1 (Cyp1a1) resultant from TCDD exposure, which was determined to be directly related to activation of

2940-429: Is attached to one terminus of the protein. As a result, when the lysate is passed over a chromatography column containing nickel , the histidine residues ligate the nickel and attach to the column while the untagged components of the lysate pass unimpeded. A number of different tags have been developed to help researchers purify specific proteins from complex mixtures. Glutamine Glutamine (symbol Gln or Q )

3045-462: Is classified as a member of the basic helix-loop-helix / Per-Arnt-Sim (bHLH/PAS) family of transcription factors . The bHLH motif is located in the N-terminal of the protein and is a common entity in a variety of transcription factors . Members of the bHLH superfamily have two functionally distinctive and highly conserved domains. The first is the basic-region (b), which is involved in the binding of

3150-562: Is dictated by the nucleotide sequence of their genes , and which usually results in protein folding into a specific 3D structure that determines its activity. A linear chain of amino acid residues is called a polypeptide . A protein contains at least one long polypeptide. Short polypeptides, containing less than 20–30 residues, are rarely considered to be proteins and are commonly called peptides . The individual amino acid residues are bonded together by peptide bonds and adjacent amino acid residues. The sequence of amino acid residues in

3255-628: Is found in hard or filamentous structures such as hair , nails , feathers , hooves , and some animal shells . Some globular proteins can also play structural functions, for example, actin and tubulin are globular and soluble as monomers, but polymerize to form long, stiff fibers that make up the cytoskeleton , which allows the cell to maintain its shape and size. Other proteins that serve structural functions are motor proteins such as myosin , kinesin , and dynein , which are capable of generating mechanical forces. These proteins are crucial for cellular motility of single celled organisms and

Aryl hydrocarbon receptor - Misplaced Pages Continue

3360-422: Is found in nature. Glutamine contains an α-amino group which is in the protonated −NH 3 form under biological conditions and a carboxylic acid group which is in the deprotonated −COO form, known as carboxylate, under physiological conditions. Glutamine mouthwash may be useful to prevent oral mucositis in people undergoing chemotherapy but intravenous glutamine does not appear useful to prevent mucositis in

3465-469: Is higher in prokaryotes than eukaryotes and can reach up to 20 amino acids per second. The process of synthesizing a protein from an mRNA template is known as translation . The mRNA is loaded onto the ribosome and is read three nucleotides at a time by matching each codon to its base pairing anticodon located on a transfer RNA molecule, which carries the amino acid corresponding to the codon it recognizes. The enzyme aminoacyl tRNA synthetase "charges"

3570-461: Is inefficient for polypeptides longer than about 300 amino acids, and the synthesized proteins may not readily assume their native tertiary structure . Most chemical synthesis methods proceed from C-terminus to N-terminus, opposite the biological reaction. Most proteins fold into unique 3D structures. The shape into which a protein naturally folds is known as its native conformation . Although many proteins can fold unassisted, simply through

3675-404: Is often enormous—as much as 10 -fold increase in rate over the uncatalysed reaction in the case of orotate decarboxylase (78 million years without the enzyme, 18 milliseconds with the enzyme). The molecules bound and acted upon by enzymes are called substrates . Although enzymes can consist of hundreds of amino acids, it is usually only a small fraction of the residues that come in contact with

3780-516: Is safe in adults and in preterm infants. Although glutamine is metabolized to glutamate and ammonia, both of which have neurological effects, their concentrations are not increased much, and no adverse neurological effects were detected. The observed safe level for supplemental L -glutamine in normal healthy adults is 14 g/day. Adverse effects of glutamine have been described for people receiving home parenteral nutrition and those with liver-function abnormalities. Although glutamine has no effect on

3885-532: Is the code for methionine . Because DNA contains four nucleotides, the total number of possible codons is 64; hence, there is some redundancy in the genetic code, with some amino acids specified by more than one codon. Genes encoded in DNA are first transcribed into pre- messenger RNA (mRNA) by proteins such as RNA polymerase . Most organisms then process the pre-mRNA (also known as a primary transcript ) using various forms of post-transcriptional modification to form

3990-486: The amino acid leucine for which he found a (nearly correct) molecular weight of 131 Da . Early nutritional scientists such as the German Carl von Voit believed that protein was the most important nutrient for maintaining the structure of the body, because it was generally believed that "flesh makes flesh." Around 1862, Karl Heinrich Ritthausen isolated the amino acid glutamic acid . Thomas Burr Osborne compiled

4095-480: The arachidonic acid metabolites lipoxin A4 and prostaglandin G , modified low-density lipoprotein and several dietary carotenoids . One assumption made in the search for an endogenous ligand is that the ligand will be a receptor agonist . However, work by Savouret et al. has shown this may not be the case since their findings demonstrate that 7-ketocholesterol competitively inhibits Ahr signal transduction. Carbidopa

4200-447: The aryl hydrocarbon receptor nuclear translocator (ARNT). The PAS domains support specific secondary interactions with other PAS domain containing proteins, as is the case with AhR and ARNT, so that dimeric and heteromeric protein complexes can form. The ligand binding site of AhR is contained within the PAS-B domain and contains several conserved residues critical for ligand binding. Finally,

4305-644: The muscle sarcomere , with a molecular mass of almost 3,000 kDa and a total length of almost 27,000 amino acids. Short proteins can also be synthesized chemically by a family of methods known as peptide synthesis , which rely on organic synthesis techniques such as chemical ligation to produce peptides in high yield. Chemical synthesis allows for the introduction of non-natural amino acids into polypeptide chains, such as attachment of fluorescent probes to amino acid side chains. These methods are useful in laboratory biochemistry and cell biology , though generally not for commercial applications. Chemical synthesis

Aryl hydrocarbon receptor - Misplaced Pages Continue

4410-645: The sperm of many multicellular organisms which reproduce sexually . They also generate the forces exerted by contracting muscles and play essential roles in intracellular transport. A key question in molecular biology is how proteins evolve, i.e. how can mutations (or rather changes in amino acid sequence) lead to new structures and functions? Most amino acids in a protein can be changed without disrupting activity or function, as can be seen from numerous homologous proteins across species (as collected in specialized databases for protein families , e.g. PFAM ). In order to prevent dramatic consequences of mutations,

4515-421: The 12 months prior to enrollment in the trial. Subjects were assigned randomly to treatment with L-glutamine oral powder or placebo, and the effect of treatment was evaluated over 48 weeks. Subjects who were treated with L-glutamine oral powder experienced fewer hospital visits for pain treated with a parenterally administered narcotic or ketorolac (sickle cell crises), on average, compared to subjects who received

4620-493: The 1700s by Antoine Fourcroy and others, who often collectively called them " albumins ", or "albuminous materials" ( Eiweisskörper , in German). Gluten , for example, was first separated from wheat in published research around 1747, and later determined to exist in many plants. In 1789, Antoine Fourcroy recognized three distinct varieties of animal proteins: albumin , fibrin , and gelatin . Vegetable (plant) proteins studied in

4725-562: The 1950s, the Armour Hot Dog Company purified 1 kg of pure bovine pancreatic ribonuclease A and made it freely available to scientists; this gesture helped ribonuclease A become a major target for biochemical study for the following decades. The understanding of proteins as polypeptides , or chains of amino acids, came through the work of Franz Hofmeister and Hermann Emil Fischer in 1902. The central role of proteins as enzymes in living organisms that catalyzed reactions

4830-498: The 20,000 or so proteins encoded by the human genome, only 6,000 are detected in lymphoblastoid cells. Proteins are assembled from amino acids using information encoded in genes. Each protein has its own unique amino acid sequence that is specified by the nucleotide sequence of the gene encoding this protein. The genetic code is a set of three-nucleotide sets called codons and each three-nucleotide combination designates an amino acid, for example AUG ( adenine – uracil – guanine )

4935-402: The AhR has roles in regulating immune cells, stem cell maintenance, and cellular differentiation . The aryl hydrocarbon receptor is a member of the family of basic helix-loop-helix transcription factors . AhR binds several exogenous ligands such as natural plant flavonoids , polyphenols and indoles , as well as synthetic polycyclic aromatic hydrocarbons and dioxin-like compounds . AhR

5040-401: The AhR signaling pathway. The search for other metabolizing genes induced by AhR ligands, due to the presence of DREs, has led to the identification of an "AhR gene battery" of Phase I and Phase II metabolizing enzymes consisting of CYP1A1 , CYP1A2 , CYP1B1 , NQO1, ALDH3A1, UGT1A2 and GSTA1. Presumably, vertebrates have this function to be able to detect a wide range of chemicals, indicated by

5145-518: The AhR/ARNT complex. Regardless of the response element, the result is a variety of differential changes in gene expression. In terms of evolution, the oldest physiological role of AhR is in development. AhR is presumed to have evolved from invertebrates where it served a ligand-independent role in normal development processes. The AhR homolog in Drosophila , spineless (ss) is necessary for development of

5250-516: The EC number system provides a functional classification scheme. Similarly, the gene ontology classifies both genes and proteins by their biological and biochemical function, but also by their intracellular location. Sequence similarity is used to classify proteins both in terms of evolutionary and functional similarity. This may use either whole proteins or protein domains , especially in multi-domain proteins . Protein domains allow protein classification by

5355-526: The GI tract. Glutamine supplementation was thought to have potential to reduce complications in people who are critically ill or who have had abdominal surgery but this was based on poor quality clinical trials. Supplementation does not appear to be useful in adults or children with Crohn's disease or inflammatory bowel disease , but clinical studies as of 2016 were underpowered. Supplementation does not appear to have an effect in infants with significant problems of

SECTION 50

#1732844047734

5460-410: The U.S. Food and Drug Administration (FDA) approved L -glutamine oral powder, marketed as Endari , to reduce severe complications of sickle cell disease in people aged five years and older with the disorder. The safety and efficacy of L-glutamine oral powder were studied in a randomized trial of subjects ages five to 58 years old with sickle cell disease who had two or more painful crises within

5565-709: The ability of many enzymes to bind and process multiple substrates . When mutations occur, the specificity of an enzyme can increase (or decrease) and thus its enzymatic activity. Thus, bacteria (or other organisms) can adapt to different food sources, including unnatural substrates such as plastic. Methods commonly used to study protein structure and function include immunohistochemistry , site-directed mutagenesis , X-ray crystallography , nuclear magnetic resonance and mass spectrometry . The activities and structures of proteins may be examined in vitro , in vivo , and in silico . In vitro studies of purified proteins in controlled environments are useful for learning how

5670-405: The addition of a single methyl group to a binding partner can sometimes suffice to nearly eliminate binding; for example, the aminoacyl tRNA synthetase specific to the amino acid valine discriminates against the very similar side chain of the amino acid isoleucine . Proteins can bind to other proteins as well as to small-molecule substrates. When proteins bind specifically to other copies of

5775-595: The alpha carbons are roughly coplanar . The other two dihedral angles in the peptide bond determine the local shape assumed by the protein backbone. The end with a free amino group is known as the N-terminus or amino terminus, whereas the end of the protein with a free carboxyl group is known as the C-terminus or carboxy terminus (the sequence of the protein is written from N-terminus to C-terminus, from left to right). The words protein , polypeptide, and peptide are

5880-531: The amino acid side chains in a protein that ultimately determines its three-dimensional structure and its chemical reactivity. The amino acids in a polypeptide chain are linked by peptide bonds . Once linked in the protein chain, an individual amino acid is called a residue, and the linked series of carbon, nitrogen, and oxygen atoms are known as the main chain or protein backbone. The peptide bond has two resonance forms that contribute some double-bond character and inhibit rotation around its axis, so that

5985-574: The binding of a substrate molecule to an enzyme's active site , or the physical region of the protein that participates in chemical catalysis. In solution, proteins also undergo variation in structure through thermal vibration and the collision with other molecules. Proteins can be informally divided into three main classes, which correlate with typical tertiary structures: globular proteins , fibrous proteins , and membrane proteins . Almost all globular proteins are soluble and many are enzymes. Fibrous proteins are often structural, such as collagen ,

6090-570: The body of a multicellular organism. These proteins must have a high binding affinity when their ligand is present in high concentrations, but must also release the ligand when it is present at low concentrations in the target tissues. The canonical example of a ligand-binding protein is haemoglobin , which transports oxygen from the lungs to other organs and tissues in all vertebrates and has close homologs in every biological kingdom . Lectins are sugar-binding proteins which are highly specific for their sugar moieties. Lectins typically play

6195-690: The body's demand for glutamine increases, and glutamine must be obtained from the diet. It is encoded by the codons CAA and CAG. It is named after glutamic acid, which in turn is named after its discovery in cereal proteins, gluten . In human blood , glutamine is the most abundant free amino acid . The dietary sources of glutamine include especially the protein-rich foods like beef , chicken , fish , dairy products , eggs , vegetables like beans , beets , cabbage , spinach , carrots , parsley , vegetable juices and also in wheat , papaya , Brussels sprouts , celery , kale and fermented foods like miso . The one-letter symbol Q for glutamine

6300-454: The case for its role in the regulation of the expression of some transforming growth factor-beta (TGF-b) isoforms. This is not to say that ligand-dependent AhR activation is not needed for the AhR to function in those cases, but that, if a ligand is needed, it is provided endogenously by the cells or tissues in question and its identity is unknown. Non-ligand bound AhR is retained in the cytoplasm as an inactive protein complex consisting of

6405-558: The cell is as enzymes , which catalyse chemical reactions. Enzymes are usually highly specific and accelerate only one or a few chemical reactions. Enzymes carry out most of the reactions involved in metabolism , as well as manipulating DNA in processes such as DNA replication , DNA repair , and transcription . Some enzymes act on other proteins to add or remove chemical groups in a process known as posttranslational modification. About 4,000 reactions are known to be catalysed by enzymes. The rate acceleration conferred by enzymatic catalysis

SECTION 60

#1732844047734

6510-436: The cell surface and an effector domain within the cell, which may have enzymatic activity or may undergo a conformational change detected by other proteins within the cell. Antibodies are protein components of an adaptive immune system whose main function is to bind antigens , or foreign substances in the body, and target them for destruction. Antibodies can be secreted into the extracellular environment or anchored in

6615-752: The cell's machinery through the process of protein turnover . A protein's lifespan is measured in terms of its half-life and covers a wide range. They can exist for minutes or years with an average lifespan of 1–2 days in mammalian cells. Abnormal or misfolded proteins are degraded more rapidly either due to being targeted for destruction or due to being unstable. Like other biological macromolecules such as polysaccharides and nucleic acids , proteins are essential parts of organisms and participate in virtually every process within cells . Many proteins are enzymes that catalyse biochemical reactions and are vital to metabolism . Proteins also have structural or mechanical functions, such as actin and myosin in muscle and

6720-450: The cell. Many ion channel proteins are specialized to select for only a particular ion; for example, potassium and sodium channels often discriminate for only one of the two ions. Structural proteins confer stiffness and rigidity to otherwise-fluid biological components. Most structural proteins are fibrous proteins ; for example, collagen and elastin are critical components of connective tissue such as cartilage , and keratin

6825-621: The chemical properties of their amino acids, others require the aid of molecular chaperones to fold into their native states. Biochemists often refer to four distinct aspects of a protein's structure: Proteins are not entirely rigid molecules. In addition to these levels of structure, proteins may shift between several related structures while they perform their functions. In the context of these functional rearrangements, these tertiary or quaternary structures are usually referred to as " conformations ", and transitions between them are called conformational changes. Such changes are often induced by

6930-441: The chief actors within the cell, said to be carrying out the duties specified by the information encoded in genes. With the exception of certain types of RNA , most other biological molecules are relatively inert elements upon which proteins act. Proteins make up half the dry weight of an Escherichia coli cell, whereas other macromolecules such as DNA and RNA make up only 3% and 20%, respectively. The set of proteins expressed in

7035-490: The construction of enormously complex signaling networks. As interactions between proteins are reversible, and depend heavily on the availability of different groups of partner proteins to form aggregates that are capable to carry out discrete sets of function, study of the interactions between specific proteins is a key to understand important aspects of cellular function, and ultimately the properties that distinguish particular cell types. The best-known role of proteins in

7140-478: The core sequence 5'-GCGTG-3' within the consensus sequence 5'-T/GNGCGTGA/CG/CA-3' in the promoter region of AhR responsive genes. The AhR/ARNT heterodimer directly binds the AHRE/DRE/XRE core sequence in an asymmetric manner such that ARNT binds to 5'-GTG-3' and AhR binding 5'-TC/TGC-3'. Recent research suggests that a second type of element termed AHRE-II, 5'-CATG(N6)C[T/A]TG-3', is capable of indirectly acting with

7245-408: The derivative unit kilodalton (kDa). The average size of a protein increases from Archaea to Bacteria to Eukaryote (283, 311, 438 residues and 31, 34, 49 kDa respectively) due to a bigger number of protein domains constituting proteins in higher organisms. For instance, yeast proteins are on average 466 amino acids long and 53 kDa in mass. The largest known proteins are the titins , a component of

7350-417: The distal segments of the antenna and leg. Ss dimerizes with tango (tgo), which is the homolog to the mammalian Arnt, to initiate gene transcription. Evolution of the receptor in vertebrates resulted in the ability to bind ligands and might have helped humans evolve to tolerate smoky fires. In developing vertebrates, AhR seemingly plays a role in cellular proliferation and differentiation. Despite lacking

7455-447: The erroneous conclusion that they might be composed of a single type of (very large) molecule. The term "protein" to describe these molecules was proposed by Mulder's associate Berzelius; protein is derived from the Greek word πρώτειος ( proteios ), meaning "primary", "in the lead", or "standing in front", + -in . Mulder went on to identify the products of protein degradation such as

7560-457: The expression of innate immunity genes in THP-1 cells . Extensions of the adaptive response are the toxic responses elicited by AhR activation. Toxicity results from two different ways of AhR signaling. The first is a side effect of the adaptive response in which the induction of metabolizing enzymes results in the production of toxic metabolites. For example, the polycyclic aromatic hydrocarbon benzo[

7665-413: The extremities, back pain and chest pain. L-glutamine oral powder received orphan drug designation. The FDA granted the approval of Endari to Emmaus Medical Inc. Glutamine is marketed as medical food and is prescribed when a medical professional believes a person in their care needs supplementary glutamine due to metabolic demands beyond what can be met by endogenous synthesis or diet. Glutamine

7770-525: The late 1700s and early 1800s included gluten , plant albumin , gliadin , and legumin . Proteins were first described by the Dutch chemist Gerardus Johannes Mulder and named by the Swedish chemist Jöns Jacob Berzelius in 1838. Mulder carried out elemental analysis of common proteins and found that nearly all proteins had the same empirical formula , C 400 H 620 N 100 O 120 P 1 S 1 . He came to

7875-517: The liver takes up glutamine derived from the gut via the hepatic portal system . Glutamine is the most abundant naturally occurring, nonessential amino acid in the human body, and one of the few amino acids that can directly cross the blood–brain barrier . Humans obtain glutamine through catabolism of proteins in foods they eat. In states where tissue is being built or repaired, like growth of babies, or healing from wounds or severe illness, glutamine becomes conditionally essential . In 2017,

7980-478: The major component of connective tissue, or keratin , the protein component of hair and nails. Membrane proteins often serve as receptors or provide channels for polar or charged molecules to pass through the cell membrane . A special case of intramolecular hydrogen bonds within proteins, poorly shielded from water attack and hence promoting their own dehydration , are called dehydrons . Many proteins are composed of several protein domains , i.e. segments of

8085-443: The mature mRNA, which is then used as a template for protein synthesis by the ribosome . In prokaryotes the mRNA may either be used as soon as it is produced, or be bound by a ribosome after having moved away from the nucleoid . In contrast, eukaryotes make mRNA in the cell nucleus and then translocate it across the nuclear membrane into the cytoplasm , where protein synthesis then takes place. The rate of protein synthesis

8190-405: The membranes of specialized B cells known as plasma cells . Whereas enzymes are limited in their binding affinity for their substrates by the necessity of conducting their reaction, antibodies have no such constraints. An antibody's binding affinity to its target is extraordinarily high. Many ligand transport proteins bind particular small biomolecules and transport them to other locations in

8295-446: The metabolic process by transforming and the excretion of chemicals. The most potent inducer of CYP1A1 is 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In addition, TCDD induces a broad spectrum of biochemical and toxic effects, such as teratogenesis, immunosuppression and tumor promotion. Most, if not all, of the effects caused by TCDD and other PAHs are known to be mediated by AhR which has a high binding affinity to TCDD. In addition to

8400-496: The nobel prize in 1972, solidified the thermodynamic hypothesis of protein folding, according to which the folded form of a protein represents its free energy minimum. With the development of X-ray crystallography , it became possible to determine protein structures as well as their sequences. The first protein structures to be solved were hemoglobin by Max Perutz and myoglobin by John Kendrew , in 1958. The use of computers and increasing computing power also supported

8505-558: The non-chlorinated naphthoflavones alongside the naturally occurring polycyclic aromatic hydrocarbons ( 3-methylcholanthrene , benzo[ a ]pyrene and benzanthracene ). A range of synthetic ligands have been designed as potential breast cancer treatments. Research has focused on other naturally occurring compounds with the hope of identifying an endogenous ligand. Naturally occurring compounds that have been identified as ligands of Ahr include derivatives of tryptophan such as indigo dye and indirubin , tetrapyrroles such as bilirubin ,

8610-500: The order of 50,000 to 1 million. By contrast, eukaryotic cells are larger and thus contain much more protein. For instance, yeast cells have been estimated to contain about 50 million proteins and human cells on the order of 1 to 3 billion. The concentration of individual protein copies ranges from a few molecules per cell up to 20 million. Not all genes coding proteins are expressed in most cells and their number depends on, for example, cell type and external stimuli. For instance, of

8715-440: The physical and chemical properties, folding, stability, activity, and ultimately, the function of the proteins. Some proteins have non-peptide groups attached, which can be called prosthetic groups or cofactors . Proteins can also work together to achieve a particular function, and they often associate to form stable protein complexes . Once formed, proteins only exist for a certain period and are then degraded and recycled by

8820-424: The process of cell signaling and signal transduction . Some proteins, such as insulin , are extracellular proteins that transmit a signal from the cell in which they were synthesized to other cells in distant tissues . Others are membrane proteins that act as receptors whose main function is to bind a signaling molecule and induce a biochemical response in the cell. Many receptors have a binding site exposed on

8925-450: The proliferation of tumor cells, it is still possible that glutamine supplementation may be detrimental in some cancer types. Ceasing glutamine supplementation in people adapted to very high consumption may initiate a withdrawal effect, raising the risk of health problems such as infections or impaired integrity of the intestine. Glutamine can exist in either of two enantiomeric forms, L -glutamine and D -glutamine. The L -form

9030-629: The protein interactions mentioned above, AhR has also been shown to interact with the following: Protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues . Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions , DNA replication , responding to stimuli , providing structure to cells and organisms , and transporting molecules from one location to another. Proteins differ from one another primarily in their sequence of amino acids, which

9135-534: The protein or proteins of interest based on properties such as molecular weight, net charge and binding affinity. The level of purification can be monitored using various types of gel electrophoresis if the desired protein's molecular weight and isoelectric point are known, by spectroscopy if the protein has distinguishable spectroscopic features, or by enzyme assays if the protein has enzymatic activity. Additionally, proteins can be isolated according to their charge using electrofocusing . For natural proteins,

9240-427: The proteins in the cytoskeleton , which form a system of scaffolding that maintains cell shape. Other proteins are important in cell signaling, immune responses , cell adhesion , and the cell cycle . In animals, proteins are needed in the diet to provide the essential amino acids that cannot be synthesized . Digestion breaks the proteins down for metabolic use. Proteins have been studied and recognized since

9345-807: The receptor in a conformation receptive to ligand binding and preventing the premature binding of ARNT . AIP interacts with carboxyl-terminal of Hsp90 and binds to the AhR nuclear localization sequence (NLS) preventing the inappropriate trafficking of the receptor into the nucleus. TGF-β cytokines are members of a signaling protein family that includes activin, Nodal subfamily, bone morphogenetic proteins, growth and differentiation factors, and Müllerian inhibitor subfamily. TGF-β signaling plays an important role in cell physiology and development by inhibiting cell proliferation, promoting apoptosis, inducing differentiation, and determining developmental fate in vertebrates and invertebrates. TGF-β activators include proteases such as plasmin, cathepsins, and calpains. Thrombospondin 1,

9450-582: The same molecule, they can oligomerize to form fibrils; this process occurs often in structural proteins that consist of globular monomers that self-associate to form rigid fibers. Protein–protein interactions also regulate enzymatic activity, control progression through the cell cycle , and allow the assembly of large protein complexes that carry out many closely related reactions with a common biological function. Proteins can also bind to, or even be integrated into, cell membranes. The ability of binding partners to induce conformational changes in proteins allows

9555-573: The sample, allowing scientists to obtain more information and analyze larger structures. Computational protein structure prediction of small protein structural domains has also helped researchers to approach atomic-level resolution of protein structures. As of April 2024 , the Protein Data Bank contains 181,018 X-ray, 19,809 EM and 12,697 NMR protein structures. Proteins are primarily classified by sequence and structure, although other classifications are commonly used. Especially for enzymes

9660-430: The sequencing of complex proteins. In 1999, Roger Kornberg succeeded in sequencing the highly complex structure of RNA polymerase using high intensity X-rays from synchrotrons . Since then, cryo-electron microscopy (cryo-EM) of large macromolecular assemblies has been developed. Cryo-EM uses protein samples that are frozen rather than crystals, and beams of electrons rather than X-rays. It causes less damage to

9765-549: The stomach or intestines. Some athletes use L -glutamine as supplement. Studies support the positive effects of the chronic oral administration of the supplement on the injury and inflammation induced by intense aerobic and exhaustive exercise, but the effects on muscle recovery from weight training are unclear. Stress conditions for plants (drought, injury, soil salnity) cause the synthesis of such plant enzymes as superoxide dismutase , L-ascorbate oxidase , and Delta 1 DNA polymerase . Limiting this process, initiated by

9870-405: The substrate, and an even smaller fraction—three to four residues on average—that are directly involved in catalysis. The region of the enzyme that binds the substrate and contains the catalytic residues is known as the active site . Dirigent proteins are members of a class of proteins that dictate the stereochemistry of a compound synthesized by other enzymes. Many proteins are involved in

9975-706: The surrounding amino acids may determine the exact binding specificity). Many such motifs has been collected in the Eukaryotic Linear Motif (ELM) database. Topology of a protein describes the entanglement of the backbone and the arrangement of contacts within the folded chain. Two theoretical frameworks of knot theory and Circuit topology have been applied to characterise protein topology. Being able to describe protein topology opens up new pathways for protein engineering and pharmaceutical development, and adds to our understanding of protein misfolding diseases such as neuromuscular disorders and cancer. Proteins are

10080-400: The tRNA molecules with the correct amino acids. The growing polypeptide is often termed the nascent chain . Proteins are always biosynthesized from N-terminus to C-terminus . The size of a synthesized protein can be measured by the number of amino acids it contains and by its total molecular mass , which is normally reported in units of daltons (synonymous with atomic mass units ), or

10185-472: The tertiary structure of the protein, which defines the binding site pocket, and by the chemical properties of the surrounding amino acids' side chains. Protein binding can be extraordinarily tight and specific; for example, the ribonuclease inhibitor protein binds to human angiogenin with a sub-femtomolar dissociation constant (<10 M) but does not bind at all to its amphibian homolog onconase (> 1 M). Extremely minor chemical changes such as

10290-479: The transcription factor to DNA . The second is the helix-loop-helix (HLH) region, which facilitates protein-protein interactions. Also contained with the AhR are two PAS domains, PAS-A and PAS-B, which are stretches of 200–350 amino acids that exhibit a high sequence homology to the protein domains that were originally found in the Drosophila genes period (Per) and single-minded (Sim) and in AhR's dimerization partner

10395-410: The tricarboxylic acid cycle, generating ATP via the electron carriers NADH and FADH 2 . The highest consumption of glutamine occurs in the cells of the intestines, kidney cells (where it is used for acid-base balance), activated immune cells, and many cancer cells. Glutamine is produced industrially using mutants of Brevibacterium flavum , which gives ca. 40 g/L in 2 days using glucose as

10500-471: The two PAS domains allowing the binding of ARNT. The activated AhR/ARNT heterodimer complex is then capable of either directly or indirectly interacting with DNA by binding to recognition sequences located in the 5’- regulatory region of dioxin-responsive genes. The classical recognition motif of the AhR/ARNT complex, referred to as either the AhR-, dioxin- or xenobiotic- responsive element (AHRE, DRE or XRE), contains

10605-426: The wide range of substrates AhR is able to bind and facilitate their biotransformation and elimination. The AhR may also signal the presence of toxic chemicals in food and cause aversion of such foods. AhR activation seems to be also important for immunological responses and inhibiting inflammation through upregulation of interleukin 22 and downregulation of Th17 response. The Knockdown of AHR mostly downregulates

10710-466: Was insulin , by Frederick Sanger , in 1949. Sanger correctly determined the amino acid sequence of insulin, thus conclusively demonstrating that proteins consisted of linear polymers of amino acids rather than branched chains, colloids , or cyclols . He won the Nobel Prize for this achievement in 1958. Christian Anfinsen 's studies of the oxidative folding process of ribonuclease A, for which he won

10815-492: Was assigned in alphabetical sequence to N for asparagine , being larger by merely one methylene –CH2– group. Note that P was used for proline, and O was avoided due to similarity with D. The mnemonic Q lutamine was also proposed. Glutamine plays a role in a variety of biochemical functions: Glutamine maintains redox balance by participating in glutathione synthesis and contributing to anabolic processes such as lipid synthesis by reductive carboxylation. Glutamine provides

10920-581: Was not fully appreciated until 1926, when James B. Sumner showed that the enzyme urease was in fact a protein. Linus Pauling is credited with the successful prediction of regular protein secondary structures based on hydrogen bonding , an idea first put forth by William Astbury in 1933. Later work by Walter Kauzmann on denaturation , based partly on previous studies by Kaj Linderstrøm-Lang , contributed an understanding of protein folding and structure mediated by hydrophobic interactions . The first protein to have its amino acid chain sequenced

11025-501: Was originally thought to function primarily as a sensor of xenobiotic chemicals and also as the regulator of enzymes such as cytochrome P450s that metabolize these chemicals. The most notable of these xenobiotic chemicals are aromatic (aryl) hydrocarbons from which the receptor derives its name. More recently, it has been discovered that AhR is activated (or deactivated) by a number of endogenous indole derivatives such as kynurenine . In addition to regulating metabolism enzymes,

#733266