Misplaced Pages

Welle

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In physics , mathematics , engineering , and related fields, a wave is a propagating dynamic disturbance (change from equilibrium ) of one or more quantities . Periodic waves oscillate repeatedly about an equilibrium (resting) value at some frequency . When the entire waveform moves in one direction, it is said to be a travelling wave ; by contrast, a pair of superimposed periodic waves traveling in opposite directions makes a standing wave . In a standing wave, the amplitude of vibration has nulls at some positions where the wave amplitude appears smaller or even zero.

#650349

64-575: Welle can refer to: The German word for wave used by the Wehrmacht to designate groups of divisions recruited in a given period of time. the river Wel in Poland the former Roman Catholic missionary Prefecture Apostolic of Welle in Congo Welle, Germany , a village in the district of Harburg, Lower Saxony, Germany The Wave (2008 film) (Die Welle),

128-401: A node . Halfway between two nodes there is an antinode , where the two counter-propagating waves enhance each other maximally. There is no net propagation of energy over time. A soliton or solitary wave is a self-reinforcing wave packet that maintains its shape while it propagates at a constant velocity. Solitons are caused by a cancellation of nonlinear and dispersive effects in

192-470: A standing wave . Standing waves commonly arise when a boundary blocks further propagation of the wave, thus causing wave reflection, and therefore introducing a counter-propagating wave. For example, when a violin string is displaced, transverse waves propagate out to where the string is held in place at the bridge and the nut , where the waves are reflected back. At the bridge and nut, the two opposed waves are in antiphase and cancel each other, producing

256-428: A transmission medium . The propagation and reflection of plane waves—e.g. Pressure waves ( P wave ) or Shear waves (SH or SV-waves) are phenomena that were first characterized within the field of classical seismology, and are now considered fundamental concepts in modern seismic tomography . The analytical solution to this problem exists and is well known. The frequency domain solution can be obtained by first finding

320-417: A transverse component, but may also be partially longitudinal. Waves can be further classified by the oscillating species. In most plasmas of interest, the electron temperature is comparable to or larger than the ion temperature. This fact, coupled with the much smaller mass of the electron, implies that the electrons move much faster than the ions. An electron mode depends on the mass of the electrons, but

384-460: A 2008 German film based on the Third Wave experiment Deutsche Welle , Germany's international broadcast station Alan Welle (born 1945), American politician and businessman Topics referred to by the same term [REDACTED] This disambiguation page lists articles associated with the title Welle . If an internal link led you here, you may wish to change the link to point directly to

448-413: A container of gas by a function F ( x , t ) {\displaystyle F(x,t)} that gives the pressure at a point x {\displaystyle x} and time t {\displaystyle t} within that container. If the gas was initially at uniform temperature and composition, the evolution of F {\displaystyle F} is constrained by

512-618: A family of waves by a function F ( A , B , … ; x , t ) {\displaystyle F(A,B,\ldots ;x,t)} that depends on certain parameters A , B , … {\displaystyle A,B,\ldots } , besides x {\displaystyle x} and t {\displaystyle t} . Then one can obtain different waves – that is, different functions of x {\displaystyle x} and t {\displaystyle t} – by choosing different values for those parameters. For example,

576-402: A family of waves is to give a mathematical equation that, instead of explicitly giving the value of F ( x , t ) {\displaystyle F(x,t)} , only constrains how those values can change with time. Then the family of waves in question consists of all functions F {\displaystyle F} that satisfy those constraints – that is, all solutions of

640-537: A homogeneous isotropic non-conducting solid. Note that this equation differs from that of heat flow only in that the left-hand side is ∂ 2 F / ∂ t 2 {\displaystyle \partial ^{2}F/\partial t^{2}} , the second derivative of F {\displaystyle F} with respect to time, rather than the first derivative ∂ F / ∂ t {\displaystyle \partial F/\partial t} . Yet this small change makes

704-442: A huge difference on the set of solutions F {\displaystyle F} . This differential equation is called "the" wave equation in mathematics, even though it describes only one very special kind of waves. Consider a traveling transverse wave (which may be a pulse ) on a string (the medium). Consider the string to have a single spatial dimension. Consider this wave as traveling This wave can then be described by

SECTION 10

#1732852075651

768-582: A mechanical wave, stress and strain fields oscillate about a mechanical equilibrium. A mechanical wave is a local deformation (strain) in some physical medium that propagates from particle to particle by creating local stresses that cause strain in neighboring particles too. For example, sound waves are variations of the local pressure and particle motion that propagate through the medium. Other examples of mechanical waves are seismic waves , gravity waves , surface waves and string vibrations . In an electromagnetic wave (such as light), coupling between

832-646: A plasma are assumed to have two parts, one static/equilibrium part and one oscillating/perturbation part. Waves in plasmas can be classified as electromagnetic or electrostatic according to whether or not there is an oscillating magnetic field. Applying Faraday's law of induction to plane waves , we find k × E ~ = ω B ~ {\displaystyle \mathbf {k} \times {\tilde {\mathbf {E} }}=\omega {\tilde {\mathbf {B} }}} , implying that an electrostatic wave must be purely longitudinal . An electromagnetic wave, in contrast, must have

896-410: A sum of sine waves of various frequencies, relative phases, and magnitudes. A plane wave is a kind of wave whose value varies only in one spatial direction. That is, its value is constant on a plane that is perpendicular to that direction. Plane waves can be specified by a vector of unit length n ^ {\displaystyle {\hat {n}}} indicating the direction that

960-410: A wave is mainly a movement of energy through a medium. Most often, the group velocity is the velocity at which the energy moves through this medium. Waves exhibit common behaviors under a number of standard situations, for example: Plasma wave In plasma physics , waves in plasmas are an interconnected set of particles and fields which propagate in a periodically repeating fashion. A plasma

1024-635: A wave may be constant (in which case the wave is a c.w. or continuous wave ), or may be modulated so as to vary with time and/or position. The outline of the variation in amplitude is called the envelope of the wave. Mathematically, the modulated wave can be written in the form: u ( x , t ) = A ( x , t ) sin ⁡ ( k x − ω t + ϕ ) , {\displaystyle u(x,t)=A(x,t)\sin \left(kx-\omega t+\phi \right),} where A ( x ,   t ) {\displaystyle A(x,\ t)}

1088-435: A wave's phase and speed concerning energy (and information) propagation. The phase velocity is given as: v p = ω k , {\displaystyle v_{\rm {p}}={\frac {\omega }{k}},} where: The phase speed gives you the speed at which a point of constant phase of the wave will travel for a discrete frequency. The angular frequency ω cannot be chosen independently from

1152-453: Is a quasineutral , electrically conductive fluid . In the simplest case, it is composed of electrons and a single species of positive ions , but it may also contain multiple ion species including negative ions as well as neutral particles. Due to its electrical conductivity , a plasma couples to electric and magnetic fields . This complex of particles and fields supports a wide variety of wave phenomena. The electromagnetic fields in

1216-572: Is a point of space, specifically in the region where the wave is defined. In mathematical terms, it is usually a vector in the Cartesian three-dimensional space R 3 {\displaystyle \mathbb {R} ^{3}} . However, in many cases one can ignore one dimension, and let x {\displaystyle x} be a point of the Cartesian plane R 2 {\displaystyle \mathbb {R} ^{2}} . This

1280-440: Is almost always confined to some finite region of space, called its domain . For example, the seismic waves generated by earthquakes are significant only in the interior and surface of the planet, so they can be ignored outside it. However, waves with infinite domain, that extend over the whole space, are commonly studied in mathematics, and are very valuable tools for understanding physical waves in finite domains. A plane wave

1344-494: Is an important mathematical idealization where the disturbance is identical along any (infinite) plane normal to a specific direction of travel. Mathematically, the simplest wave is a sinusoidal plane wave in which at any point the field experiences simple harmonic motion at one frequency. In linear media, complicated waves can generally be decomposed as the sum of many sinusoidal plane waves having different directions of propagation and/or different frequencies . A plane wave

SECTION 20

#1732852075651

1408-538: Is classified as a transverse wave if the field disturbance at each point is described by a vector perpendicular to the direction of propagation (also the direction of energy transfer); or longitudinal wave if those vectors are aligned with the propagation direction. Mechanical waves include both transverse and longitudinal waves; on the other hand electromagnetic plane waves are strictly transverse while sound waves in fluids (such as air) can only be longitudinal. That physical direction of an oscillating field relative to

1472-448: Is meant to signify that, in the derivative with respect to some variable, all other variables must be considered fixed.) This equation can be derived from the laws of physics that govern the diffusion of heat in solid media. For that reason, it is called the heat equation in mathematics, even though it applies to many other physical quantities besides temperatures. For another example, we can describe all possible sounds echoing within

1536-458: Is the wavelength of the emitted note, and f = c / λ {\displaystyle f=c/\lambda } is its frequency .) Many general properties of these waves can be inferred from this general equation, without choosing specific values for the parameters. As another example, it may be that the vibrations of a drum skin after a single strike depend only on the distance r {\displaystyle r} from

1600-520: Is the (first) derivative of F {\displaystyle F} with respect to t {\displaystyle t} ; and ∂ 2 F / ∂ x i 2 {\displaystyle \partial ^{2}F/\partial x_{i}^{2}} is the second derivative of F {\displaystyle F} relative to x i {\displaystyle x_{i}} . (The symbol " ∂ {\displaystyle \partial } "

1664-648: Is the amplitude envelope of the wave, k {\displaystyle k} is the wavenumber and ϕ {\displaystyle \phi } is the phase . If the group velocity v g {\displaystyle v_{g}} (see below) is wavelength-independent, this equation can be simplified as: u ( x , t ) = A ( x − v g t ) sin ⁡ ( k x − ω t + ϕ ) , {\displaystyle u(x,t)=A(x-v_{g}t)\sin \left(kx-\omega t+\phi \right),} showing that

1728-417: Is the case, for example, when studying vibrations of a drum skin. One may even restrict x {\displaystyle x} to a point of the Cartesian line R {\displaystyle \mathbb {R} } – that is, the set of real numbers . This is the case, for example, when studying vibrations in a violin string or recorder . The time t {\displaystyle t} , on

1792-549: Is the heat that is being generated per unit of volume and time in the neighborhood of x {\displaystyle x} at time t {\displaystyle t} (for example, by chemical reactions happening there); x 1 , x 2 , x 3 {\displaystyle x_{1},x_{2},x_{3}} are the Cartesian coordinates of the point x {\displaystyle x} ; ∂ F / ∂ t {\displaystyle \partial F/\partial t}

1856-536: Is the length of the bore; and n {\displaystyle n} is a positive integer (1,2,3,...) that specifies the number of nodes in the standing wave. (The position x {\displaystyle x} should be measured from the mouthpiece , and the time t {\displaystyle t} from any moment at which the pressure at the mouthpiece is maximum. The quantity λ = 4 L / ( 2 n − 1 ) {\displaystyle \lambda =4L/(2n-1)}

1920-495: The Belousov–Zhabotinsky reaction ; and many more. Mechanical and electromagnetic waves transfer energy , momentum , and information , but they do not transfer particles in the medium. In mathematics and electronics waves are studied as signals . On the other hand, some waves have envelopes which do not move at all such as standing waves (which are fundamental to music) and hydraulic jumps . A physical wave field

1984-458: The Helmholtz decomposition of the displacement field, which is then substituted into the wave equation . From here, the plane wave eigenmodes can be calculated. The analytical solution of SV-wave in a half-space indicates that the plane SV wave reflects back to the domain as a P and SV waves, leaving out special cases. The angle of the reflected SV wave is identical to the incidence wave, while

Welle - Misplaced Pages Continue

2048-449: The electric field vector E {\displaystyle E} , or the magnetic field vector H {\displaystyle H} , or any related quantity, such as the Poynting vector E × H {\displaystyle E\times H} . In fluid dynamics , the value of F ( x , t ) {\displaystyle F(x,t)} could be

2112-469: The angle of the reflected P wave is greater than the SV wave. For the same wave frequency, the SV wavelength is smaller than the P wavelength. This fact has been depicted in this animated picture. Similar to the SV wave, the P incidence, in general, reflects as the P and SV wave. There are some special cases where the regime is different. Wave velocity is a general concept, of various kinds of wave velocities, for

2176-468: The argument x − vt . Constant values of this argument correspond to constant values of F , and these constant values occur if x increases at the same rate that vt increases. That is, the wave shaped like the function F will move in the positive x -direction at velocity v (and G will propagate at the same speed in the negative x -direction). In the case of a periodic function F with period λ , that is, F ( x + λ − vt ) = F ( x − vt ),

2240-400: The bar. Then the temperatures at later times can be expressed by a function F {\displaystyle F} that depends on the function h {\displaystyle h} (that is, a functional operator ), so that the temperature at a later time is F ( h ; x , t ) {\displaystyle F(h;x,t)} Another way to describe and study

2304-430: The center of the skin to the strike point, and on the strength s {\displaystyle s} of the strike. Then the vibration for all possible strikes can be described by a function F ( r , s ; x , t ) {\displaystyle F(r,s;x,t)} . Sometimes the family of waves of interest has infinitely many parameters. For example, one may want to describe what happens to

2368-435: The combination n ^ ⋅ x → {\displaystyle {\hat {n}}\cdot {\vec {x}}} , any displacement in directions perpendicular to n ^ {\displaystyle {\hat {n}}} cannot affect the value of the field. Plane waves are often used to model electromagnetic waves far from a source. For electromagnetic plane waves,

2432-611: The dispersion relation, we have dispersive waves. The dispersion relationship depends on the medium through which the waves propagate and on the type of waves (for instance electromagnetic , sound or water waves). The speed at which a resultant wave packet from a narrow range of frequencies will travel is called the group velocity and is determined from the gradient of the dispersion relation : v g = ∂ ω ∂ k {\displaystyle v_{\rm {g}}={\frac {\partial \omega }{\partial k}}} In almost all cases,

2496-797: The electric and magnetic fields sustains propagation of waves involving these fields according to Maxwell's equations . Electromagnetic waves can travel through a vacuum and through some dielectric media (at wavelengths where they are considered transparent ). Electromagnetic waves, as determined by their frequencies (or wavelengths ), have more specific designations including radio waves , infrared radiation , terahertz waves , visible light , ultraviolet radiation , X-rays and gamma rays . Other types of waves include gravitational waves , which are disturbances in spacetime that propagate according to general relativity ; heat diffusion waves ; plasma waves that combine mechanical deformations and electromagnetic fields; reaction–diffusion waves , such as in

2560-435: The electric and magnetic fields themselves are transverse to the direction of propagation, and also perpendicular to each other. A standing wave, also known as a stationary wave , is a wave whose envelope remains in a constant position. This phenomenon arises as a result of interference between two waves traveling in opposite directions. The sum of two counter-propagating waves (of equal amplitude and frequency) creates

2624-428: The envelope moves with the group velocity and retains its shape. Otherwise, in cases where the group velocity varies with wavelength, the pulse shape changes in a manner often described using an envelope equation . There are two velocities that are associated with waves, the phase velocity and the group velocity . Phase velocity is the rate at which the phase of the wave propagates in space : any given phase of

Welle - Misplaced Pages Continue

2688-495: The equation. This approach is extremely important in physics, because the constraints usually are a consequence of the physical processes that cause the wave to evolve. For example, if F ( x , t ) {\displaystyle F(x,t)} is the temperature inside a block of some homogeneous and isotropic solid material, its evolution is constrained by the partial differential equation where Q ( p , f ) {\displaystyle Q(p,f)}

2752-445: The formula Here P ( x , t ) {\displaystyle P(x,t)} is some extra compression force that is being applied to the gas near x {\displaystyle x} by some external process, such as a loudspeaker or piston right next to p {\displaystyle p} . This same differential equation describes the behavior of mechanical vibrations and electromagnetic fields in

2816-456: The intended article. Retrieved from " https://en.wikipedia.org/w/index.php?title=Welle&oldid=1077692261 " Category : Disambiguation pages Hidden categories: Short description is different from Wikidata All article disambiguation pages All disambiguation pages Wave There are two types of waves that are most commonly studied in classical physics : mechanical waves and electromagnetic waves . In

2880-545: The ions may be assumed to be infinitely massive, i.e. stationary. An ion mode depends on the ion mass, but the electrons are assumed to be massless and to redistribute themselves instantaneously according to the Boltzmann relation . Only rarely, e.g. in the lower hybrid oscillation , will a mode depend on both the electron and the ion mass. The various modes can also be classified according to whether they propagate in an unmagnetized plasma or parallel, perpendicular, or oblique to

2944-589: The medium in opposite directions. A generalized representation of this wave can be obtained as the partial differential equation 1 v 2 ∂ 2 u ∂ t 2 = ∂ 2 u ∂ x 2 . {\displaystyle {\frac {1}{v^{2}}}{\frac {\partial ^{2}u}{\partial t^{2}}}={\frac {\partial ^{2}u}{\partial x^{2}}}.} General solutions are based upon Duhamel's principle . The form or shape of F in d'Alembert's formula involves

3008-624: The medium. (Dispersive effects are a property of certain systems where the speed of a wave depends on its frequency.) Solitons are the solutions of a widespread class of weakly nonlinear dispersive partial differential equations describing physical systems. Wave propagation is any of the ways in which waves travel. With respect to the direction of the oscillation relative to the propagation direction, we can distinguish between longitudinal wave and transverse waves . Electromagnetic waves propagate in vacuum as well as in material media. Propagation of other wave types such as sound may occur only in

3072-419: The motion of a drum skin , one can consider D {\displaystyle D} to be a disk (circle) on the plane R 2 {\displaystyle \mathbb {R} ^{2}} with center at the origin ( 0 , 0 ) {\displaystyle (0,0)} , and let F ( x , t ) {\displaystyle F(x,t)} be the vertical displacement of

3136-413: The other hand, is always assumed to be a scalar ; that is, a real number. The value of F ( x , t ) {\displaystyle F(x,t)} can be any physical quantity of interest assigned to the point x {\displaystyle x} that may vary with time. For example, if F {\displaystyle F} represents the vibrations inside an elastic solid,

3200-609: The overall shape of the waves' amplitudes—modulation or envelope of the wave. A sine wave , sinusoidal wave, or sinusoid (symbol: ∿) is a periodic wave whose waveform (shape) is the trigonometric sine function . In mechanics , as a linear motion over time, this is simple harmonic motion ; as rotation , it corresponds to uniform circular motion . Sine waves occur often in physics , including wind waves , sound waves, and light waves, such as monochromatic radiation . In engineering , signal processing , and mathematics , Fourier analysis decomposes general functions into

3264-476: The periodicity of F in space means that a snapshot of the wave at a given time t finds the wave varying periodically in space with period λ (the wavelength of the wave). In a similar fashion, this periodicity of F implies a periodicity in time as well: F ( x − v ( t + T )) = F ( x − vt ) provided vT = λ , so an observation of the wave at a fixed location x finds the wave undulating periodically in time with period T = λ / v . The amplitude of

SECTION 50

#1732852075651

3328-438: The propagation direction is also referred to as the wave's polarization , which can be an important attribute. A wave can be described just like a field, namely as a function F ( x , t ) {\displaystyle F(x,t)} where x {\displaystyle x} is a position and t {\displaystyle t} is a time. The value of x {\displaystyle x}

3392-441: The same, so the wave form will change over time and space. Sometimes one is interested in a single specific wave. More often, however, one needs to understand large set of possible waves; like all the ways that a drum skin can vibrate after being struck once with a drum stick , or all the possible radar echoes one could get from an airplane that may be approaching an airport . In some of those situations, one may describe such

3456-420: The skin at the point x {\displaystyle x} of D {\displaystyle D} and at time t {\displaystyle t} . Waves of the same type are often superposed and encountered simultaneously at a given point in space and time. The properties at that point are the sum of the properties of each component wave at that point. In general, the velocities are not

3520-423: The sound pressure inside a recorder that is playing a "pure" note is typically a standing wave , that can be written as The parameter A {\displaystyle A} defines the amplitude of the wave (that is, the maximum sound pressure in the bore, which is related to the loudness of the note); c {\displaystyle c} is the speed of sound; L {\displaystyle L}

3584-1109: The stationary magnetic field. Finally, for perpendicular electromagnetic electron waves, the perturbed electric field can be parallel or perpendicular to the stationary magnetic field. ω {\displaystyle \omega } - wave frequency , k {\displaystyle k} - wave number , c {\displaystyle c} - speed of light , ω p {\displaystyle \omega _{p}} - plasma frequency , ω i {\displaystyle \omega _{i}} - ion plasma frequency , ω c {\displaystyle \omega _{c}} - electron gyrofrequency , Ω c {\displaystyle \Omega _{c}} - ion gyrofrequency , ω h {\displaystyle \omega _{h}} - upper hybrid frequency , v s {\displaystyle v_{s}} - plasma "sound" speed , v A {\displaystyle v_{A}} - plasma Alfvén speed (The subscript 0 denotes

3648-463: The temperature in a metal bar when it is initially heated at various temperatures at different points along its length, and then allowed to cool by itself in vacuum. In that case, instead of a scalar or vector, the parameter would have to be a function h {\displaystyle h} such that h ( x ) {\displaystyle h(x)} is the initial temperature at each point x {\displaystyle x} of

3712-415: The two-dimensional functions or, more generally, by d'Alembert's formula : u ( x , t ) = F ( x − v t ) + G ( x + v t ) . {\displaystyle u(x,t)=F(x-vt)+G(x+vt).} representing two component waveforms F {\displaystyle F} and G {\displaystyle G} traveling through

3776-418: The value of F ( x , t ) {\displaystyle F(x,t)} is usually a vector that gives the current displacement from x {\displaystyle x} of the material particles that would be at the point x {\displaystyle x} in the absence of vibration. For an electromagnetic wave, the value of F {\displaystyle F} can be

3840-485: The velocity vector of the fluid at the point x {\displaystyle x} , or any scalar property like pressure , temperature , or density . In a chemical reaction, F ( x , t ) {\displaystyle F(x,t)} could be the concentration of some substance in the neighborhood of point x {\displaystyle x} of the reaction medium. For any dimension d {\displaystyle d} (1, 2, or 3),

3904-441: The wave (for example, the crest ) will appear to travel at the phase velocity. The phase velocity is given in terms of the wavelength λ (lambda) and period T as v p = λ T . {\displaystyle v_{\mathrm {p} }={\frac {\lambda }{T}}.} Group velocity is a property of waves that have a defined envelope, measuring propagation through space (that is, phase velocity) of

SECTION 60

#1732852075651

3968-458: The wave varies in, and a wave profile describing how the wave varies as a function of the displacement along that direction ( n ^ ⋅ x → {\displaystyle {\hat {n}}\cdot {\vec {x}}} ) and time ( t {\displaystyle t} ). Since the wave profile only depends on the position x → {\displaystyle {\vec {x}}} in

4032-419: The wave's domain is then a subset D {\displaystyle D} of R d {\displaystyle \mathbb {R} ^{d}} , such that the function value F ( x , t ) {\displaystyle F(x,t)} is defined for any point x {\displaystyle x} in D {\displaystyle D} . For example, when describing

4096-438: The wavenumber k , but both are related through the dispersion relationship : ω = Ω ( k ) . {\displaystyle \omega =\Omega (k).} In the special case Ω( k ) = ck , with c a constant, the waves are called non-dispersive, since all frequencies travel at the same phase speed c . For instance electromagnetic waves in vacuum are non-dispersive. In case of other forms of

#650349