Misplaced Pages

WWGH-LP

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

FM broadcasting is a method of radio broadcasting that uses frequency modulation ( FM ) of the radio broadcast carrier wave. Invented in 1933 by American engineer Edwin Armstrong , wide-band FM is used worldwide to transmit high-fidelity sound over broadcast radio . FM broadcasting offers higher fidelity—more accurate reproduction of the original program sound—than other broadcasting techniques, such as AM broadcasting . It is also less susceptible to common forms of interference , having less static and popping sounds than are often heard on AM. Therefore, FM is used for most broadcasts of music and general audio (in the audio spectrum). FM radio stations use the very high frequency range of radio frequencies .

#917082

95-571: WWGH-LP (107.1 FM ) was a radio station licensed to serve the community of Marion, Ohio . It aired a community radio format. The station was assigned the WWGH-LP call letters by the Federal Communications Commission on April 25, 2014. The station's license was revoked on February 12, 2021, due to failure to respond to correspondence from the FCC, a violation of Section 73.3568(a) of

190-456: A "converter" to down-convert the 87.5 to 107.9 MHz band to the frequencies that the radio can accept. In addition to showing an incorrect frequency, there are two other disadvantages that can result in undesired performance; the converter cannot down-convert in full the regular international FM band (up to 20.5 MHz wide) to the only 14 MHz-wide Japanese band (unless the converter incorporates two user-switchable down-convert modes), and

285-475: A limit of three kilowatts of effective radiated power (ERP) and an antenna height limit for the center of radiation of 300 feet (91.4 m) height above average terrain ( HAAT ). These frequencies were 92.1, 92.7, 93.5, 94.3, 95.3, 95.9, 96.7, 97.7, 98.3, 99.3, 100.1, 100.9, 101.7, 102.3, 103.1, 103.9, 104.9, 105.5, 106.3 and 107.1. On other frequencies, a station could be Class B (50 kW, 500 feet) or Class C (100 kW, 2,000 feet), depending on which zone it

380-632: A mirror of normal FM broadcasts. The main purpose of those stations is compatibility with older equipment. In 2014, Russia began replacing OIRT-banded transmitter with CCIR-banded (the "western") FM transmitters. The main reason for the change to CCIR FM is to reach more listeners. Unlike Western practice, OIRT FM frequencies are based on 30 kHz rather than 50, 100 or 200 kHz multiples. This may have been to reduce co-channel interference caused by Sporadic E propagation and other atmospheric effects, which occur more often at these frequencies. However, multipath distortion effects are less annoying than on

475-510: A monophonic broadcast, again the most common permitted maximum deviation is ±75 kHz. However, some countries specify a lower value for monophonic broadcasts, such as ±50 kHz. The bandwidth of an FM transmission is given by the Carson bandwidth rule which is the sum of twice the maximum deviation and twice the maximum modulating frequency. For a transmission that includes RDS this would be 2 × 75 kHz + 2 × 60 kHz  = 270 kHz . This

570-557: A program feed for AM transmitters of AM/FM stations. SCA subcarriers are typically 67 kHz and 92 kHz. Initially the users of SCA services were private analog audio channels which could be used internally or leased, for example Muzak -type services. There were experiments with quadraphonic sound. If a station does not broadcast in stereo, everything from 23 kHz on up can be used for other services. The guard band around 19 kHz (±4 kHz) must still be maintained, so as not to trigger stereo decoders on receivers. If there

665-701: A reservation of 106.1–107.9 MHz for community and indigenous stations in 2014, though dozens of stations are grandfathered due to lack of space to relocate them.) Originally, the American Federal Communications Commission (FCC) devised a bandplan in which FM radio stations would be assigned at intervals of four channels (800 kHz separation) for any one geographic area. Thus, in one area, stations might be at 88.1, 88.9, 89.7, etc., while in an adjacent area, stations might be at 88.3, 89.1, 89.9, 90.7 etc. Certain frequencies were designated for Class A only (see FM broadcasting ), which had

760-470: A studio-to-transmitter link system. In April 1935, the AM subcarriers were replaced by FM subcarriers, with much improved results. The first FM subcarrier transmissions emanating from Major Armstrong's experimental station KE2XCC at Alpine, New Jersey occurred in 1948. These transmissions consisted of two-channel audio programs, binaural audio programs and a fax program. The original subcarrier frequency used at KE2XCC

855-724: Is 6 MHz wide). The narrowness of the Japanese band (19 MHz compared to slightly more than 20 MHz for the CCIR band) limits the number of FM stations that can be accommodated on the dial with the result that many commercial radio stations are forced to use AM . Many Japanese radios are capable of receiving both the Japanese FM band and the CCIR FM band, so that the same model can be sold within Japan or exported. The radio may cover 76 to 108 MHz,

950-525: Is added. VHF radio waves usually do not travel far beyond the visual horizon , so reception distances for FM stations are typically limited to 30–40 miles (50–60 km). They can also be blocked by hills and to a lesser extent by buildings. Individuals with more-sensitive receivers or specialized antenna systems, or who are located in areas with more favorable topography, may be able to receive useful FM broadcast signals at considerably greater distances. The knife edge effect can permit reception where there

1045-422: Is also known as the necessary bandwidth . Random noise has a triangular spectral distribution in an FM system, with the effect that noise occurs predominantly at the higher audio frequencies within the baseband . This can be offset, to a limited extent, by boosting the high frequencies before transmission and reducing them by a corresponding amount in the receiver. Reducing the high audio frequencies in

SECTION 10

#1732855911918

1140-408: Is amplitude modulated onto a 38 kHz double-sideband suppressed-carrier (DSB-SC) signal, thus occupying 23 kHz to 53 kHz. A 19 kHz ± 2 Hz pilot tone , at exactly half the 38 kHz sub-carrier frequency and with a precise phase relationship to it, as defined by the formula below, is also generated. The pilot is transmitted at 8–10% of overall modulation level and used by

1235-422: Is authorized for "hybrid" mode operation, wherein both the conventional analog FM carrier and digital sideband subcarriers are transmitted. The output power of an FM broadcasting transmitter is one of the parameters that governs how far a transmission will cover. The other important parameters are the height of the transmitting antenna and the antenna gain . Transmitter powers should be carefully chosen so that

1330-530: Is designed to be capable of use alongside ARI despite using identical subcarrier frequencies. In the United States and Canada , digital radio services are deployed within the FM band rather than using Eureka 147 or the Japanese standard ISDB . This in-band on-channel approach, as do all digital radio techniques, makes use of advanced compressed audio . The proprietary iBiquity system, branded as HD Radio ,

1425-449: Is entirely within the OIRT FM band. Operators on this band and the 6-meter band (50–54 MHz) use the presence of broadcast stations as an indication that there is an "opening" into Eastern Europe or Russia. This can be a mixed blessing because the 4 meter amateur allocation is only 0.5 MHz or less, and a single broadcast station causes considerable interference to a large part of

1520-812: Is largely no longer possible due to the 2009 digital television transition , though in 2023 the FCC authorized fourteen low-powered Channel 6 television stations to continue to operate radio services indefinitely. In the United States, the twenty-one channels with center frequencies of 87.9–91.9 MHz (channels 200 through 220) constitute the reserved band , exclusively for non-commercial educational ( NCE ) stations. The other channels (92.1 MHz through 107.9 MHz (Channels 221–300) may be used by both commercial and non-commercial stations. (Note that in Canada and in Mexico this reservation does not apply; Mexico introduced

1615-480: Is mainly the preserve of talk radio, news, sports, religious programming, ethnic (minority language) broadcasting and some types of minority interest music. This shift has transformed AM into the "alternative band" that FM once was. (Some AM stations have begun to simulcast on, or switch to, FM signals to attract younger listeners and aid reception problems in buildings, during thunderstorms, and near high-voltage wires. Some of these stations now emphasize their presence on

1710-671: Is no direct line of sight between broadcaster and receiver. The reception can vary considerably depending on the position. One example is the Učka mountain range, which makes constant reception of Italian signals from Veneto and Marche possible in a good portion of Rijeka , Croatia, despite the distance being over 200 km (125 miles). Other radio propagation effects such as tropospheric ducting and Sporadic E can occasionally allow distant stations to be intermittently received over very large distances (hundreds of miles), but cannot be relied on for commercial broadcast purposes. Good reception across

1805-487: Is only suitable for text. A few proprietary systems are used for private communications. A variant of RDS is the North American RBDS or "smart radio" system. In Germany the analog ARI system was used prior to RDS to alert motorists that traffic announcements were broadcast (without disturbing other listeners). Plans to use ARI for other European countries led to the development of RDS as a more powerful system. RDS

1900-629: Is open to anyone who does not carry a prohibition and can put up the appropriate licensing and royalty fees. In 2010 around 450 such licences were issued. FM broadcast band The FM broadcast band is a range of radio frequencies used for FM broadcasting by radio stations . The range of frequencies used differs between different parts of the world. In Europe and Africa (defined as International Telecommunication Union (ITU) region 1) and in Australia and New Zealand, it spans from 87.5 to 108 megahertz (MHz) - also known as VHF Band II - while in

1995-504: Is performed by a decoder, built into stereo receivers. Again, the decoder can use a switching technique to recover the left and right channels. In addition, for a given RF level at the receiver, the signal-to-noise ratio and multipath distortion for the stereo signal will be worse than for the mono receiver. For this reason many stereo FM receivers include a stereo/mono switch to allow listening in mono when reception conditions are less than ideal, and most car radios are arranged to reduce

SECTION 20

#1732855911918

2090-508: Is related to the transmitter 's RF power, the antenna gain , and antenna height . Interference from other stations is also a factor in some places. In the U.S, the FCC publishes curves that aid in calculation of this maximum distance as a function of signal strength at the receiving location. Computer modelling is more commonly used for this around the world. Many FM stations, especially those located in severe multipath areas, use extra audio compression /processing to keep essential sound above

2185-626: Is stereo, there will typically be a guard band between the upper limit of the DSBSC stereo signal (53 kHz) and the lower limit of any other subcarrier. Digital data services are also available. A 57 kHz subcarrier ( phase locked to the third harmonic of the stereo pilot tone) is used to carry a low-bandwidth digital Radio Data System signal, providing extra features such as station name, alternative frequency (AF), traffic data for satellite navigation systems and radio text (RT). This narrowband signal runs at only 1,187.5 bits per second , thus

2280-456: Is used for AM broadcasting. A better solution is to replace the radio and antenna with ones designed for the country where the car will be used. Australia had a similar situation with Australian TV channels 3, 4 and 5 that are between 88 and 108 MHz, and was intending to follow Japan, but in the end opted for the western bandplan, due to CCIR radios that entered the country. There were some radios sold in Australia for 76 to 90 MHz. In

2375-427: Is used. This applies to both mono and stereo transmissions. For stereo, pre-emphasis is applied to the left and right channels before multiplexing . The use of pre-emphasis becomes a problem because many forms of contemporary music contain more high-frequency energy than the musical styles which prevailed at the birth of FM broadcasting. Pre-emphasizing these high-frequency sounds would cause excessive deviation of

2470-580: The Light Programme , Third Programme and Home Service . These three networks used the sub-band 88.0–94.6 MHz. The sub-band 94.6–97.6 MHz was later used for BBC and local commercial services. However, only when commercial broadcasting was introduced to the UK in 1973 did the use of FM pick up in Britain. With the gradual clearance of other users (notably Public Services such as police, fire and ambulance) and

2565-557: The radio spectrum . Usually 87.5 to 108.0 MHz is used, or some portion of it, with few exceptions: The frequency of an FM broadcast station (more strictly its assigned nominal center frequency) is usually a multiple of 100 kHz. In most of South Korea , the Americas , the Philippines , and the Caribbean , only odd multiples are used. Some other countries follow this plan because of

2660-466: The 1930s investigations were begun into establishing radio stations transmitting on "Very High Frequency" (VHF) assignments above 30 MHz. In October 1937, the Federal Communications Commission (FCC) announced new frequency allocations, which included a band of experimental and educational " Apex " stations, that consisted of 75 channels spanning from 41.02 to 43.98 MHz. Like the existing AM band these stations employed amplitude modulation, however

2755-639: The 1960s. Frequency-modulated radio waves can be generated at any frequency. All the bands mentioned in this article are in the very high frequency (VHF) range, which extends from 30 to 300 MHz. While all countries use FM channel center frequencies ending in 0.1, 0.3, 0.5, 0.7, and 0.9 MHz, some countries also use center frequencies ending in 0.0, 0.2, 0.4, 0.6, and 0.8 MHz. A few others also use 0.05, 0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85, and 0.95 MHz. An ITU conference in Geneva , Switzerland , on December 7, 1984, resolved to discontinue

2850-492: The 1970s and 1980s: A commercially unsuccessful noise reduction system used with FM radio in some countries during the late 1970s, Dolby FM was similar to Dolby B but used a modified 25 μs pre-emphasis time constant and a frequency selective companding arrangement to reduce noise. The pre-emphasis change compensates for the excess treble response that otherwise would make listening difficult for those without Dolby decoders. A similar system named High Com FM

2945-595: The 40 kHz spacing between adjacent frequencies was four times as much as the 10 kHz spacing on the standard AM broadcast band, which reduced adjacent-frequency interference, and provided more bandwidth for high-fidelity programming. Also during the 1930s Edwin Howard Armstrong developed a competing transmission technology, "wide-band frequency modulation", which was promoted as being superior to AM transmissions, in particular due to its high-fidelity and near immunity to static interference. In May 1940, largely as

WWGH-LP - Misplaced Pages Continue

3040-428: The 88–108 section band as normal FM. The compatibility of "TV sound" with conventional FM radio ended with the U.S. digital TV transition in 2009, with the exception of the limited number of low-power stations on channel 6 that still use analog; these low-power stations will switch to digital in 2021. Second-hand automobiles imported from Japan contain a radio designed for the Japanese FM band, and importers often fit

3135-573: The Americas (ITU region 2) it ranges from 88 to 108 MHz. The FM broadcast band in Japan uses 76 to 95 MHz, and in Brazil , 76 to 108 MHz. The International Radio and Television Organisation (OIRT) band in Eastern Europe is from 65.9 to 74.0 MHz, although these countries now primarily use the 87.5 to 108 MHz band, as in the case of Russia . Some other countries have already discontinued

3230-421: The CCIR band. Stereo is generally achieved by sending the stereo difference signal, using a process called polar modulation . Polar modulation uses a reduced subcarrier on 31.25 kHz with the audio on both side-bands. This gives the following signal structure: L + R --> 31.25 kHz reduced subcarrier L - R. The 4-meter band (70–70.5 MHz) amateur radio allocation used in many European countries

3325-638: The FCC announced the reassignment of the FM band to 90 channels from 88–106 MHz (which was soon expanded to 100 channels from 88–108 MHz). This shift, which the AM-broadcaster RCA had pushed for, made all the Armstrong-era FM receivers useless and delayed the expansion of FM. In 1961 WEFM (in the Chicago area) and WGFM (in Schenectady, New York ) were reported as the first stereo stations. By

3420-496: The FCC regulations. The FCC restored the station's license on February 17, to give the board more time to respond. On March 4, 2022, the FCC issued a Hearing Designation Order, Notice of Opportunity for Hearing, and Notice of Apparent Liability for Forfeiture (Order) and commenced a hearing to determine whether The Marion Education Exchange (MEE) has committed violations of the Communications Act of 1934, as amended (Act) and/or

3515-699: The FCC rules do not allow this mode of stereo operation. In 1969, Louis Dorren invented the Quadraplex system of single station, discrete, compatible four-channel FM broadcasting. There are two additional subcarriers in the Quadraplex system, supplementing the single one used in standard stereo FM. The baseband layout is as follows: The normal stereo signal can be considered as switching between left and right channels at 38 kHz, appropriately band-limited. The quadraphonic signal can be considered as cycling through LF, LR, RF, RR, at 76 kHz. Early efforts to transmit discrete four-channel quadraphonic music required

3610-511: The FCC. The original Dorren Quadraplex System outperformed all the others and was chosen as the national standard for Quadraphonic FM broadcasting in the United States. The first commercial FM station to broadcast quadraphonic program content was WIQB (now called WWWW-FM ) in Ann Arbor / Saline, Michigan under the guidance of Chief Engineer Brian Jeffrey Brown. Various attempts to add analog noise reduction to FM broadcasting were carried out in

3705-451: The FM carrier . Modulation control (limiter) devices are used to prevent this. Systems more modern than FM broadcasting tend to use either programme-dependent variable pre-emphasis; e.g., dbx in the BTSC TV sound system, or none at all. Pre-emphasis and de-emphasis was used in the earliest days of FM broadcasting. According to a BBC report from 1946, 100 μs was originally considered in

3800-511: The FM band.) The medium wave band (known as the AM band because most stations using it employ amplitude modulation) was overcrowded in western Europe, leading to interference problems and, as a result, many MW frequencies are suitable only for speech broadcasting. Belgium , the Netherlands , Denmark and particularly Germany were among the first countries to adopt FM on a widespread scale. Among

3895-969: The FM radio band from 87.5-108.0 MHz to 76.1-108.0 MHz to enable the migration of AM radio stations in Brazilian capitals and large cities. FM broadcasting began in the late 1930s, when it was initiated by a handful of early pioneer experimental stations, including W1XOJ/W43B/WGTR (shut down in 1953) and W1XTG/ WSRS , both transmitting from Paxton, Massachusetts (now listed as Worcester, Massachusetts ); W1XSL/W1XPW/W65H/WDRC-FM/WFMQ/WHCN , Meriden, Connecticut; and W2XMN , KE2XCC , and WFMN , Alpine, New Jersey (owned by Edwin Armstrong himself, closed down upon Armstrong's death in 1954). Also of note were General Electric stations W2XDA Schenectady and W2XOY New Scotland, New York—two experimental FM transmitters on 48.5 MHz—which signed on in 1939. The two began regular programming, as W2XOY, on November 20, 1940. Over

WWGH-LP - Misplaced Pages Continue

3990-460: The L+R signal so the listener will hear both channels through the single loudspeaker. A stereo receiver will add the difference signal to the sum signal to recover the left channel, and subtract the difference signal from the sum to recover the right channel. The (L+R) signal is limited to 30 Hz to 15 kHz to protect a 19 kHz pilot signal. The (L−R) signal, which is also limited to 15 kHz,

4085-578: The OIRT band and have changed to the 87.5 to 108 MHz band. Narrow band Frequency Modulation was developed and demonstrated by Hanso Idzerda in 1919. Wide band Frequency modulation radio originated in the United States during the 1930s; the system was developed by the American electrical engineer Edwin Howard Armstrong . However, FM broadcasting did not become widespread, even in North America , until

4180-399: The OIRT band are Russia (including Kaliningrad ), Belarus , Moldova , Ukraine , and Turkmenistan . In Czechoslovakia , the decision to use the 87.5 to 108 MHz band instead of 65.9 to 74 MHz band was made in the beginning of the eighties. The frequency plan was created, which was internationally coordinated at Regional Administrative Conference for FM Sound Broadcasting in

4275-674: The US, but 75 μs subsequently adopted. Long before FM stereo transmission was considered, FM multiplexing of other types of audio-level information was experimented with. Edwin Armstrong, who invented FM, was the first to experiment with multiplexing, at his experimental 41 MHz station W2XDG located on the 85th floor of the Empire State Building in New York City . These FM multiplex transmissions started in November 1934 and consisted of

4370-642: The VHF band in Geneva, 1984. Allocated frequencies are still valid and are used in the Czech Republic and Slovakia . The first transmitter was put into operation on 102.5 MHz near Prague in November 1984. Three years later, there were eleven transmitters in service across the country, including three in the Prague neighborhood of Žižkov. In 1988, the plan was to set up 270 transmitters in 45 locations eventually. The transition

4465-454: The assigned frequency. There are other unusual and obsolete FM broadcasting standards in some countries, with non-standard spacings of 1, 10, 30, 74, 500, and 300 kHz. To minimise inter-channel interference, stations operating from the same or nearby transmitter sites tend to keep to at least a 500 kHz frequency separation even when closer frequency spacing is technically permitted. The ITU publishes Protection Ratio graphs, which give

4560-511: The background noise for listeners, often at the expense of overall perceived sound quality. In such instances, however, this technique is often surprisingly effective in increasing the station's useful range. The first radio station to broadcast in FM in Brazil was Rádio Imprensa, which began broadcasting in Rio de Janeiro in 1955, on the 102.1 MHz frequency, founded by businesswoman Anna Khoury. Due to

4655-463: The band. The System D television channels R4 and R5 lie wholly or partly within the 87.5–108 MHz FM audio broadcast band. Countries which still use System D therefore have to consider the re-organisation of TV broadcasting in order to make full use of this band for audio broadcasting. The FM band in Japan is 76–95 MHz (previously 76–90). The 90–108 MHz section was used for analog VHF TV Channels 1, 2 and 3 (each NTSC television channel

4750-478: The band. Stations in the U.S. may go up to 10% over this limit if they use non-stereo subcarriers , increasing total modulation by 0.5% for each 1% used by the subcarriers. Some stations may limited to (±50 kHz) deviation in order to reduce transmitted bandwidth so that additional stations can be squeezed in. The OIRT FM broadcast band covers 65.8 to 74 MHz. It was used in the Soviet Union and most of

4845-472: The bandwidth currently occupied by analog television channels 5 and 6 (76–88 MHz) over to extending the FM broadcast band when the digital television transition was to be completed in February 2009 (ultimately delayed to June 2009). This proposed allocation would have effectively assigned frequencies corresponding to the existing Japanese FM radio service (which begins at 76 MHz) for use as an extension to

SECTION 50

#1732855911918

4940-508: The car's antenna may perform poorly on the higher FM band. Some converters simply down-convert the FM band by 12 MHz, leading to logical frequencies (e.g. 78.9 for 90.9, 82.3 for 94.3, etc.), but leaving off the 102–108 MHz band. Also, RDS is not used in Japan, whereas most modern car radios available in Europe have this system. Also the converter may not allow pass-through of the MW band , which

5035-402: The carrier, with its frequency remaining constant. With FM, frequency deviation from the assigned carrier frequency at any instant is directly proportional to the amplitude of the (audio) input signal, determining the instantaneous frequency of the transmitted signal. Because transmitted FM signals use significantly more bandwidth than AM signals, this form of modulation is commonly used with

5130-431: The country is one of the main advantages over DAB/+ radio . This is still less than the range of AM radio waves, which because of their lower frequencies can travel as ground waves or reflect off the ionosphere , so AM radio stations can be received at hundreds (sometimes thousands) of miles. This is a property of the carrier wave's typical frequency (and power), not its mode of modulation. The range of FM transmission

5225-422: The existing North American FM broadcast band. Several low-power television stations colloquially known as " Franken-FMs " operated primarily as radio stations on channel 6, using the 87.7 MHz audio carrier of that channel as a radio station receivable on most FM receivers configured to cover the whole of Band II , from 2009 to 2021; since then, a reduced number have received special temporary authority to carry

5320-553: The extension of the FM band to 108.0 MHz between 1980 and 1995, FM expanded rapidly throughout the British Isles and effectively took over from LW and MW as the delivery platform of choice for fixed and portable domestic and vehicle-based receivers. In addition, Ofcom (previously the Radio Authority) in the UK issues on demand Restricted Service Licences on FM and also on AM (MW) for short-term local-coverage broadcasting which

5415-579: The fields of radio engineering and government. The center frequencies of the FM channels are spaced in increments of 200 kHz. The frequency of 87.9 MHz, while technically part of TV channel 6 (82 to 88 MHz), is used by just two FM class-D stations in the United States. Portable radio tuners often tune down to 87.5 MHz, so that the same radios can be made and sold worldwide. Automobiles usually have FM radios that can tune down to 87.7 MHz, so that TV channel 6's audio at 87.75 MHz (±10 kHz) could be received while driving. This

5510-425: The first 20 channels reserved for educational stations. A period of allowing existing FM stations to broadcast on both the original "low" and new "high" FM bands followed, which ended at midnight on January 8, 1949, at which time all low band transmissions had to end. In 1978 one additional frequency reserved for educational stations, 87.9 MHz, was allocated. In March 2008, the FCC requested public comment on turning

5605-459: The first extended-band stations to begin broadcasts on May 7, 2021. In 2023, Chile announced the expansion of the FM band to 76-108 MHz as part of the analog TV shutdown, scheduled for April 2024. Normally each channel is 200  kHz (0.2 MHz) wide, and can pass audio and subcarrier frequencies up to 100 kHz. Deviation is typically limited to 150 kHz total (±75 kHz) in order to prevent adjacent-channel interference on

5700-463: The frequency coverage may be selectable by the user, or during assembly the radio may be set to operate on one band by means of a specially placed diode or other internal component. Conventional analog-tuned (dial & pointer) radios were formerly marked with "TV Sound" in the 76–88 section. If these radios were sold in the US, for example, the 76–88 section would be marked TV sound for VHF channels 5 and 6 (as two 6 MHz-wide NTSC TV channels), with

5795-486: The growth of the new service. Following the end of the war, the FCC moved to standardize its frequency allocations. One area of concern was the effects of tropospheric and Sporadic E propagation , which at times reflected station signals over great distances, causing mutual interference. A particularly controversial proposal, spearheaded by the Radio Corporation of America (RCA), which was headed by David Sarnoff ,

SECTION 60

#1732855911918

5890-505: The high import costs of FM radio receivers, transmissions were carried out in circuit closed to businesses and stores, which played ambient music offered by radio. Until 1976, Rádio Imprensa was the only station operating in FM in Brazil. From the second half of the 1970s onwards, FM radio stations began to become popular in Brazil, causing AM radio to gradually lose popularity. In 2021, the Brazilian Ministry of Communications expanded

5985-467: The higher ( VHF or UHF ) frequencies used by TV , the FM broadcast band , and land mobile radio systems . The maximum frequency deviation of the carrier is usually specified and regulated by the licensing authorities in each country. For a stereo broadcast, the maximum permitted carrier deviation is invariably ±75 kHz, although a little higher is permitted in the United States when SCA systems are used. For

6080-496: The import of vehicles, principally from the United States, with radios that can only tune to these frequencies. In some parts of Europe , Greenland , and Africa , only even multiples are used. In the United Kingdom , both odd and even are used. In Italy , multiples of 50 kHz are used. In most countries the maximum permitted frequency error of the unmodulated carrier is specified, which typically should be within 2 kHz of

6175-517: The late 1960s, FM had been adopted for broadcast of stereo "A.O.R.—' Album Oriented Rock ' Format", but it was not until 1978 that listenership to FM stations exceeded that of AM stations in North America. In most of the 70s FM was seen as highbrow radio associated with educational programming and classical music, which changed during the 1980s and 1990s when Top 40 music stations and later even country music stations largely abandoned AM for FM. Today AM

6270-492: The license renewal application with prejudice. The order mentioned a possible misrepresentation and lack of candor by the licensee in responding to the FCC. The license was not renewed. This article about a radio station in Ohio is a stub . You can help Misplaced Pages by expanding it . FM broadcasting Throughout the world, the FM broadcast band falls within the VHF part of

6365-492: The location and class conform to the rules in the FCC separation table. The rules for second-adjacent-channel spacing do not apply for stations licensed before 1964. In 2017, Brazil laid the groundwork to reclaim channels 5 and 6 (76.1–87.5 MHz) for sound broadcasting use and required new radio receivers to be able to tune into the new extended band ( Portuguese : faixa estendida , abbreviated eFM). Five transmitters of public broadcaster Brazil Communication Company were

6460-516: The main channel audio program and three subcarriers : a fax program, a synchronizing signal for the fax program and a telegraph order channel. These original FM multiplex subcarriers were amplitude modulated. Two musical programs, consisting of both the Red and Blue Network program feeds of the NBC Radio Network, were simultaneously transmitted using the same system of subcarrier modulation as part of

6555-564: The main channel signal-to-noise ratio. The GE and Zenith systems, so similar that they were considered theoretically identical, were formally approved by the FCC in April 1961 as the standard stereo FM broadcasting method in the United States and later adopted by most other countries. It is important that stereo broadcasts be compatible with mono receivers. For this reason, the left (L) and right (R) channels are algebraically encoded into sum (L+R) and difference (L−R) signals. A mono receiver will use just

6650-405: The minimum spacing between frequencies based on their relative strengths. Only broadcast stations with large enough geographic separations between their coverage areas can operate on the same or close frequencies. Frequency modulation or FM is a form of modulation which conveys information by varying the frequency of a carrier wave ; the older amplitude modulation or AM varies the amplitude of

6745-536: The next few years this station operated under the call signs W57A, W87A and WGFM, and moved to 99.5 MHz when the FM band was relocated to the 88–108 MHz portion of the radio spectrum. General Electric sold the station in the 1980s. Today this station is WRVE . Other pioneers included W2XQR/W59NY/WQXQ/WQXR-FM , New York; W47NV/WSM-FM Nashville, Tennessee (signed off in 1951); W1XER/W39B/WMNE , with studios in Boston and later Portland, Maine, but whose transmitter

6840-433: The originating station. The Crosby system was rejected by the FCC because it was incompatible with existing subsidiary communications authorization (SCA) services which used various subcarrier frequencies including 41 and 67 kHz. Many revenue-starved FM stations used SCAs for "storecasting" and other non-broadcast purposes. The Halstead system was rejected due to lack of high frequency stereo separation and reduction in

6935-469: The other Warsaw Pact member countries of the International Radio and Television Organisation in Eastern Europe (OIRT), with the exception of East Germany , which always used the 87.5 to 100 (later 104) MHz broadcast band—in line with Western Europe. The lower portion of the VHF band behaves a bit like shortwave radio in that it has a longer reach than the upper portion of the VHF band. It

7030-551: The reasons for this were: Public service broadcasters in Ireland and Australia were far slower at adopting FM radio than those in either North America or continental Europe . Hans Idzerda operated a broadcasting station, PCGG , at The Hague from 1919 to 1924, which employed narrow-band FM transmissions. In the United Kingdom the BBC conducted tests during the 1940s, then began FM broadcasting in 1955, with three national networks:

7125-400: The receiver also reduces the high-frequency noise. These processes of boosting and then reducing certain frequencies are known as pre-emphasis and de-emphasis , respectively. The amount of pre-emphasis and de-emphasis used is defined by the time constant of a simple RC filter circuit. In most of the world a 50  μs time constant is used. In the Americas and South Korea , 75 μs

7220-515: The receiver to identify a stereo transmission and to regenerate the 38 kHz sub-carrier with the correct phase. The composite stereo multiplex signal contains the Main Channel (L+R), the pilot tone, and the (L−R) difference signal. This composite signal, along with any other sub-carriers, modulates the FM transmitter. The terms composite , multiplex and even MPX are used interchangeably to describe this signal. The instantaneous deviation of

7315-570: The required area is covered without causing interference to other stations further away. Practical transmitter powers range from a few milliwatts to 80 kW. As transmitter powers increase above a few kilowatts, the operating costs become high and only viable for large stations. The efficiency of larger transmitters is now better than 70% (AC power in to RF power out) for FM-only transmission. This compares to 50% before high efficiency switch-mode power supplies and LDMOS amplifiers were used. Efficiency drops dramatically if any digital HD Radio service

7410-446: The result of Armstrong's efforts, the FCC decided to eliminate the Apex band, and authorized an FM band effective January 1, 1941, operating on 40 channels spanning 42–50 MHz, with the first five channels reserved for educational stations. There was significant interest in the new FM band by station owners, however, construction restrictions that went into place during World War II limited

7505-400: The resulting signal is that it alternates between left and right at 38 kHz, with the phase determined by the 19 kHz pilot signal. Most stereo encoders use this switching technique to generate the 38 kHz subcarrier, but practical encoder designs need to incorporate circuitry to deal with the switching harmonics. Converting the multiplex signal back into left and right audio signals

7600-527: The rules and regulations (Rules) of the Federal Communications Commission (Commission), and, as a consequence, whether MEE's application (Renewal Application) to renew the license of low power FM radio station WWGH-LP, Marion, Ohio (Station) should be granted or denied pursuant to section 309(k) of the Act, and whether a forfeiture should be imposed against MEE. On August 16, 2022, the FCC dismissed

7695-415: The separation as the signal-to-noise ratio worsens, eventually going to mono while still indicating a stereo signal is received. As with monaural transmission, it is normal practice to apply pre-emphasis to the left and right channels before encoding and to apply de-emphasis at the receiver after decoding. In the U.S. around 2010, using single-sideband modulation for the stereo subcarrier was proposed. It

7790-516: The top 25 U.S. radio markets to transmit in Quadraplex. The test results hopefully would prove to the FCC that the system was compatible with existing two-channel stereo transmission and reception and that it did not interfere with adjacent stations. There were several variations on this system submitted by GE, Zenith, RCA, and Denon for testing and consideration during the National Quadraphonic Radio Committee field trials for

7885-423: The transmitter carrier frequency due to the stereo audio and pilot tone (at 10% modulation) is where A and B are the pre-emphasized left and right audio signals and f p {\displaystyle f_{p}} =19 kHz is the frequency of the pilot tone. Slight variations in the peak deviation may occur in the presence of other subcarriers or because of local regulations. Another way to look at

7980-548: The use of 50 kHz channel spacings throughout Europe . The original frequency allocation in North America used by Edwin Armstrong used the frequency band from 42 through 50 MHz, but this allocation was changed to a higher band beginning in 1945. In Canada , the United States , Mexico , the Bahamas , etc., there are 101 FM channels numbered from 200 (center frequency 87.9 MHz) to 300 (center frequency 107.9 MHz), though these numbers are rarely used outside

8075-527: The use of two FM stations; one transmitting the front audio channels, the other the rear channels. A breakthrough came in 1970 when KIOI ( K-101 ) in San Francisco successfully transmitted true quadraphonic sound from a single FM station using the Quadraplex system under Special Temporary Authority from the FCC . Following this experiment, a long-term test period was proposed that would permit one FM station in each of

8170-755: Was 27.5 kHz. The IF bandwidth was ±5 kHz, as the only goal at the time was to relay AM radio-quality audio. This transmission system used 75 μs audio pre-emphasis like the main monaural audio and subsequently the multiplexed stereo audio. In the late 1950s, several systems to add stereo to FM radio were considered by the FCC . Included were systems from 14 proponents including Crosby, Halstead, Electrical and Musical Industries, Ltd ( EMI ), Zenith, and General Electric. The individual systems were evaluated for their strengths and weaknesses during field tests in Uniontown, Pennsylvania , using KDKA-FM in Pittsburgh as

8265-475: Was also prompted by the lack of equipment for the OIRT band and the modernisation of existing transmission networks. Many countries have completely ceased broadcasting on the OIRT FM band, although use continues in others, mainly the former republics of the USSR. The future of broadcasting on the OIRT FM band is limited, due to the lack of new consumer receivers for this band outside of Russia. Countries which still use

8360-616: Was atop the highest mountain in the northeast United States, Mount Washington , New Hampshire (shut down in 1948); and W9XAO/W55M/WTMJ-FM Milwaukee, Wisconsin (went off air in 1950). A commercial FM broadcasting band was formally established in the United States as of January 1, 1941, with the first fifteen construction permits announced on October 31, 1940. These stations primarily simulcast their AM sister stations, in addition to broadcasting lush orchestral music for stores and offices, classical music to an upmarket listenership in urban areas, and educational programming. On June 27, 1945

8455-592: Was finished in 1993. In Poland all OIRT broadcast transmitters were closed down at the end of 1999. Hungary closed down its remaining broadcast transmitters in 2007, and for thirty days in July of that year, several Hungarian amateur radio operators received a temporary experimental permit to perform propagation and interference experiments in the 70–70.5 MHz band. In Belarus, only government-run public radio stations are still active on OIRT. All stations on OIRT in Belarus are

8550-460: Was ideally suited for reaching vast and remote areas that would otherwise lack FM radio reception. In a way, FM suited this band because the capture effect of FM could mitigate interference from skywaves . Transition to the 87.5 to 108 MHz band started as early as the 1980s in some East European countries. Following the collapse of the communist governments, that transition was remarkably accelerated as private stations have been established. This

8645-400: Was in. In the late 1980s, the FCC switched to a bandplan based on a distance separation table using currently operating stations, and subdivided the class table to create extra classes and change antenna height limits to meters. Class A power was doubled to six kilowatts, and the frequency restrictions noted above were removed. As of late 2004, a station can be "squeezed in" anywhere as long as

8740-565: Was seen as another service which licensees could use to create additional income. Use of SCAs was particularly popular in the US, but much less so elsewhere. Uses for such subcarriers include radio reading services for the blind , which became common and remain so, private data transmission services (for example sending stock market information to stockbrokers or stolen credit card number denial lists to stores, ) subscription commercial-free background music services for shops, paging ("beeper") services, alternative-language programming, and providing

8835-639: Was tested in Germany between July 1979 and December 1981 by IRT . It was based on the Telefunken High ;Com broadband compander system, but was never introduced commercially in FM broadcasting. Yet another system was the CX -based noise reduction system FMX implemented in some radio broadcasting stations in the United States in the 1980s. FM broadcasting has included subsidiary communications authorization (SCA) services capability since its inception, as it

8930-414: Was that the FM band needed to be shifted to higher frequencies in order to avoid this potential problem. Armstrong charged that this reassignment had the covert goal of disrupting FM radio development, however RCA's proposal prevailed, and on June 27, 1945 the FCC announced the reassignment of the FM band to 90 channels from 88–106 MHz, which was soon expanded to 100 channels from 88–108 MHz, with

9025-424: Was theorized to be more spectrum-efficient and to produce a 4 dB s/n improvement at the receiver, and it was claimed that multipath distortion would be reduced as well. A handful of radio stations around the country broadcast stereo in this way, under FCC experimental authority. It may not be compatible with very old receivers, but it is claimed that no difference can be heard with most newer receivers. At present,

#917082