83-572: Vulkan is a low-level, low- overhead cross-platform API and open standard for 3D graphics and computing . It was intended to address the shortcomings of OpenGL , and allow developers more control over the GPU . It is designed to support a wide variety of GPUs, CPUs and operating systems, and it is also designed to work with modern multi-core CPUs. Vulkan targets high-performance real-time 3D-graphics applications, such as video games and interactive media , and highly parallelized computing . Vulkan
166-533: A basic block , to whole procedures, or even the whole program. There is a trade-off between the granularity of the optimizations and the cost of compilation. For example, peephole optimizations are fast to perform during compilation but only affect a small local fragment of the code, and can be performed independently of the context in which the code fragment appears. In contrast, interprocedural optimization requires more compilation time and memory space, but enable optimizations that are only possible by considering
249-412: A concrete syntax tree (CST, parse tree) and then transforming it into an abstract syntax tree (AST, syntax tree). In some cases additional phases are used, notably line reconstruction and preprocessing, but these are rare. The main phases of the front end include the following: The middle end, also known as optimizer, performs optimizations on the intermediate representation in order to improve
332-425: A high-level programming language to a low-level programming language (e.g. assembly language , object code , or machine code ) to create an executable program. There are many different types of compilers which produce output in different useful forms. A cross-compiler produces code for a different CPU or operating system than the one on which the cross-compiler itself runs. A bootstrap compiler
415-406: A journal on some file systems. Many small files create more overhead than a low number of large files. Compiler In computing , a compiler is a computer program that translates computer code written in one programming language (the source language) into another language (the target language). The name "compiler" is primarily used for programs that translate source code from
498-447: A payload of data over a communications network requires sending more than just the payload itself. It also involves sending various control and signalling data ( TCP ) required to reach the destination. This creates a so-called protocol overhead as the additional data does not contribute to the intrinsic meaning of the message. In telephony , number dialing and call set-up time are overheads. In two-way (but half-duplex ) radios,
581-583: A Linux driver for Intel which enabled Vulkan compatibility on the HD 4000 series integrated graphics, despite the open-source Mesa drivers not being fully compatible with OpenGL 4.0 until later that year. There is still the possibility of Sandy Bridge support, since it supports compute through Direct3D11. On August 10, 2015, Google announced that future versions of Android would support Vulkan. Android 7.x "Nougat" launched support for Vulkan on August 22, 2016. Android 8.0 "Oreo" has full support. On December 18, 2015,
664-422: A PDP-7 in B. Unics eventually became spelled Unix. Bell Labs started the development and expansion of C based on B and BCPL. The BCPL compiler had been transported to Multics by Bell Labs and BCPL was a preferred language at Bell Labs. Initially, a front-end program to Bell Labs' B compiler was used while a C compiler was developed. In 1971, a new PDP-11 provided the resource to define extensions to B and rewrite
747-437: A Production Quality Compiler (PQC) from formal definitions of source language and the target. PQCC tried to extend the term compiler-compiler beyond the traditional meaning as a parser generator (e.g., Yacc ) without much success. PQCC might more properly be referred to as a compiler generator. PQCC research into code generation process sought to build a truly automatic compiler-writing system. The effort discovered and designed
830-544: A big financial incentive to do so. Often, even though software providers are well aware of bugs in their products, the payoff of fixing them is not worth the reward, because of the overhead. For example, an implicit data structure or succinct data structure may provide low space overhead, but at the cost of slow performance (space/time tradeoff). Algorithmic complexity is generally specified using Big O notation . This makes no comment on how long something takes to run or how much memory it uses, but how its increase depends on
913-421: A choice of several algorithms , encodings , data types or data structures , each of which have known characteristics. When choosing among them, their respective overhead should also be considered. In software engineering , overhead can influence the decision whether or not to include features in new products, or indeed whether to fix bugs. A feature that has a high overhead may not be included – or needs
SECTION 10
#1732859396382996-405: A compiler up into small programs is a technique used by researchers interested in producing provably correct compilers. Proving the correctness of a set of small programs often requires less effort than proving the correctness of a larger, single, equivalent program. Regardless of the exact number of phases in the compiler design, the phases can be assigned to one of three stages. The stages include
1079-432: A component of an IDE (VADS, Eclipse, Ada Pro). The interrelationship and interdependence of technologies grew. The advent of web services promoted growth of web languages and scripting languages. Scripts trace back to the early days of Command Line Interfaces (CLI) where the user could enter commands to be executed by the system. User Shell concepts developed with languages to write shell programs. Early Windows designs offered
1162-608: A front end, a middle end, and a back end. This front/middle/back-end approach makes it possible to combine front ends for different languages with back ends for different CPUs while sharing the optimizations of the middle end. Practical examples of this approach are the GNU Compiler Collection , Clang ( LLVM -based C/C++ compiler), and the Amsterdam Compiler Kit , which have multiple front-ends, shared optimizations and multiple back-ends. The front end analyzes
1245-527: A grammar for the language, though in more complex cases these require manual modification. The lexical grammar and phrase grammar are usually context-free grammars , which simplifies analysis significantly, with context-sensitivity handled at the semantic analysis phase. The semantic analysis phase is generally more complex and written by hand, but can be partially or fully automated using attribute grammars . These phases themselves can be further broken down: lexing as scanning and evaluating, and parsing as building
1328-535: A kickoff meeting at Valve . At SIGGRAPH 2014, the project was publicly announced with a call for participants. According to the US Patent and Trademark Office, the trademark for Vulkan was filed on February 19, 2015. Vulkan was formally named and announced at Game Developers Conference 2015, although speculation and rumors centered around a new API existed beforehand and referred to it as " glNext ". In early 2015, LunarG (funded by Valve ) developed and showcased
1411-432: A result, compilers were split up into smaller programs which each made a pass over the source (or some representation of it) performing some of the required analysis and translations. The ability to compile in a single pass has classically been seen as a benefit because it simplifies the job of writing a compiler and one-pass compilers generally perform compilations faster than multi-pass compilers . Thus, partly driven by
1494-431: A simple batch programming capability. The conventional transformation of these language used an interpreter. While not widely used, Bash and Batch compilers have been written. More recently sophisticated interpreted languages became part of the developers tool kit. Modern scripting languages include PHP, Python, Ruby and Lua. (Lua is widely used in game development.) All of these have interpreter and compiler support. "When
1577-418: A small run-time overhead. Sometimes the compiler can minimize this overhead by inlining some of these function calls . In a CPU cache , the "cache size" (or capacity ) refers to how much data a cache stores. For instance, a "4 KB cache" is a cache that holds 4 KB of data. The "4 KB" in this example excludes overhead bits such as frame, address, and tag information. Reliably sending
1660-489: Is Open64 , which is used by many organizations for research and commercial purposes. Due to the extra time and space needed for compiler analysis and optimizations, some compilers skip them by default. Users have to use compilation options to explicitly tell the compiler which optimizations should be enabled. The back end is responsible for the CPU architecture specific optimizations and for code generation . The main phases of
1743-608: Is also commercial support, for example, AdaCore, was founded in 1994 to provide commercial software solutions for Ada. GNAT Pro includes the GNU GCC based GNAT with a tool suite to provide an integrated development environment . High-level languages continued to drive compiler research and development. Focus areas included optimization and automatic code generation. Trends in programming languages and development environments influenced compiler technology. More compilers became included in language distributions (PERL, Java Development Kit) and as
SECTION 20
#17328593963821826-430: Is designed to allow developers to better distribute work among multiple CPU cores . Vulkan was first announced by the non-profit Khronos Group at GDC 2015. The Vulkan API was initially referred to as the "next generation OpenGL initiative", or "OpenGL next" by Khronos, but use of those names was discontinued when "Vulkan" was announced. Vulkan is derived from and built upon components of AMD 's Mantle API, which
1909-446: Is favored due to its modularity and separation of concerns . Most commonly, the frontend is broken into three phases: lexical analysis (also known as lexing or scanning), syntax analysis (also known as scanning or parsing), and semantic analysis . Lexing and parsing comprise the syntactic analysis (word syntax and phrase syntax, respectively), and in simple cases, these modules (the lexer and parser) can be automatically generated from
1992-622: Is incomplete Vulkan support for Haswell with it not being Vulkan 1.0 compliant. Apart from Haswell, Ivy Bridge and Broadwell are also supported by a legacy Vulkan driver in Mesa called HASVK. Skylake and newer being supported by a driver in Mesa called ANV. On Windows, Vulkan 1.2 is supported from GCN 1.0 to GCN 3.0, with no further updates planned after June 2021. GCN 4.0 and newer support Vulkan 1.3. On Linux there are various different Vulkan drivers with varying and overlapping hardware support. There
2075-405: Is intended to offer higher performance and more efficient CPU and GPU usage compared to the older OpenGL and Direct3D 11 APIs. It does so by providing a considerably lower-level API for the application than the older APIs, that more closely resembles how modern GPUs work. Vulkan is comparable to Apple's Metal API and Microsoft's Direct3D 12 . In addition to its lower CPU usage, Vulkan
2158-400: Is often a temporary compiler, used for compiling a more permanent or better optimised compiler for a language. Related software include decompilers , programs that translate from low-level languages to higher level ones; programs that translate between high-level languages, usually called source-to-source compilers or transpilers ; language rewriters , usually programs that translate
2241-529: Is similar to concepts seen in Mantle and later adopted by Microsoft with Direct3D 12 and Apple with Metal . Intended advantages of Vulkan over previous-generation APIs include the following: Vulkan is available on multiple modern operating systems and architectures , and provides a single API for both desktop and mobile graphics devices, whereas previously these were split between OpenGL and OpenGL ES respectively. Like OpenGL, and in contrast to Direct3D 12,
2324-491: Is still a great option for a lot of use cases, as it comes at a much lower complexity and maintenance burden than Vulkan, while in many cases still providing great overall performance." AMD states that "Vulkan supports close-to-metal control, enabling faster performance and better image quality across Windows 7, Windows 8.1, Windows 10, and Linux. No other graphics API offers the same powerful combination of OS compatibility, rendering features, and hardware efficiency." Vulkan 1.0
2407-482: Is the open-source Vulkan driver called AMDVLK, developed by AMD which mirrors Windows support. There is also the proprietary driver called AMDGPU-PRO which is not recommended to be used for most users as of March 2023. There is also the recommended driver called RADV in Mesa developed by Valve, Red Hat, Google and others. This driver as of March 2023 supports all GCN and RDNA cards. This RADV driver's support for GCN 1.0 through GCN 2.0 requires its experimental support in
2490-646: Is thus similar to overhead in organizations. Computer system overhead shows up as slower processing, less memory, less network bandwidth, or bigger latency than would be expected from reading the system specifications. It is a special case of engineering overhead . Overhead can be a deciding factor in software design, with regard to structure, error correction, and feature inclusion. Examples of computing overhead may be found in Object Oriented Programming (OOP), functional programming , data transfer, and data structures. A programmer/software engineer may have
2573-785: The amdgpu kernel module to be enabled. On Windows and Linux there is the NVIDIA developed Vulkan driver which supports Vulkan 1.2 on Kepler cards with no further updates planned after September 2021. Maxwell and newer support Vulkan 1.3. NVK, an experimental, open source Vulkan driver for Linux based on nouveau , was announced in October 2022. It was merged into mainline Mesa in August 2023. The driver currently supports Vulkan 1.3 Overhead (computing) Overhead in computer systems consists of shared functions that benefit all users or processes but are not directly attributable to any specific task. It
Vulkan - Misplaced Pages Continue
2656-570: The (since 1995, object-oriented) programming language Ada . The Ada STONEMAN document formalized the program support environment (APSE) along with the kernel (KAPSE) and minimal (MAPSE). An Ada interpreter NYU/ED supported development and standardization efforts with the American National Standards Institute (ANSI) and the International Standards Organization (ISO). Initial Ada compiler development by
2739-436: The 32-bit signed integer 1310447927 , consuming only 4 bytes. Represented as ISO 8601 formatted UTF-8 encoded string 2011-07-12 07:18:47 the date would consume 19 bytes, a size overhead of 375% over the binary integer representation. As XML this date can be written as follows with an overhead of 218 characters, while adding the semantic context that it is a CHANGEDATE with index 1. The 349 bytes, resulting from
2822-605: The CPU can be used in conjunction with a high-end dedicated GPU for a slight performance boost. On March 7, 2018, Vulkan 1.1 was released by the Khronos Group. This first major update to the API standardized several extensions, such as multi-view, device groups, cross-process and cross-API sharing, advanced compute functionality, HLSL support, and YCbCr support. At the same time, it also brought better compatibility with DirectX 12, explicit multi-GPU support, ray tracing support, and laid
2905-576: The Early PL/I (EPL) compiler by Doug McIlory and Bob Morris from Bell Labs. EPL supported the project until a boot-strapping compiler for the full PL/I could be developed. Bell Labs left the Multics project in 1969, and developed a system programming language B based on BCPL concepts, written by Dennis Ritchie and Ken Thompson . Ritchie created a boot-strapping compiler for B and wrote Unics (Uniplexed Information and Computing Service) operating system for
2988-494: The Khronos Group announced that OpenCL would converge where possible with Vulkan to enable OpenCL software deployment flexibility over both APIs. This has been now demonstrated by Adobe 's Premiere Rush using the clspv open source compiler to compile significant amounts of OpenCL C kernel code to run on a Vulkan runtime for deployment on Android. The Khronos Group began a project to create a next generation graphics API in July 2014 with
3071-678: The Khronos Group announced that the 1.0 version of the Vulkan specification was nearly complete and would be released when conforming drivers were available. The full Vulkan specification and the open-source Vulkan SDK were released on February 16, 2016. On February 26, 2018, Khronos Group announced that the Vulkan API became available to all on macOS and iOS through the MoltenVK library, which enables Vulkan to run on top of Metal . Other new developments were shown at SIGGRAPH 2018. Previously MoltenVK
3154-619: The Raspberry Pi Foundation announced that it was working on an open source Vulkan driver for their Raspberry Pi , a popular single board computer. On June 20, 2020, a graphics engineer revealed that he had created one after two years of work that was capable of running VkQuake3 at over 100FPS on the small computer. On March 17, 2020, Khronos Group released the Ray Tracing extensions, based on Nvidia 's proprietary extension, with some major extensions and many minor changes, which in turn
3237-518: The Sun 3/60 Solaris targeted to Motorola 68020 in an Army CECOM evaluation. There were soon many Ada compilers available that passed the Ada Validation tests. The Free Software Foundation GNU project developed the GNU Compiler Collection (GCC) which provides a core capability to support multiple languages and targets. The Ada version GNAT is one of the most widely used Ada compilers. GNAT is free but there
3320-640: The U.S. Military Services included the compilers in a complete integrated design environment along the lines of the STONEMAN document. Army and Navy worked on the Ada Language System (ALS) project targeted to DEC/VAX architecture while the Air Force started on the Ada Integrated Environment (AIE) targeted to IBM 370 series. While the projects did not provide the desired results, they did contribute to
3403-460: The UTF-8 encoded XML, correlates to a size overhead of 8625% over the original integer representation. Besides the files themselves, computer file systems take a portion of the space to store directory names and listings, file names, files' sector locations, attributes such as the date and time of the last modification and creation, how the files are fragmented , written and free parts of the space, and
Vulkan - Misplaced Pages Continue
3486-465: The University of Cambridge was originally developed as a compiler writing tool. Several compilers have been implemented, Richards' book provides insights to the language and its compiler. BCPL was not only an influential systems programming language that is still used in research but also provided a basis for the design of B and C languages. BLISS (Basic Language for Implementation of System Software)
3569-1074: The Vulkan 1.2 standard. On August 1, 2022, Raspberry Pi Foundation announced that their driver for the Raspberry Pi 4 is Vulkan 1.2 conformant. On September 1, 2022, Mesh Shading for Vulkan was released. A new Vulkan Roadmap was announced on January 25. A new extension for decoding AV1 video was released on February 1. Initial specifications stated that Vulkan drivers can be implemented on any hardware that supports OpenGL ES 3.1 or OpenGL 4.x and up. As Vulkan support requires new graphics drivers, this does not necessarily imply that every existing device that supports OpenGL ES 3.1 or OpenGL 4.x will have Vulkan drivers available. As of March 2023, Intel has split Vulkan driver support on Windows and on Linux . All drivers are developed by Intel. On Windows, Skylake to Ice Lake supports up to Vulkan 1.3, with limited support after July 2022 as future updates will only cover security fixes. Iris Xe and newer are fully supported as of March 2023. On Linux, as of March 2023 there
3652-401: The Vulkan API is not locked to a single OS or device form factor. Vulkan runs natively on Android , Linux , BSD Unix , QNX , Haiku , Nintendo Switch , Raspberry Pi , Stadia , Fuchsia , Tizen , and Windows 7 , 8 , 10 , and 11 . MoltenVK provides freely licensed third-party support for macOS , iOS and tvOS by wrapping over Apple's Metal API. Vulkan reduces load on CPUs through
3735-435: The basis of digital modern computing development during World War II. Primitive binary languages evolved because digital devices only understand ones and zeros and the circuit patterns in the underlying machine architecture. In the late 1940s, assembly languages were created to offer a more workable abstraction of the computer architectures. Limited memory capacity of early computers led to substantial technical challenges when
3818-433: The behavior of multiple functions simultaneously. Interprocedural analysis and optimizations are common in modern commercial compilers from HP , IBM , SGI , Intel , Microsoft , and Sun Microsystems . The free software GCC was criticized for a long time for lacking powerful interprocedural optimizations, but it is changing in this respect. Another open source compiler with full analysis and optimization infrastructure
3901-697: The binary format that HLSL shaders are compiled into in Direct3D . By allowing shader pre-compilation, application initialization speed is improved and a larger variety of shaders can be used per scene. A Vulkan driver only needs to perform GPU specific optimization and code generation, resulting in easier driver maintenance, and potentially smaller driver packages. The developers of applications now can also more easily obfuscate proprietary shader code, due to shaders not being stored directly as source code, however tools are provided that can decompile SPIR-V to human-readable high-level code . In 2016 NVIDIA stated that "OpenGL
3984-584: The compiler. By 1973 the design of C language was essentially complete and the Unix kernel for a PDP-11 was rewritten in C. Steve Johnson started development of Portable C Compiler (PCC) to support retargeting of C compilers to new machines. Object-oriented programming (OOP) offered some interesting possibilities for application development and maintenance. OOP concepts go further back but were part of LISP and Simula language science. Bell Labs became interested in OOP with
4067-407: The development of C++ . C++ was first used in 1980 for systems programming. The initial design leveraged C language systems programming capabilities with Simula concepts. Object-oriented facilities were added in 1983. The Cfront program implemented a C++ front-end for C84 language compiler. In subsequent years several C++ compilers were developed as C++ popularity grew. In many application domains,
4150-546: The development of compiler technology: Early operating systems and software were written in assembly language. In the 1960s and early 1970s, the use of high-level languages for system programming was still controversial due to resource limitations. However, several research and industry efforts began the shift toward high-level systems programming languages, for example, BCPL , BLISS , B , and C . BCPL (Basic Combined Programming Language) designed in 1966 by Martin Richards at
4233-424: The development of high-level languages followed naturally from the capabilities offered by digital computers. High-level languages are formal languages that are strictly defined by their syntax and semantics which form the high-level language architecture. Elements of these formal languages include: The sentences in a language may be defined by a set of rules called a grammar. Backus–Naur form (BNF) describes
SECTION 50
#17328593963824316-424: The early days, the approach taken to compiler design was directly affected by the complexity of the computer language to be processed, the experience of the person(s) designing it, and the resources available. Resource limitations led to the need to pass through the source code more than once. A compiler for a relatively simple language written by one person might be a single, monolithic piece of software. However, as
4399-491: The field of compiling began in the late 50s, its focus was limited to the translation of high-level language programs into machine code ... The compiler field is increasingly intertwined with other disciplines including computer architecture, programming languages, formal methods, software engineering, and computer security." The "Compiler Research: The Next 50 Years" article noted the importance of object-oriented languages and Java. Security and parallel computing were cited among
4482-461: The first (algorithmic) programming language for computers called Plankalkül ("Plan Calculus"). Zuse also envisioned a Planfertigungsgerät ("Plan assembly device") to automatically translate the mathematical formulation of a program into machine-readable punched film stock . While no actual implementation occurred until the 1970s, it presented concepts later seen in APL designed by Ken Iverson in
4565-423: The first compilers were designed. Therefore, the compilation process needed to be divided into several small programs. The front end programs produce the analysis products used by the back end programs to generate target code. As computer technology provided more resources, compiler designs could align better with the compilation process. It is usually more productive for a programmer to use a high-level language, so
4648-559: The first pass needs to gather information about declarations appearing after statements that they affect, with the actual translation happening during a subsequent pass. The disadvantage of compiling in a single pass is that it is not possible to perform many of the sophisticated optimizations needed to generate high quality code. It can be difficult to count exactly how many passes an optimizing compiler makes. For instance, different phases of optimization may analyse one expression many times but only analyse another expression once. Splitting
4731-933: The form of expressions without a change of language; and compiler-compilers , compilers that produce compilers (or parts of them), often in a generic and reusable way so as to be able to produce many differing compilers. A compiler is likely to perform some or all of the following operations, often called phases: preprocessing , lexical analysis , parsing , semantic analysis ( syntax-directed translation ), conversion of input programs to an intermediate representation , code optimization and machine specific code generation . Compilers generally implement these phases as modular components, promoting efficient design and correctness of transformations of source input to target output. Program faults caused by incorrect compiler behavior can be very difficult to track down and work around; therefore, compiler implementers invest significant effort to ensure compiler correctness . Compilers are not
4814-454: The future research targets. A compiler implements a formal transformation from a high-level source program to a low-level target program. Compiler design can define an end-to-end solution or tackle a defined subset that interfaces with other compilation tools e.g. preprocessors, assemblers, linkers. Design requirements include rigorously defined interfaces both internally between compiler components and externally between supporting toolsets. In
4897-447: The groundwork for the next generation of GPUs. Alongside Vulkan 1.1, SPIR-V was updated to version 1.3. On January 15, 2020, Vulkan 1.2 was released by the Khronos Group. This second major update to the API integrates 23 additional commonly-used proven Vulkan extensions into the base Vulkan standard. Some of the most important features are "timeline semaphores for easily managed synchronization", "a formal memory model to precisely define
4980-421: The idea of using a higher-level language quickly caught on. Because of the expanding functionality supported by newer programming languages and the increasing complexity of computer architectures, compilers became more complex. DARPA (Defense Advanced Research Projects Agency) sponsored a compiler project with Wulf's CMU research team in 1970. The Production Quality Compiler-Compiler PQCC design would produce
5063-434: The late 1950s. APL is a language for mathematical computations. Between 1949 and 1951, Heinz Rutishauser proposed Superplan , a high-level language and automatic translator. His ideas were later refined by Friedrich L. Bauer and Klaus Samelson . High-level language design during the formative years of digital computing provided useful programming tools for a variety of applications: Compiler technology evolved from
SECTION 60
#17328593963825146-523: The modernized threading architecture. OpenGL uses the high-level language GLSL for writing shaders , which forces each OpenGL driver to implement its own compiler for GLSL. This then executes at application runtime to translate the program's shaders into the GPU's machine code. In contrast, Vulkan drivers are supposed to ingest shaders already translated into an intermediate binary format called SPIR-V (Standard Portable Intermediate Representation), analogous to
5229-408: The need for a strictly defined transformation of the high-level source program into a low-level target program for the digital computer. The compiler could be viewed as a front end to deal with the analysis of the source code and a back end to synthesize the analysis into the target code. Optimization between the front end and back end could produce more efficient target code. Some early milestones in
5312-570: The only language processor used to transform source programs. An interpreter is computer software that transforms and then executes the indicated operations. The translation process influences the design of computer languages, which leads to a preference of compilation or interpretation. In theory, a programming language can have both a compiler and an interpreter. In practice, programming languages tend to be associated with just one (a compiler or an interpreter). Theoretical computing concepts developed by scientists, mathematicians, and engineers formed
5395-641: The overall effort on Ada development. Other Ada compiler efforts got underway in Britain at the University of York and in Germany at the University of Karlsruhe. In the U. S., Verdix (later acquired by Rational) delivered the Verdix Ada Development System (VADS) to the Army. VADS provided a set of development tools including a compiler. Unix/VADS could be hosted on a variety of Unix platforms such as DEC Ultrix and
5478-511: The performance and the quality of the produced machine code. The middle end contains those optimizations that are independent of the CPU architecture being targeted. The main phases of the middle end include the following: Compiler analysis is the prerequisite for any compiler optimization, and they tightly work together. For example, dependence analysis is crucial for loop transformation . The scope of compiler analysis and optimizations vary greatly; their scope may range from operating within
5561-639: The phase structure of the PQC. The BLISS-11 compiler provided the initial structure. The phases included analyses (front end), intermediate translation to virtual machine (middle end), and translation to the target (back end). TCOL was developed for the PQCC research to handle language specific constructs in the intermediate representation. Variations of TCOL supported various languages. The PQCC project investigated techniques of automated compiler construction. The design concepts proved useful in optimizing compilers and compilers for
5644-429: The resource limitations of early systems, many early languages were specifically designed so that they could be compiled in a single pass (e.g., Pascal ). In some cases, the design of a language feature may require a compiler to perform more than one pass over the source. For instance, consider a declaration appearing on line 20 of the source which affects the translation of a statement appearing on line 10. In this case,
5727-423: The semantics of synchronization and memory operations in different threads", and "descriptor indexing to enable reuse of descriptor layouts by multiple shaders". The additional features of Vulkan 1.2 improve its flexibility when it comes to implementing other graphics APIs on top of Vulkan, including "uniform buffer standard layout", "scalar block layout", and "separate stencil usage". On January 25, 2022, Vulkan 1.3
5810-405: The size of the input. Overhead is deliberately not part of this calculation, since it varies from one machine to another, whereas the fundamental running time of an algorithm does not. This should be contrasted with algorithmic efficiency , which takes into account all kinds of resources – a combination (though not a trivial one) of complexity and overhead. Invoking a function introduces
5893-490: The source code to build an internal representation of the program, called the intermediate representation (IR). It also manages the symbol table , a data structure mapping each symbol in the source code to associated information such as location, type and scope. While the frontend can be a single monolithic function or program, as in a scannerless parser , it was traditionally implemented and analyzed as several phases, which may execute sequentially or concurrently. This method
5976-469: The source language grows in complexity the design may be split into a number of interdependent phases. Separate phases provide design improvements that focus development on the functions in the compilation process. Classifying compilers by number of passes has its background in the hardware resource limitations of computers. Compiling involves performing much work and early computers did not have enough memory to contain one program that did all of this work. As
6059-440: The syntax of "sentences" of a language. It was developed by John Backus and used for the syntax of Algol 60 . The ideas derive from the context-free grammar concepts by linguist Noam Chomsky . "BNF and its extensions have become standard tools for describing the syntax of programming notations. In many cases, parts of compilers are generated automatically from a BNF description." Between 1942 and 1945, Konrad Zuse designed
6142-501: The use of batching and other low-level optimizations, therefore reducing CPU workloads and leaving the CPU free to do more computation or rendering than would otherwise be possible. Direct3D 11 and OpenGL 4 were initially designed for use with single-core CPUs and only received augmentation to be executed on multi-cores. Even when application developers use the augmentations, these APIs regularly do not scale well on multi-cores. Vulkan offers improved scalability on multi-core CPUs due to
6225-399: The use of "over" and other signaling needed to avoid collisions is an overhead. Protocol overhead can be expressed as a percentage of non-application bytes (protocol and frame synchronization ) divided by the total number of bytes in the message. The encoding of information and data introduces overhead too. The date and time "2011-07-12 07:18:47" can be expressed as Unix time with
6308-549: Was a proprietary and commercially licensed solution, but Valve made an arrangement with developer Brenwill Workshop Ltd to open-source MoltenVK under the Apache 2.0 license and as a result the library is now available on GitHub . Valve also announced that Dota 2 can as of February 26, 2018 run on macOS using the Vulkan API, which is based on MoltenVK. On February 25, 2019, the Vulkan Safety Critical (SC) Working Group
6391-604: Was announced to bring Vulkan GPU acceleration to safety critical industries. Google's Stadia streaming cloud gaming service used Vulkan on Linux based servers with AMD GPUs . On January 15, 2020, Vulkan 1.2 was released. Alongside the Vulkan 1.2 release, the Khronos Group posted a blog post which considered that HLSL support in Vulkan had reached "production ready" status, given the improvements in Microsoft's DXC compiler and Khronos's glslang compiler, and new features in Vulkan 1.2 which enhance HLSL support. On February 3, 2020,
6474-415: Was based on Nvidia's OptiX API. On November 23, 2020, these Ray Tracing extensions were finalized. On November 24, 2020, Raspberry Pi Foundation announced that their driver for the Raspberry Pi 4 is Vulkan 1.0 conformant. On January 25, 2022, Vulkan 1.3 was released. On March 1, 2022, Vulkan SC 1.0 was released, bringing Vulkan graphics and compute for the safety-critical industry while being based on
6557-432: Was developed for a Digital Equipment Corporation (DEC) PDP-10 computer by W. A. Wulf's Carnegie Mellon University (CMU) research team. The CMU team went on to develop BLISS-11 compiler one year later in 1970. Multics (Multiplexed Information and Computing Service), a time-sharing operating system project, involved MIT , Bell Labs , General Electric (later Honeywell ) and was led by Fernando Corbató from MIT. Multics
6640-411: Was donated by AMD to Khronos with the intent of giving Khronos a foundation on which to begin developing a low-level API that they could standardize across the industry. Vulkan is intended to provide a variety of advantages over other APIs as well as its predecessor, OpenGL . Vulkan offers lower overhead, more direct control over the GPU, and lower CPU usage. The overall concept and feature set of Vulkan
6723-474: Was released by the Khronos Group. This third major update to the API integrates 23 additional commonly-used proven Vulkan extensions into the base Vulkan standard. Vulkan 1.3 focuses on reducing fragmentation by making the new features not optional in order for a device to be considered Vulkan 1.3 capable. The new features in Vulkan 1.3 include dynamic rendering, additional dynamic state, improved synchronization API, and device profiles. When releasing OpenCL 2.2,
6806-525: Was released in February 2016. At SIGGRAPH 2016, Khronos announced that Vulkan would be getting support for automatic multi-GPU features, similar to what is offered by Direct3D 12. Multi-GPU support included in-API removes the need for SLI or Crossfire which requires graphics cards to be of the same model. API multi-GPU instead allows the API to intelligently split the workload among two or more completely different GPUs. For example, integrated GPUs included on
6889-466: Was written in the PL/I language developed by IBM and IBM User Group. IBM's goal was to satisfy business, scientific, and systems programming requirements. There were other languages that could have been considered but PL/I offered the most complete solution even though it had not been implemented. For the first few years of the Multics project, a subset of the language could be compiled to assembly language with
#381618