Misplaced Pages

Wright Model A

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The Wright Model A is an early aircraft produced by the Wright Brothers in the United States beginning in 1906. It was a development of their Flyer III airplane of 1905. The Wrights built about seven Model A's in their bicycle shop during the period 1906–1907, in which they did no flying. One of these was shipped to Le Havre in 1907 in order to demonstrate it to the French. The Model A had a 35-horsepower (26 kW) engine and seating for two with a new control arrangement. Otherwise, it was identical to the 1905 airplane. The Model A was the first aircraft that they offered for sale, and the first aircraft design to enter serial production anywhere in the world. Apart from the seven machines the Wrights built themselves in 1906–1907, they sold licences for production in Europe with the largest number of Model A's actually being produced in Germany by Flugmaschine Wright GmbH , which built about 60 examples.

#183816

120-538: The 1909 Military Flyer was a one-of-a-kind Model A built by the Wright Brothers . With wings shortened two feet, higher skid undercarriage and the same engine salvaged from the 1908 Wright Military Flyer wrecked at Fort Myer , it differed from the standard Wright A in size and had a faster speed. The aircraft was demonstrated at Fort Myer, Virginia , beginning June 28, 1909 for the Aeronautical Division of

240-765: A bishop in the Church of the United Brethren in Christ , he traveled often and the Wrights frequently moved – twelve times before finally returning permanently to Dayton in 1884. In elementary school, Orville was given to mischief and was once expelled. In 1878, when the family lived in Cedar Rapids, Iowa , their father brought home a toy helicopter for his two younger sons. The device was based on an invention of French aeronautical pioneer Alphonse Pénaud . Made of paper, bamboo and cork with

360-505: A whirling arm apparatus to determine drag and did some of the first experiments in aviation theory. Sir George Cayley (1773–1857) also used a whirling arm to measure the drag and lift of various airfoils. His whirling arm was 5 feet (1.5 m) long and attained top speeds between 10 and 20 feet per second (3 to 6 m/s). Otto Lilienthal used a rotating arm to accurately measure wing airfoils with varying angles of attack , establishing their lift-to-drag ratio polar diagrams, but

480-505: A centrifugal blower in 1897, and determined the drag coefficients of flat plates, cylinders and spheres. Danish inventor Poul la Cour applied wind tunnels in his process of developing and refining the technology of wind turbines in the early 1890s. Carl Rickard Nyberg used a wind tunnel when designing his Flugan from 1897 and onwards. In a classic set of experiments, the Englishman Osborne Reynolds (1842–1912) of

600-483: A factor), and so is not directly useful for accurate measurements. The air moving through the tunnel needs to be relatively turbulence-free and laminar . To correct this problem, closely spaced vertical and horizontal air vanes are used to smooth out the turbulent airflow before reaching the subject of the testing. Due to the effects of viscosity , the cross-section of a wind tunnel is typically circular rather than square, because there will be greater flow constriction in

720-416: A few times, but the parachute effect of the forward elevator allowed Wilbur to make a safe flat landing, instead of a nose-dive. These incidents wedded the Wrights even more strongly to the canard design, which they did not give up until 1910. The glider, however, delivered two major disappointments. It produced only about one-third the lift calculated and sometimes pointed opposite the intended direction of

840-449: A few wing shapes, and the Wrights mistakenly assumed the data would apply to their wings, which had a different shape. The Wrights took a huge step forward and made basic wind tunnel tests on 200 scale-model wings of many shapes and airfoil curves, followed by detailed tests on 38 of them. An important discovery was the benefit of longer narrower wings: in aeronautical terms, wings with a larger aspect ratio (wingspan divided by chord –

960-497: A flexible strip. The strip is attached to the aerodynamic surface with tape, and it sends signals depicting the pressure distribution along its surface. Pressure distributions on a test model can also be determined by performing a wake survey , in which either a single pitot tube is used to obtain multiple readings downstream of the test model, or a multiple-tube manometer is mounted downstream and all its readings are taken. The aerodynamic properties of an object can not all remain

1080-415: A flying machine could be controlled and balanced with practice. This was a trend, as many other aviation pioneers were also dedicated cyclists and involved in the bicycle business in various ways. From 1900 until their first powered flights in late 1903, the brothers conducted extensive glider tests that also developed their skills as pilots. Their shop mechanic Charles Taylor became an important part of

1200-409: A flying machine, but rather a system of aerodynamic control that manipulated a flying machine's surfaces. From the beginning of their aeronautical work, Wilbur and Orville focused on developing a reliable method of pilot control as the key to solving "the flying problem". This approach differed significantly from other experimenters of the time who put more emphasis on developing powerful engines. Using

1320-454: A good way for a flying machine to turn – to "bank" or "lean" into the turn just like a bird – and just like a person riding a bicycle, an experience with which they were thoroughly familiar. Equally important, they hoped this method would enable recovery when the wind tilted the machine to one side (lateral balance). They puzzled over how to achieve the same effect with man-made wings and eventually discovered wing-warping when Wilbur idly twisted

SECTION 10

#1732844557184

1440-405: A greater quantity of air than a single relatively slow propeller and not disturb airflow over the leading edge of the wings. Wilbur made a March 1903 entry in his notebook indicating the prototype propeller was 66% efficient. Modern wind tunnel tests on reproduction 1903 propellers show they were more than 75% efficient under the conditions of the first flights, "a remarkable feat", and actually had

1560-557: A long inner-tube box at the bicycle shop. Other aeronautical investigators regarded flight as if it were not so different from surface locomotion, except the surface would be elevated. They thought in terms of a ship's rudder for steering, while the flying machine remained essentially level in the air, as did a train or an automobile or a ship at the surface. The idea of deliberately leaning, or rolling, to one side seemed either undesirable or did not enter their thinking. Some of these other investigators, including Langley and Chanute, sought

1680-405: A pair of fans driven by 4,000 hp (3,000 kW) electric motors. The layout was a double-return, closed-loop format and could accommodate many full-size real aircraft as well as scale models. The tunnel was eventually closed and, even though it was declared a National Historic Landmark in 1995, demolition began in 2010. Until World War II, the world's largest wind tunnel, built in 1932–1934,

1800-414: A peak efficiency of 82%. The Wrights wrote to several engine manufacturers, but none could meet their need for a sufficiently light-weight powerplant. They turned to their shop mechanic, Charlie Taylor , who built an engine in just six weeks in close consultation with the brothers. To keep the weight down the engine block was cast from aluminum, a rare practice at the time. The Wright/Taylor engine had

1920-414: A primitive version of a carburetor , and had no fuel pump . Gasoline was gravity -fed from the fuel tank mounted on a wing strut into a chamber next to the cylinders where it was mixed with air: The fuel-air mixture was then vaporized by heat from the crankcase, forcing it into the cylinders. Wind tunnel Wind tunnels are machines in which objects are held stationary inside a tube, and air

2040-410: A rubber band to twirl its rotor, it was about 1 ft (30 cm) long. Wilbur and Orville played with it until it broke, and then built their own. In later years, they pointed to their experience with the toy as the spark of their interest in flying. Both brothers attended high school, but did not receive diplomas. The family's abrupt move in 1884 from Richmond, Indiana , to Dayton , Ohio, where

2160-452: A serial killer. Wilbur lost his front teeth. He had been vigorous and athletic until then, and although his injuries did not appear especially severe, he became withdrawn. He had planned to attend Yale. Instead, he spent the next few years largely housebound. During this time he cared for his mother, who was terminally ill with tuberculosis, read extensively in his father's library and ably assisted his father during times of controversy within

2280-448: A small home-built wind tunnel , the Wrights also collected more accurate data than any before, enabling them to design more efficient wings and propellers. The brothers gained the mechanical skills essential to their success by working for years in their Dayton, Ohio -based shop with printing presses, bicycles, motors, and other machinery. Their work with bicycles, in particular, influenced their belief that an unstable vehicle such as

2400-414: A tail was not necessary, and their first two gliders did not have one. According to some Wright biographers, Wilbur probably did all the gliding until 1902, perhaps to exercise his authority as older brother and to protect Orville from harm as he did not want to have to explain to their father, Bishop Wright, if Orville got injured. * (This airfoil caused severe stability problems; the Wrights modified

2520-478: A thorough report about the 1900–1901 glider experiments and complemented his talk with a lantern slide show of photographs. Wilbur's speech was the first public account of the brothers' experiments. A report was published in the Journal of the society, which was then separately published as an offprint titled Some Aeronautical Experiments in a 300 copy printing. Lilienthal had made "whirling arm" tests on only

SECTION 20

#1732844557184

2640-402: A time with so few materials and at so little expense". In their September 1908 Century Magazine article, the Wrights explained, "The calculations on which all flying machines had been based were unreliable, and ... every experiment was simply groping in the dark ... We cast it all aside and decided to rely entirely upon our own investigations." The 1902 glider wing had a flatter airfoil, with

2760-481: A trove of valuable data never before known and showed that the poor lift of the 1900 and 1901 gliders was entirely due to an incorrect Smeaton value, and that Lilienthal's published data were fairly accurate for the tests he had done. Before the detailed wind tunnel tests, Wilbur traveled to Chicago at Chanute's invitation to give a lecture to the Western Society of Engineers on September 18, 1901. He presented

2880-402: A turn – a problem later known as adverse yaw – when Wilbur used the wing-warping control. On the trip home a deeply dejected Wilbur remarked to Orville that man would not fly in a thousand years. The poor lift of the gliders led the Wrights to question the accuracy of Lilienthal's data, as well as the " Smeaton coefficient" of air pressure, a value which had been in use for over 100 years and

3000-431: A wind tunnel type of test during an actual flight in order to refine the computational model. Where external turbulent flow is present, CFD is not practical due to limitations in present-day computing resources. For example, an area that is still much too complex for the use of CFD is determining the effects of flow on and around structures, bridges, and terrain. The most effective way to simulative external turbulent flow

3120-401: Is blown around it to study the interaction between the object and the moving air. They are used to test the aerodynamic effects of aircraft , rockets , cars , and buildings . Different wind tunnels range in size from less than a foot across, to over 100 feet (30 m), and can have air that moves at speeds from a light breeze to hypersonic velocities. Usually, large fans move air through

3240-405: Is blown or sucked through a duct equipped with a viewing port and instrumentation where models or geometrical shapes are mounted for study. Typically the air is moved through the tunnel using a series of fans. For very large wind tunnels several meters in diameter, a single large fan is not practical, and so instead an array of multiple fans are used in parallel to provide sufficient airflow. Due to

3360-523: Is for understanding exhaust gas dispersion patterns for hospitals, laboratories, and other emitting sources. Other examples of boundary layer wind tunnel applications are assessments of pedestrian comfort and snow drifting. Wind tunnel modeling is accepted as a method for aiding in green building design. For instance, the use of boundary layer wind tunnel modeling can be used as a credit for Leadership in Energy and Environmental Design (LEED) certification through

3480-416: Is particularly important in open cockpit race cars such as Indycar and Formula One. Excessive lift forces on the helmet can cause considerable neck strain on the driver, and flow separation on the back side of the helmet can cause turbulent buffeting and thus blurred vision for the driver at high speeds. The advances in computational fluid dynamics (CFD) modelling on high-speed digital computers has reduced

3600-409: Is through the use of a boundary layer wind tunnel. There are many applications for boundary layer wind tunnel modeling. For example, understanding the impact of wind on high-rise buildings, factories, bridges, etc. can help building designers construct a structure that stands up to wind effects in the most efficient manner possible. Another significant application for boundary layer wind tunnel modeling

3720-520: The University of Manchester demonstrated that the airflow pattern over a scale model would be the same for the full-scale vehicle if a certain flow parameter were the same in both cases. This factor, now known as the Reynolds number , is a basic parameter in the description of all fluid-flow situations, including the shapes of flow patterns, the ease of heat transfer, and the onset of turbulence. This comprises

Wright Model A - Misplaced Pages Continue

3840-426: The camber reduced to a ratio of 1-in-24, in contrast to the previous thicker wing. The larger aspect ratio was achieved by increasing the wingspan and shortening the chord. The glider also had a new structural feature: A fixed, rear vertical rudder, which the brothers hoped would eliminate turning problems. However, the 1902 glider encountered trouble in crosswinds and steep banked turns, when it sometimes spiraled into

3960-404: The coefficient of drag replaces the coefficient of lift , computing drag instead of lift. They used this equation to answer the question, "Is there enough power in the engine to produce a thrust adequate to overcome the drag of the total frame ...," in the words of Combs. The Wrights then "... measured the pull in pounds on various parts of their aircraft, including the pull on each of

4080-417: The static pressure , and (for compressible flow only) the temperature rise in the airflow. The direction of airflow around a model can be determined by tufts of yarn attached to the aerodynamic surfaces. The direction of airflow approaching a surface can be visualized by mounting threads in the airflow ahead of and aft of the test model. Smoke or bubbles of liquid can be introduced into the airflow upstream of

4200-413: The 1960s, wind tunnel testing began to receive widespread adoption for automobiles , not so much to determine aerodynamic forces in the same way as an airplane, but to increase the fuel efficiency of vehicles by reducing the aerodynamic drag. In these studies, the interaction between the road and the vehicle plays a significant role, and this interaction must be taken into consideration when interpreting

4320-586: The Brethren Church, but also expressed unease over his own lack of ambition. Orville dropped out of high school after his junior year to start a printing business in 1889, having designed and built his own printing press with Wilbur's help. Wilbur joined the print shop, and in March the brothers launched a weekly newspaper, the West Side News . Subsequent issues listed Orville as publisher and Wilbur as editor on

4440-451: The Smeaton coefficient; Chanute identified up to 50 of them. Wilbur knew that Langley, for example, had used a lower number than the traditional one. Intent on confirming the correct Smeaton value, Wilbur performed his own calculations using measurements collected during kite and free flights of the 1901 glider. His results correctly showed that the coefficient was very close to 0.0033 (similar to

4560-510: The U.S. Army Signal Corps , which offered a contract of $ 25,000 ($ 847,778 in 2022 dollars) for an aircraft capable of flying at 40 miles per hour (64 km/h), with two people on board, and a distance of 125 miles (201 km). After rigorous trials the Signal Corps accepted the airplane as "Signal Corps (S.C.) No. 1", August 2, 1909, and paid the brothers $ 30,000 ($ 1,017,333 in 2022 US dollars). The aircraft were not referred to as 'Model A' by

4680-519: The U.S. Green Building Council. Wind tunnel tests in a boundary layer wind tunnel allow for the natural drag of the Earth's surface to be simulated. For accuracy, it is important to simulate the mean wind speed profile and turbulence effects within the atmospheric boundary layer. Most codes and standards recognize that wind tunnel testing can produce reliable information for designers, especially when their projects are in complex terrain or on exposed sites. In

4800-459: The United States as part of the plan to exploit German technology developments. For limited applications, computational fluid dynamics (CFD) can supplement or possibly replace the use of wind tunnels. For example, the experimental rocket plane SpaceShipOne was designed without any use of wind tunnels. However, on one test, flight threads were attached to the surface of the wings, performing

4920-403: The United States, many wind tunnels have been decommissioned from 1990 to 2010, including some historic facilities. Pressure is brought to bear on remaining wind tunnels due to declining or erratic usage, high electricity costs, and in some cases the high value of the real estate upon which the facility sits. On the other hand, CFD validation still requires wind-tunnel data, and this is likely to be

Wright Model A - Misplaced Pages Continue

5040-706: The Wilbur Method, the roll and yaw controls were combined on the same lever at the pilot's right hand. A forward-backward movement controlled the rudder, while a sideways or left-and-right motion controlled wing-warping. In the Orville Method, moving the stick controlled wing-warping, while a knob atop the stick controlled the rudder. In both methods the left-hand lever operated the forward elevator to control pitch. Wilbur trained French and Italian pilots using his method, and Orville trained German pilots while in Germany in 1909 for

5160-577: The Wright GmbH as well as American pilots at the Wright Company flight school using his method. Data from US Army Aircraft 1908–1946 General characteristics Performance Related development Wright Brothers The Wright brothers , Orville Wright (August 19, 1871 – January 30, 1948) and Wilbur Wright (April 16, 1867 – May 30, 1912), were American aviation pioneers generally credited with inventing, building, and flying

5280-550: The Wright children had middle names. Instead, their father tried hard to give them distinctive first names. Wilbur was named for Willbur Fisk and Orville for Orville Dewey , both clergymen that Milton Wright admired. They were "Will" and "Orv" to their friends and in Dayton, their neighbors knew them simply as "the Bishop's kids", or "the Bishop's boys". Because of their father's position as

5400-501: The Wrights, but the term was likely created by the U.S. Army after purchasing a Flyer of 1909 and purchasing later Model B's. At different times prior to 1909 the aircraft were called the following: 'Wilbur Wright machine', 'Wright 1905 Flyer', and by later surviving Wright pilots and personnel 'twin-propellered Wright with head' ('the head' referring to the front elevator). As more Wright models were built after 1910 their natural designations became B, C, D etc. to differentiate one model from

5520-584: The above, however, that they were simply using the accepted technology of the day, though this was not yet a common technology in America. In France , Gustave Eiffel (1832–1923) built his first open-return wind tunnel in 1909, powered by a 67 hp (50 kW) electric motor, at Champs-de-Mars, near the foot of the tower that bears his name. Between 1909 and 1912 Eiffel ran about 4,000 tests in his wind tunnel, and his systematic experimentation set new standards for aeronautical research. In 1912 Eiffel's laboratory

5640-484: The air standing still and an aircraft moving, an object would be held still and the air moved around it. In this way, a stationary observer could study the flying object in action, and could measure the aerodynamic forces acting on it. The development of wind tunnels accompanied the development of the airplane. Large wind tunnels were built during World War II, and as supersonic aircraft were developed, supersonic wind tunnels were constructed to test them. Wind tunnel testing

5760-430: The air with no previous flying experience. Although agreeing with Lilienthal's idea of practice, the Wrights saw that his method of balance and control by shifting his body weight was inadequate. They were determined to find something better. On the basis of observation, Wilbur concluded that birds changed the angle of the ends of their wings to make their bodies roll right or left. The brothers decided this would also be

5880-400: The airstream to show the path that air takes around the object. Or, small threads can be attached to specific parts to show the airflow at those points. The earliest wind tunnels were invented towards the end of the 19th century, in the early days of aeronautical research, as part of the effort to develop heavier-than-air flying machines. The wind tunnel reversed the usual situation. Instead of

6000-582: The answers out of a wind tunnel." In 1941 the US constructed one of the largest wind tunnels at that time at Wright Field in Dayton, Ohio. This wind tunnel starts at 45 feet (14 m) and narrows to 20 feet (6.1 m) in diameter. Two 40-foot (12 m) fans were driven by a 40,000 hp electric motor. Large scale aircraft models could be tested at air speeds of 400 mph (640 km/h). During WWII, Germany developed different designs of large wind tunnels to further their knowledge of aeronautics. For example,

6120-658: The brothers built the powered Wright Flyer , using their preferred material for construction, spruce , a strong and lightweight wood, and Pride of the West muslin for surface coverings. They also designed and carved their own wooden propellers, and had a purpose-built gasoline engine fabricated in their bicycle shop. They thought propeller design would be a simple matter and intended to adapt data from shipbuilding. However, their library research disclosed no established formulae for either marine or air propellers, and they found themselves with no sure starting point. They discussed and argued

SECTION 50

#1732844557184

6240-450: The brothers favored his strategy: to practice gliding in order to master the art of control before attempting motor-driven flight. The death of British aeronaut Percy Pilcher in another hang gliding crash in October 1899 only reinforced their opinion that a reliable method of pilot control was the key to successful – and safe – flight. At the outset of their experiments they regarded control as

6360-402: The brothers put wing warping to the test by building and flying a biplane kite with a 5-foot (1.5 m) wingspan, and a curved wing with a 1-foot (0.30 m) chord . When the wings were warped, or twisted, the trailing edge that was warped down produced more lift than the opposite wing, causing a rolling motion. The warping was controlled by four lines between kite and crossed sticks held by

6480-624: The building will collapse. Determining such forces was required before building codes could specify the required strength of such buildings and these tests continue to be used for large or unusual buildings. Wind tunnel testing was first applied to automobiles as early as the 1920s, on cars such as the Rumpler Tropfenwagen , and later the Chrysler Airflow . Initially, automakers would test out scale models of their cars, but later, full scale automotive wind tunnels were built. Starting in

6600-420: The camber on-site.) The brothers flew the glider for only a few days in the early autumn of 1900 at Kitty Hawk. In the first tests, probably on October 3, Wilbur was aboard while the glider flew as a kite not far above the ground with men below holding tether ropes. Most of the kite tests were unpiloted, with sandbags or chains and even a local boy as ballast. They tested wing-warping using control ropes from

6720-546: The case for the foreseeable future. Studies have been done and others are underway to assess future military and commercial wind tunnel needs, but the outcome remains uncertain. More recently an increasing use of jet-powered, instrumented unmanned vehicles, or research drones, have replaced some of the traditional uses of wind tunnels. The world's fastest wind tunnel as of 2019 is the LENS-X wind tunnel, located in Buffalo, New York. Air

6840-478: The central scientific justification for the use of models in wind tunnels to simulate real-life phenomena. However, there are limitations on conditions in which dynamic similarity is based upon the Reynolds number alone. The Wright brothers ' use of a simple wind tunnel in 1901 to study the effects of airflow over various shapes while developing their Wright Flyer was in some ways revolutionary. It can be seen from

6960-400: The change in direction – was done with roll control using wing-warping. The principles remained the same when ailerons superseded wing-warping. With their new method, the Wrights achieved true control in turns for the first time on October 9, a major milestone. From September 20 until the last weeks of October, they flew over a thousand flights. The longest duration was up to 26 seconds, and

7080-428: The corners of a square tunnel that can make the flow turbulent. A circular tunnel provides a smoother flow. The inside facing of the tunnel is typically as smooth as possible, to reduce surface drag and turbulence that could impact the accuracy of the testing. Even smooth walls induce some drag into the airflow, and so the object being tested is usually kept near the center of the tunnel, with an empty buffer zone between

7200-403: The demand for wind tunnel testing, but has not completely eliminated it. Many real-world problems can still not be modeled accurately enough by CFD to eliminate the need for physical tests in wind tunnels. Air velocity and pressures are measured in several ways in wind tunnels. Air velocity through the test section is determined by Bernoulli's principle . Measurement of the dynamic pressure ,

7320-414: The direction of smoke from a ship's stack, to whether a given airplane would fly. Progress at Aachen, I felt, would be virtually impossible without a good wind tunnel. When von Kármán began to consult with Caltech he worked with Clark Millikan and Arthur L. Klein. He objected to their design and insisted on a return flow making the device "independent of the fluctuations of the outside atmosphere". It

SECTION 60

#1732844557184

7440-447: The dramatic glides by Otto Lilienthal in Germany. 1896 brought three important aeronautical events. In May, Smithsonian Institution Secretary Samuel Langley successfully flew an unmanned steam-powered fixed-wing model aircraft. In mid-year, Chicago engineer and aviation authority Octave Chanute brought together several men who tested various types of gliders over the sand dunes along the shore of Lake Michigan. In August, Lilienthal

7560-576: The elusive ideal of "inherent stability", believing the pilot of a flying machine would not be able to react quickly enough to wind disturbances to use mechanical controls effectively. The Wright brothers, on the other hand, wanted the pilot to have absolute control. For that reason, their early designs made no concessions toward built-in stability (such as dihedral wings). They deliberately designed their 1903 first powered flyer with anhedral (drooping) wings, which are inherently unstable, but less susceptible to upset by gusty cross winds. On July 27, 1899,

7680-416: The end of the war, Germany had at least three different supersonic wind tunnels, with one capable of Mach 4.4 (heated) airflows. A large wind tunnel under construction near Oetztal , Austria would have had two fans directly driven by two 50,000 horsepower hydraulic turbines . The installation was not completed by the end of the war and the dismantled equipment was shipped to Modane , France in 1946 where it

7800-399: The family had lived during the 1870s, prevented Wilbur from receiving his diploma after finishing four years of high school. The diploma was awarded posthumously to Wilbur on April 16, 1994, which would have been his 127th birthday. In late 1885 or early 1886, while playing an ice-skating game with friends Wilbur was struck in the face by a hockey stick by Oliver Crook Haugh, who later became

7920-536: The first circle, followed in 1905 by the first truly practical fixed-wing aircraft , the Wright Flyer III . The brothers' breakthrough invention was their creation of a three-axis control system , which enabled the pilot to steer the aircraft effectively and to maintain its equilibrium. Their system of aircraft controls made fixed-wing powered flight possible and remains standard on airplanes of all kinds. Their first U.S. patent did not claim invention of

8040-473: The first enclosed wind tunnel in 1871. Once this breakthrough had been achieved, detailed technical data was rapidly extracted by the use of this tool. Wenham and his colleague John Browning are credited with many fundamental discoveries, including the measurement of l/d ratios, and the revelation of the beneficial effects of a high aspect ratio . Konstantin Tsiolkovsky built an open-section wind tunnel with

8160-452: The first person singular became the plural "we" and "our". Author James Tobin asserts, "it is impossible to imagine Orville, bright as he was, supplying the driving force that started their work and kept it going from the back room of a store in Ohio to conferences with capitalists, presidents, and kings. Will did that. He was the leader, from the beginning to the end." Despite Lilienthal's fate,

8280-491: The glider banked into a turn, rudder pressure overcame the effect of differential drag and pointed the nose of the aircraft in the direction of the turn, eliminating adverse yaw. In short, the Wrights discovered the true purpose of the movable vertical rudder. Its role was not to change the direction of flight, as a rudder does in sailing, but rather, to aim or align the aircraft correctly during banking turns and when leveling off from turns and wind disturbances. The actual turn –

8400-407: The government meteorologist stationed there. Kitty Hawk, although remote, was closer to Dayton than other places Chanute had suggested, including California and Florida. The spot also gave them privacy from reporters, who had turned the 1896 Chanute experiments at Lake Michigan into something of a circus. Chanute visited them in camp each season from 1901 to 1903 and saw gliding experiments, but not

8520-417: The ground – a phenomenon the brothers called "well digging". According to Combs , "They knew that when the earlier 1901 glider banked, it would begin to slide sideways through the air, and if the side motion was left uncorrected, or took place too quickly, the glider would go into an uncontrolled pivoting motion. Now, with vertical fins added to correct this, the glider again went into a pivoting motion, but in

8640-472: The ground. The glider was also tested unmanned while suspended from a small homemade tower. Wilbur, but not Orville, made about a dozen free glides on only a single day, October 20. For those tests the brothers trekked four miles (6   km) south to the Kill Devil Hills , a group of sand dunes up to 100 feet (30 m) high (where they made camp in each of the next three years). Although the glider's lift

8760-416: The horizontal wheel. Attached vertically to the wheel were an airfoil and a flat plate mounted 90° away. As air passed by the airfoil, the lift it generated, if unopposed, would cause the wheel to rotate. The flat plate was oriented so its drag would push the wheel in the opposite direction of the airfoil. The airfoil and flat plate were made in specific sizes such that, according to Lilienthal's measurements,

8880-439: The kite flyer. In return, the kite was under lateral control. In 1900 the brothers went to Kitty Hawk , North Carolina, to begin their manned gliding experiments. In his reply to Wilbur's first letter, Octave Chanute had suggested the mid-Atlantic coast for its regular breezes and soft sandy landing surface. Wilbur also requested and examined U.S. Weather Bureau data, and decided on Kitty Hawk after receiving information from

9000-583: The lift generated by the airfoil would exactly counterbalance the drag generated by the flat plate and the wheel would not turn. However, when the brothers tested the device, the wheel did turn. The experiment confirmed their suspicion that either the standard Smeaton coefficient or Lilienthal's coefficients of lift and drag – or all of them – were in error. They then built a six-foot (1.8 m) wind tunnel in their shop, and between October and December 1901 conducted systematic tests on dozens of miniature wings. The "balances" they devised and mounted inside

9120-501: The longest distance more than 600 feet (180 m). Having demonstrated lift, control, and stability, the brothers now turned their focus to the problem of power. Thus did three-axis control evolve: wing-warping for roll (lateral motion), forward elevator for pitch (up and down) and rear rudder for yaw (side to side). On March 23, 1903, the Wrights applied for their famous patent for a "Flying Machine", based on their successful 1902 glider. Some aviation historians believe that applying

9240-503: The masthead. In April 1890 they converted the paper to a daily, The Evening Item , but it lasted only four months. They then focused on commercial printing. One of their clients was Orville's friend and classmate, Paul Laurence Dunbar , who rose to international acclaim as a ground-breaking African-American poet and writer. For a brief period the Wrights printed the Dayton Tattler , a weekly newspaper that Dunbar edited. Capitalizing on

9360-522: The material they thought was needed to be self-sufficient at Kitty Hawk. Besides living in tents once again, they built a combination workshop and hangar. Measuring 25 feet (7.6 m) long by 16 feet (4.9 m) wide, the ends opened upward for easy glider access. Hoping to improve lift, they built the 1901 glider with a much larger wing area and made dozens of flights in July and August for distances of 50 to 400 ft (15 to 122 m). The glider stalled

9480-654: The national bicycle craze (spurred by the invention of the safety bicycle and its substantial advantages over the penny-farthing design), in December 1892 the brothers opened a repair and sales shop (the Wright Cycle Exchange, later the Wright Cycle Company ) and in 1896 began manufacturing their own brand. They used this endeavor to fund their growing interest in flight. In the early or mid-1890s they saw newspaper or magazine articles and probably photographs of

9600-432: The number Langley used), not the traditional 0.0054, which would significantly exaggerate predicted lift. The brothers decided to find out if Lilienthal's data for lift coefficients were correct. They devised an experimental apparatus which consisted of a freely rotating bicycle wheel mounted horizontally in front of the handlebars of a bicycle. The brothers took turns pedaling the bicycle vigorously, creating air flow over

9720-419: The opposite direction, with the nose swinging downward." Orville apparently visualized that the fixed rudder resisted the effect of corrective wing-warping when attempting to level off from a turn. He wrote in his diary that on the night of October 2, "I studied out a new vertical rudder". The brothers then decided to make the rear rudder movable to solve the problem. They hinged the rudder and connected it to

9840-585: The other. Later aviation historians and biographers continued with 'Model A' in providing a chronological timeline for each of the different model of Wright aircraft. Wilbur and Orville Wright devised slightly different flight controls in the Model A airplanes they flew separately in France and the United States for their 1908 and 1909 public demonstrations. The Smithsonian Institution's National Air and Space Museum refers to "The Wilbur Method" and "The Orville Method". In

9960-431: The pilot's warping "cradle", so a single movement by the pilot simultaneously controlled wing-warping and rudder deflection. The apparatus made the trailing edge of the rudder turn away from whichever end of the wings had more drag (and lift) due to warping. The opposing pressure produced by turning the rudder enabled corrective wing-warping to reliably restore level flight after a turn or a wind disturbance. Furthermore, when

10080-466: The powered flights. The Wrights based the design of their kite and full-size gliders on work done in the 1890s by other aviation pioneers. They adopted the basic design of the Chanute-Herring biplane hang glider ("double-decker" as the Wrights called it), which flew well in the 1896 experiments near Chicago, and used aeronautical data on lift that Otto Lilienthal had published. The Wrights designed

10200-431: The pressure at each hole. Pressure distributions can more conveniently be measured by the use of pressure-sensitive paint , in which higher local pressure is indicated by lowered fluorescence of the paint at that point. Pressure distributions can also be conveniently measured by the use of pressure-sensitive pressure belts , a recent development in which multiple ultra-miniaturized pressure sensor modules are integrated into

10320-428: The question, sometimes heatedly, until they concluded that an aeronautical propeller is essentially a wing rotating in the vertical plane. On that basis, they used data from more wind tunnel tests to design their propellers. The finished blades were just over eight feet long, made of three laminations of glued spruce. The Wrights decided on twin " pusher " propellers (counter-rotating to cancel torque), which would act on

10440-588: The same for a scaled model. However, by observing certain similarity rules, a very satisfactory correspondence between the aerodynamic properties of a scaled model and a full-size object can be achieved. The choice of similarity parameters depends on the purpose of the test, but the most important conditions to satisfy are usually: In certain particular test cases, other similarity parameters must be satisfied, such as e.g. Froude number . English military engineer and mathematician Benjamin Robins (1707–1751) invented

10560-403: The sheer volume and speed of air movement required, the fans may be powered by stationary turbofan engines rather than electric motors. The airflow created by the fans that is entering the tunnel is itself highly turbulent due to the fan blade motion (when the fan is blowing air into the test section – when it is sucking air out of the test section downstream, the fan-blade turbulence is not

10680-475: The system of three-axis flight control on the 1902 glider was equal to, or even more significant, than the addition of power to the 1903 Flyer. Peter Jakab of the Smithsonian asserts that perfection of the 1902 glider essentially represents invention of the airplane. In addition to developing the lift equation, the brothers also developed the equation for drag. It is of the same form as the lift equation, except

10800-531: The team, building their first airplane engine in close collaboration with the brothers. The Wright brothers' status as inventors of the airplane has been subject to numerous counter-claims. Much controversy persists over the many competing claims of early aviators . Wilbur and Orville Wright were two of seven children born to Milton Wright (1828–1917), a clergyman of English and Dutch ancestry, and Susan Catherine Koerner (1831–1889), of German and Swiss ancestry. Milton Wright's mother, Catherine Reeder,

10920-426: The test model, and their path around the model can be photographed (see particle image velocimetry ). Aerodynamic forces on the test model are usually measured with beam balances , connected to the test model with beams, strings, or cables. The pressure distributions across the test model have historically been measured by drilling many small holes along the airflow path, and using multi-tube manometers to measure

11040-556: The test results. In the real world, the vehicle is moving while the road and air are stationary. In a wind tunnel test, the road must also be moved past a vehicle along with air being blown around it. This has been accomplished with moving belts under the test vehicle to simulate the moving road, and very similar devices are used in wind tunnel testing of aircraft take-off and landing configurations. Sporting equipment has also studied in wind tunnels, including golf clubs, golf balls, bobsleds, cyclists, and race car helmets. Helmet aerodynamics

11160-422: The tunnel to hold the wings looked crude, made of bicycle spokes and scrap metal, but were "as critical to the ultimate success of the Wright brothers as were the gliders." The devices allowed the brothers to balance lift against drag and accurately calculate the performance of each wing. They could also see which wings worked well as they looked through the viewing window in the top of the tunnel. The tests yielded

11280-414: The unsolved third part of "the flying problem". The other two parts – wings and engines – they believed were already sufficiently promising. The Wright brothers' plan thus differed sharply from more experienced practitioners of the day, notably Ader , Maxim , and Langley , who all built powerful engines, attached them to airframes equipped with untested control devices, and expected to take to

11400-459: The wind stream is upwards for the testing of models in spin situations and the concepts and engineering designs for the first primitive helicopters flown in the US. Later research into airflows near or above the speed of sound used a related approach. Metal pressure chambers were used to store high-pressure air which was then accelerated through a nozzle designed to provide supersonic flow. The observation or instrumentation chamber ("test section")

11520-404: The wind tunnel at Peenemünde was a novel wind tunnel design that allowed for high-speed airflow research, but brought several design challenges regarding constructing a high-speed wind tunnel at scale. However, it successfully used some large natural caves which were increased in size by excavation and then sealed to store large volumes of air which could then be routed through the wind tunnels. By

11640-516: The wind tunnel, while the object being tested is held stationary. The object can be an aerodynamic test object such as a cylinder or an airfoil, an individual component of an aircraft, a small model of the vehicle, or, in the largest tunnels, even a full-sized vehicle. Different measurements can be taken from these tests. The aerodynamic forces on the entire object can be measured, or on individual components of it. The air pressure at different points can be measured with sensors. Smoke can be introduced into

11760-692: The wing and land on his feet with his arms wrapped over the framework. Within a few glides, however, they discovered the pilot could remain prone on the wing, headfirst, without undue danger when landing. They made all their flights in that position for the next five years. Before returning to Kitty Hawk in the summer of 1901, Wilbur published two articles, "The Angle of Incidence" in The Aeronautical Journal , and "The Horizontal Position During Gliding Flight" in Illustrierte Aeronautische Mitteilungen . The brothers brought all of

11880-429: The wing's front-to-back dimension). Such shapes offered much better lift-to-drag ratio than the stubbier wings the brothers had tried so far. With this knowledge, and a more accurate Smeaton number, the Wrights designed their 1902 glider. The wind tunnel tests, made from October to December 1901, were described by biographer Fred Howard as "the most crucial and fruitful aeronautical experiments ever conducted in so short

12000-451: The wings of the Wright glider were braced by wires in their own version of Chanute's modified Pratt truss , a bridge-building design he used for his biplane glider (initially built as a triplane). The Wrights mounted the horizontal elevator in front of the wings rather than behind, apparently believing this feature would help to avoid, or protect them from, a nosedive and crash like the one that killed Lilienthal. Wilbur incorrectly believed

12120-416: The wings of the biplane in level position in known wind velocities ... They also devised a formula for power-to-weight ratio and propeller efficiency that would answer whether or not they could supply to the propellers the power necessary to deliver the thrust to maintain flight ... they even computed the thrust of their propellers to within 1 percent of the thrust actually delivered ..." In 1903

12240-420: The wings with camber , a curvature of the top surface. The brothers did not discover this principle, but took advantage of it. The better lift of a cambered surface compared to a flat one was first discussed scientifically by Sir George Cayley . Lilienthal, whose work the Wrights carefully studied, used cambered wings in his gliders, proving in flight the advantage over flat surfaces. The wooden uprights between

12360-425: The work of Sir George Cayley , Chanute, Lilienthal, Leonardo da Vinci , and Langley, they began their mechanical aeronautical experimentation that year. The Wright brothers always presented a unified image to the public, sharing equally in the credit for their invention. Biographers note that Wilbur took the initiative in 1899 and 1900, writing of "my" machine and "my" plans before Orville became deeply involved when

12480-565: The world at that time at the Washington Navy Yard. The inlet was almost 11 feet (3.4 m) in diameter and the discharge part was 7 feet (2.1 m) in diameter. A 500 hp (370 kW) electric motor drove the paddle type fan blades. In 1931 the NACA built a 30 by 60 feet (9.1 by 18.3 m) full-scale wind tunnel at Langley Research Center in Hampton, Virginia. The tunnel was powered by

12600-513: The world's first successful airplane . They made the first controlled, sustained flight of an engine-powered, heavier-than-air aircraft with the Wright Flyer on December 17, 1903, four miles (6 km) south of Kitty Hawk, North Carolina , at what is now known as Kill Devil Hills . In 1904 the Wright brothers developed the Wright Flyer II , which made longer-duration flights including

12720-545: Was Theodore von Kármán 's teacher at Göttingen University and suggested the construction of a wind tunnel for tests of airships they were designing. The vortex street of turbulence downstream of a cylinder was tested in the tunnel. When he later moved to Aachen University he recalled use of this facility: I remembered the wind tunnel in Göttingen was started as a tool for studies of Zeppelin behavior, but that it had proven to be valuable for everything else from determining

12840-454: Was an arrangement followed by a number of wind tunnels later built; in fact the open-return low-speed wind tunnel is often called the Eiffel-type wind tunnel. Subsequent use of wind tunnels proliferated as the science of aerodynamics and discipline of aeronautical engineering were established and air travel and power were developed. The US Navy in 1916 built one of the largest wind tunnels in

12960-573: Was born near Millville, Indiana , in 1867; Orville in Dayton, Ohio , in 1871. The brothers never married. The other Wright siblings were Reuchlin (1861–1920), Lorin (1862–1939), Katharine (1874–1929), and twins Otis and Ida (born 1870, died in infancy). The direct paternal ancestry goes back to a Samuel Wright (b. 1606 in Essex , England) who sailed to America and settled in Massachusetts in 1636 . None of

13080-513: Was completed in 1930 and used for Northrop Alpha testing. In 1939 General Arnold asked what was required to advance the USAF, and von Kármán answered, "The first step is to build the right wind tunnel." On the other hand, after the successes of the Bell X-2 and prospect of more advanced research, he wrote, "I was in favor of constructing such a plane because I have never believed that you can get all

13200-488: Was considered of strategic importance during the Cold War for development of aircraft and missiles. Other problems are also studied with wind tunnels. The effects of wind on man-made structures need to be studied when buildings became tall enough to be significantly affected by the wind. Very tall buildings present large surfaces to the wind, and the resulting forces have to be resisted by the building's internal structure or else

13320-624: Was descended from the progenitor of the Vanderbilt family  – one of America's richest families – and the Huguenot Gano family of New Rochelle, New York . Wilbur and Orville were the 3rd great nephews of John Gano , the Revolutionary War Brigade Chaplain, who allegedly baptized President George Washington . Through John Gano they were 5th cousins 1 time removed of billionaire and aviator Howard Hughes . Wilbur

13440-563: Was killed in the plunge of his glider. These events lodged in the minds of the brothers, especially Lilienthal's death. The Wright brothers later cited his death as the point when their serious interest in flight research began. Wilbur said, "Lilienthal was without question the greatest of the precursors, and the world owes to him a great debt." In May 1899 Wilbur wrote a letter to the Smithsonian Institution requesting information and publications about aeronautics. Drawing on

13560-542: Was lacking the notions of induced drag and Reynolds numbers . However, the whirling arm does not produce a reliable flow of air impacting the test shape at a normal incidence. Centrifugal forces and the fact that the object is moving in its own wake mean that detailed examination of the airflow is difficult. Francis Herbert Wenham (1824–1908), a Council Member of the Aeronautical Society of Great Britain , addressed these issues by inventing, designing and operating

13680-409: Was less than expected, the brothers were encouraged because the craft's front elevator worked well and they had no accidents. However, the small number of free glides meant they were not able to give wing-warping a true test. The pilot lay flat on the lower wing, as planned, to reduce aerodynamic drag. As a glide ended, the pilot was supposed to lower himself to a vertical position through an opening in

13800-451: Was located in a suburb of Paris, Chalais-Meudon , France. It was designed to test full-size aircraft and had six large fans driven by high powered electric motors. The Chalais-Meudon wind tunnel was used by ONERA under the name S1Ch until 1976 in the development of, e.g., the Caravelle and Concorde airplanes. Today, this wind tunnel is preserved as a national monument. Ludwig Prandtl

13920-412: Was moved to Auteuil, a suburb of Paris, where his wind tunnel with a two-metre test section is still operational today. Eiffel significantly improved the efficiency of the open-return wind tunnel by enclosing the test section in a chamber, designing a flared inlet with a honeycomb flow straightener and adding a diffuser between the test section and the fan located at the downstream end of the diffuser; this

14040-443: Was part of the accepted equation for lift. L = lift in pounds k = coefficient of air pressure (Smeaton coefficient) S = total area of lifting surface in square feet V = velocity (headwind plus ground speed) in miles per hour C L = coefficient of lift (varies with wing shape) The Wrights used this equation to calculate the amount of lift that a wing would produce. Over the years a wide variety of values had been measured for

14160-425: Was poured on 22 June 1942 on a site that eventually would become Calspan , where the wind tunnel still operates. By the end of World War II, the US had built eight new wind tunnels, including the largest one in the world at Moffett Field near Sunnyvale, California, which was designed to test full size aircraft at speeds of less than 250 mph (400 km/h) and a vertical wind tunnel at Wright Field, Ohio, where

14280-465: Was re-erected and is still operated there by the ONERA . With its 26 ft (8 m) test section and airspeed up to Mach 1, it is the largest transonic wind tunnel facility in the world. Frank Wattendorf reported on this wind tunnel for a US response. On 22 June 1942, Curtiss-Wright financed construction of one of the nation's largest subsonic wind tunnels in Buffalo, NY. The first concrete for building

14400-543: Was then placed at the proper location in the throat or nozzle for the desired airspeed. In the United States, concern over the lagging of American research facilities compared to those built by the Germans led to the Unitary Wind Tunnel Plan Act of 1949, which authorized expenditure to construct new wind tunnels at universities and at military sites. Some German war-time wind tunnels were dismantled for shipment to

#183816