Misplaced Pages

Wordie Creek Formation

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The Wordie Creek Formation is an uppermost Permian and Lower Triassic geologic formation in Greenland , outcrops of which are located in Northeast Greenland National Park (until 2008 Tunu County, Danish : Østgrønland, English: East Greenland). In 2017, it was suggested to be raised to group status , as the Wordie Creek Group .

#673326

30-448: The Lower Triassic sediments in the region were discovered in 1926 independently by James Wordie and Lauge Koch , and the latter named the formation. The rock layers preserve fossils of invertebrates (e.g., ammonoids , gastropods ), fishes ( coelacanths , ray-finned fish , cartilaginous fish ) and temnospondyl amphibians, dating back to the Induan age . Following Surlyk et al.,

60-647: A country have become erodible. For example, on the Madagascar high central plateau , which constitutes approximately ten percent of that country's land area, most of the land area is devegetated, and gullies have eroded into the underlying soil to form distinctive gulleys called lavakas . These are typically 40 meters (130 ft) wide, 80 meters (260 ft) long and 15 meters (49 ft) deep. Some areas have as many as 150 lavakas/square kilometer, and lavakas may account for 84% of all sediments carried off by rivers. This siltation results in discoloration of rivers to

90-465: A dark red brown color and leads to fish kills. In addition, sedimentation of river basins implies sediment management and siltation costs.The cost of removing an estimated 135 million m of accumulated sediments due to water erosion only is likely exceeding 2.3 billion euro (€) annually in the EU and UK, with large regional differences between countries. Erosion is also an issue in areas of modern farming, where

120-432: A grain, such as pits, fractures, ridges, and scratches. These are most commonly evaluated on quartz grains, because these retain their surface markings for long periods of time. Surface texture varies from polished to frosted, and can reveal the history of transport of the grain; for example, frosted grains are particularly characteristic of aeolian sediments, transported by wind. Evaluation of these features often requires

150-458: A higher density and viscosity . In typical rivers the largest carried sediment is of sand and gravel size, but larger floods can carry cobbles and even boulders . Wind results in the transportation of fine sediment and the formation of sand dune fields and soils from airborne dust. Glaciers carry a wide range of sediment sizes, and deposit it in moraines . The overall balance between sediment in transport and sediment being deposited on

180-426: A hydrodynamic sorting process within the marine environment leading to a seaward fining of sediment grain size. One cause of high sediment loads is slash and burn and shifting cultivation of tropical forests. When the ground surface is stripped of vegetation and then seared of all living organisms, the upper soils are vulnerable to both wind and water erosion. In a number of regions of the earth, entire sectors of

210-470: A result, can cause exposed sediment to become more susceptible to erosion and delivery to the marine environment during rainfall events. Sediment can negatively affect corals in many ways, such as by physically smothering them, abrading their surfaces, causing corals to expend energy during sediment removal, and causing algal blooms that can ultimately lead to less space on the seafloor where juvenile corals (polyps) can settle. When sediments are introduced into

240-541: Is expected to be delivered to the outlet of the river. The sediment transfer and deposition can be modelled with sediment distribution models such as WaTEM/SEDEM. In Europe, according to WaTEM/SEDEM model estimates the Sediment Delivery Ratio is about 15%. Watershed development near coral reefs is a primary cause of sediment-related coral stress. The stripping of natural vegetation in the watershed for development exposes soil to increased wind and rainfall and, as

270-581: Is measured on a log base 2 scale, called the "Phi" scale, which classifies particles by size from "colloid" to "boulder". The shape of particles can be defined in terms of three parameters. The form is the overall shape of the particle, with common descriptions being spherical, platy, or rodlike. The roundness is a measure of how sharp grain corners are. This varies from well-rounded grains with smooth corners and edges to poorly rounded grains with sharp corners and edges. Finally, surface texture describes small-scale features such as scratches, pits, or ridges on

300-528: Is not subdivided into members. A diverse vertebrate fauna composed of temnospondyl amphibians and fishes is known from the formation. Fossil fishes are also known from the Permian Ravnefjeld Formation (" Posidonomya shale") of Greenland. This article about a specific stratigraphic formation in Greenland is a stub . You can help Misplaced Pages by expanding it . This article related to

330-475: The Triassic period is a stub . You can help Misplaced Pages by expanding it . Sediment Sediment is a naturally occurring material that is broken down by processes of weathering and erosion , and is subsequently transported by the action of wind, water, or ice or by the force of gravity acting on the particles. For example, sand and silt can be carried in suspension in river water and on reaching

SECTION 10

#1732852484674

360-510: The United States . The Krumbein phi (φ) scale, a modification of the Wentworth scale created by W. C. Krumbein in 1934, is a logarithmic scale computed by the equation where This equation can be rearranged to find diameter using φ: In some schemes, gravel is anything larger than sand (comprising granule, pebble, cobble, and boulder in the table above). ISO 14688-1:2017, establishes

390-474: The crystallite size, which refers to the size of a single crystal inside a particle or grain. A single grain can be composed of several crystals . Granular material can range from very small colloidal particles , through clay , silt , sand , gravel , and cobbles , to boulders . Size ranges define limits of classes that are given names in the Wentworth scale (or Udden–Wentworth scale named after geologists Chester K. Wentworth and Johan A. Udden ) used in

420-461: The seafloor in the South Pacific Gyre (SPG) ("the deadest spot in the ocean"), and could be the longest-living life forms ever found. Particle size (grain size) Grain size (or particle size ) is the diameter of individual grains of sediment , or the lithified particles in clastic rocks . The term may also be applied to other granular materials . This is different from

450-696: The Wordie Creek Group is subdivided into two formations, the Kap Stosch Formation and the overlying Godthåb Golf Formation . The Kap Stosch Formation was deposited in relatively deep, partly isolated turbiditic basin, and the Godthåb Golf Formation under relatively shallow marine conditions. In 1935, Eigil Nielsen recognized five fossil-bearing horizons ("fish zones 1–5") corresponding to three ammonoid zones (in ascending order): The first two ammonoid zones are Griesbachian in age and

480-413: The basic principles for identifying and classifying soils based on those material and mass characteristics most commonly used for soils for engineering purposes. ISO 14688-1 applies to natural soils in situ , similar man-made materials in situ and soils redeposited by people. An accumulation of sediment can also be characterized by the grain size distribution. A sediment deposit can undergo sorting when

510-596: The bed is given by the Exner equation . This expression states that the rate of increase in bed elevation due to deposition is proportional to the amount of sediment that falls out of the flow. This equation is important in that changes in the power of the flow change the ability of the flow to carry sediment, and this is reflected in the patterns of erosion and deposition observed throughout a stream. This can be localized, and simply due to small obstacles; examples are scour holes behind boulders, where flow accelerates, and deposition on

540-579: The body of water. Terrigenous material is often supplied by nearby rivers and streams or reworked marine sediment (e.g. sand ). In the mid-ocean, the exoskeletons of dead organisms are primarily responsible for sediment accumulation. Deposited sediments are the source of sedimentary rocks , which can contain fossils of the inhabitants of the body of water that were, upon death, covered by accumulating sediment. Lake bed sediments that have not solidified into rock can be used to determine past climatic conditions. The major areas for deposition of sediments in

570-417: The coastal regions of the ocean, the proportion of land, marine, and organic-derived sediment that characterizes the seafloor near sources of sediment output is altered. In addition, because the source of sediment (i.e., land, ocean, or organically) is often correlated with how coarse or fine sediment grain sizes that characterize an area are on average, grain size distribution of sediment will shift according to

600-422: The edges and corners of particle are. Complex mathematical formulas have been devised for its precise measurement, but these are difficult to apply, and most geologists estimate roundness from comparison charts. Common descriptive terms range from very angular to angular to subangular to subrounded to rounded to very rounded, with increasing degree of roundness. Surface texture describes the small-scale features of

630-510: The flow. In geography and geology , fluvial sediment processes or fluvial sediment transport are associated with rivers and streams and the deposits and landforms created by sediments. It can result in the formation of ripples and dunes , in fractal -shaped patterns of erosion, in complex patterns of natural river systems, and in the development of floodplains and the occurrence of flash floods . Sediment moved by water can be larger than sediment moved by air because water has both

SECTION 20

#1732852484674

660-539: The inside of meander bends. Erosion and deposition can also be regional; erosion can occur due to dam removal and base level fall. Deposition can occur due to dam emplacement that causes the river to pool and deposit its entire load, or due to base level rise. Seas, oceans, and lakes accumulate sediment over time. The sediment can consist of terrigenous material, which originates on land, but may be deposited in either terrestrial, marine, or lacustrine (lake) environments, or of sediments (often biological) originating in

690-468: The last one is Dienerian in age (Induan). The Kap Stosch Formation corresponds to these three zones. A sixth fossiliferous layer, the "Stegocephalian horizon", is present above, which belongs to the Godthåb Golf Formation (Dienerian). The Hypophiceras triviale ammonoid zone below Nielsen's "fish zones" is dated late Changhsingian . The Kap Stosch Formation is subdivided into the following eight members (in ascending order): The Godthåb Golf Formation

720-406: The long, intermediate, and short axis lengths of the particle. The form ψ l {\displaystyle \psi _{l}} varies from 1 for a perfectly spherical particle to very small values for a platelike or rodlike particle. An alternate measure was proposed by Sneed and Folk: which, again, varies from 0 to 1 with increasing sphericity. Roundness describes how sharp

750-435: The marine environment include: One other depositional environment which is a mixture of fluvial and marine is the turbidite system, which is a major source of sediment to the deep sedimentary and abyssal basins as well as the deep oceanic trenches . Any depression in a marine environment where sediments accumulate over time is known as a sediment trap . The null point theory explains how sediment deposition undergoes

780-491: The relative input of land (typically fine), marine (typically coarse), and organically-derived (variable with age) sediment. These alterations in marine sediment characterize the amount of sediment suspended in the water column at any given time and sediment-related coral stress. In July 2020, marine biologists reported that aerobic microorganisms (mainly), in " quasi-suspended animation ", were found in organically-poor sediments, up to 101.5 million years old, 250 feet below

810-473: The removal of native vegetation for the cultivation and harvesting of a single type of crop has left the soil unsupported. Many of these regions are near rivers and drainages. Loss of soil due to erosion removes useful farmland, adds to sediment loads, and can help transport anthropogenic fertilizers into the river system, which leads to eutrophication . The Sediment Delivery Ratio (SDR) is fraction of gross erosion (interill, rill, gully and stream erosion) that

840-716: The sea bed deposited by sedimentation ; if buried, they may eventually become sandstone and siltstone ( sedimentary rocks ) through lithification . Sediments are most often transported by water ( fluvial processes ), but also wind ( aeolian processes ) and glaciers . Beach sands and river channel deposits are examples of fluvial transport and deposition , though sediment also often settles out of slow-moving or standing water in lakes and oceans. Desert sand dunes and loess are examples of aeolian transport and deposition. Glacial moraine deposits and till are ice-transported sediments. Sediment can be classified based on its grain size , grain shape, and composition. Sediment size

870-445: The surface of the grain. Form (also called sphericity ) is determined by measuring the size of the particle on its major axes. William C. Krumbein proposed formulas for converting these numbers to a single measure of form, such as where D L {\displaystyle D_{L}} , D I {\displaystyle D_{I}} , and D S {\displaystyle D_{S}} are

900-494: The use of a scanning electron microscope . Composition of sediment can be measured in terms of: This leads to an ambiguity in which clay can be used as both a size-range and a composition (see clay minerals ). Sediment is transported based on the strength of the flow that carries it and its own size, volume, density, and shape. Stronger flows will increase the lift and drag on the particle, causing it to rise, while larger or denser particles will be more likely to fall through

#673326