Misplaced Pages

Volna

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

An expendable launch system (or expendable launch vehicle/ELV ) is a launch vehicle that can be launched only once, after which its components are either destroyed during reentry or discarded in space. ELVs typically consist of several rocket stages that are discarded sequentially as their fuel is exhausted and the vehicle gains altitude and speed. As of 2024, fewer and fewer satellites and human spacecraft are launched on ELVs in favor of reusable launch vehicles . However, there are many instances where a ELV may still have a compelling use case over a reusable vehicle. ELVs are simpler in design than reusable launch systems and therefore may have a lower production cost. Furthermore, an ELV can use its entire fuel supply to accelerate its payload, offering greater payloads. ELVs are proven technology in widespread use for many decades.

#478521

34-540: Space launch vehicle Volna ( Russian : Волна , lit.   'wave'), is a converted submarine-launched ballistic missile used for launching satellites into orbit. It is based on the R-29R designed by State Rocket Center Makayev and related to the Shtil' Launch Vehicle. The Volna is a 3-stage launch vehicle that uses liquid propellant. The warhead section is used for the payloads that can be either put into orbit with

68-588: A staged combustion cycle was adopted for the first stage engine, the LE-7 . The combination of the liquid hydrogen two-stage combustion cycle first stage engine and solid rocket boosters was carried over to its successor, the H-IIA and H-IIB and became the basic configuration of Japan's liquid fuel launch vehicles for 30 years, from 1994 to 2024. In 2003, JAXA was formed by merging Japan's three space agencies to streamline Japan's space program, and JAXA took over operations of

102-628: A joint venture between Airbus and Safran . European space launches are carried out as a collaborative effort between private companies and government agencies. The role of Arianespace is to market Ariane 6 launch services, prepare missions, and manage customer relations. At the Guiana Space Centre (CSG) in French Guiana , the company oversees the team responsible for integrating and preparing launch vehicles. The rockets themselves are designed and manufactured by other companies: ArianeGroup for

136-529: A rocket stage may be recovered while others are not. The Space Shuttle , for example, recovered and reused its solid rocket boosters , the Space Shuttle orbiter that also acted as a second stage, and the engines used by the core stage (the RS-25 , which was located at the back of the orbiter), however the fuel tank that the engines sourced fuel from, which was separate from the engines, was not reused. For example,

170-541: A sounding rocket in the 1960s and 1970s and advanced its research to deliver the Satellite Launch Vehicle-3 and the more advanced Augmented Satellite Launch Vehicle (ASLV), complete with operational supporting infrastructure by the 1990s. Japan launched its first satellite, Ohsumi , in 1970, using ISAS' L-4S rocket. Prior to the merger, ISAS used small Mu rocket family of solid-fueled launch vehicles, while NASDA developed larger liquid-fueled launchers. In

204-515: A two-thrust chambered, step-throttled second stage, the SLV has a lift off mass exceeding 26 tons. The first stage consists of a lengthened up-rated Shahab-3C . According to the technical documentation presented in the annual meeting of the United Nations Office for Outer Space Affairs , it is a two-stage rocket with all liquid propellant engines. The first stage is capable of carrying the payload to

238-643: Is developing the first stage of the orbital New Glenn LV to be reusable, with first flight planned for no earlier than 2024. SpaceX has a new super-heavy launch vehicle under development for missions to interplanetary space . The SpaceX Starship is designed to support RTLS, vertical-landing and full reuse of both the booster stage and the integrated second-stage/large-spacecraft that are designed for use with Starship. Its first launch attempt took place in April 2023; however, both stages were lost during ascent. The fifth launch attempt ended with Booster 12 being caught by

272-653: Is typically a rocket -powered vehicle designed to carry a payload (a crewed spacecraft or satellites ) from Earth's surface or lower atmosphere to outer space . The most common form is the ballistic missile -shaped multistage rocket , but the term is more general and also encompasses vehicles like the Space Shuttle . Most launch vehicles operate from a launch pad , supported by a launch control center and systems such as vehicle assembly and fueling. Launch vehicles are engineered with advanced aerodynamics and technologies, which contribute to high operating costs. An orbital launch vehicle must lift its payload at least to

306-580: The Barents Sea . From this site the Volna can lift 100 kg (220 lb) into a 400 km (250 mi) high orbit with an inclination of 79°. The warhead section can accommodate a payload of up to 1.3 m (46 cu ft). For sub-orbital missions the payload can be either a recoverable vehicle of up to 720 kg (1,590 lb) or research equipment placed in a descent vehicle of up to 400 kg (880 lb). Launch vehicle A launch vehicle

340-667: The European Space Agency is responsible for the Ariane V , and the United Launch Alliance manufactures and launches the Delta IV and Atlas V rockets. Launchpads can be located on land ( spaceport ), on a fixed ocean platform ( San Marco ), on a mobile ocean platform ( Sea Launch ), and on a submarine . Launch vehicles can also be launched from the air . A launch vehicle will start off with its payload at some location on

374-670: The H-IIA liquid-fueled launch vehicle, the M-V solid-fuel launch vehicle, and several observation rockets from each agency. The H-IIA is a launch vehicle that improved reliability while reducing costs by making significant improvements to the H-II, and the M-V was the world's largest solid-fuel launch vehicle at the time. In November 2003, JAXA's first launch after its inauguration, H-IIA No. 6, failed, but all other H-IIA launches were successful, and as of February 2024,

SECTION 10

#1732851714479

408-563: The International Space Station . To be able to launch smaller mission on JAXA developed a new solid-fueled rocket, the Epsilon as a replacement to the retired M-V . The maiden flight successfully happened in 2013. So far, the rocket has flown six times with one launch failure. In January 2017, JAXA attempted and failed to put a miniature satellite into orbit atop one of its SS520 series rockets. A second attempt on 2 February 2018

442-437: The United Launch Alliance . The National Security Space Launch (NSSL) competition has selected two EELV successors, the expendable Vulcan Centaur and partially reusable Falcon 9 , to provide assured access to space. Iran has developed an expendable satellite launch vehicle named Safir SLV . Measuring 22 m in height with a core diameter of 1.25 m, with two liquid propellant stages, a single thrust chambered first stage and

476-444: The upper stage of the launch vehicle or launched to a geostationary transfer orbit (GTO). A direct insertion places greater demands on the launch vehicle, while GTO is more demanding of the spacecraft. Once in orbit, launch vehicle upper stages and satellites can have overlapping capabilities, although upper stages tend to have orbital lifetimes measured in hours or days while spacecraft can last decades. Distributed launch involves

510-467: The 2000s and launch vehicles with integrated distributed launch capability built in began development in 2017 with the Starship design. The standard Starship launch architecture is to refuel the spacecraft in low Earth orbit to enable the craft to send high-mass payloads on much more energetic missions. After 1980, but before the 2010s, two orbital launch vehicles developed the capability to return to

544-591: The Ariane 6 and Avio for the Vega. The launch infrastructure at the CSG is owned by the European Space Agency , while the land itself belongs to and is managed by CNES , the French national space agency. During the 1960s and 1970s, India initiated its own launch vehicle program in alignment with its geopolitical and economic considerations. In the 1960s–1970s, the country India started with

578-588: The H-IIA had successfully launched 47 of its 48 launches. JAXA plans to end H-IIA operations with H-IIA Flight No. 50 and retire it by March 2025. JAXA operated the H-IIB , an upgraded version of the H-IIA, from September 2009 to May 2020 and successfully launched the H-II Transfer Vehicle six times. This cargo spacecraft was responsible for resupplying the Kibo Japanese Experiment Module on

612-631: The United States purchase ELV launches. NASA is a major customer with the Commercial Resupply Services and Commercial Crew Development programs, also launching scientific spacecraft. The vast majority of launch vehicles for its missions, from the Redstone missile to the Delta , Atlas , Titan and Saturn rocket families, have been expendable. As its flagship crewed exploration replacement for

646-468: The accomplishment of a goal with multiple spacecraft launches. A large spacecraft such as the International Space Station can be constructed by assembling modules in orbit, or in-space propellant transfer conducted to greatly increase the delta-V capabilities of a cislunar or deep space vehicle. Distributed launch enables space missions that are not possible with single launch architectures. Mission architectures for distributed launch were explored in

680-550: The beginning, NASDA used licensed American models. The first model of liquid-fueled launch vehicle developed domestically in Japan was the H-II , introduced in 1994. NASDA developed the H-II with two goals in mind: to be able to launch satellites using only its own technology, such as the ISAS, and to dramatically improve its launch capability over previous licensed models. To achieve these two goals,

714-530: The booster stage of a launch vehicle. After 2010, SpaceX undertook a development program to acquire the ability to bring back and vertically land a part of the Falcon 9 orbital launch vehicle: the first stage . The first successful landing was done in December 2015, since 2017 rocket stages routinely land either at a landing pad adjacent to the launch site or on a landing platform at sea, some distance away from

SECTION 20

#1732851714479

748-838: The boundary of space, approximately 150 km (93 mi) and accelerate it to a horizontal velocity of at least 7,814 m/s (17,480 mph). Suborbital vehicles launch their payloads to lower velocity or are launched at elevation angles greater than horizontal. Practical orbital launch vehicles use chemical propellants such as solid fuel , liquid hydrogen , kerosene , liquid oxygen , or hypergolic propellants . Launch vehicles are classified by their orbital payload capacity, ranging from small- , medium- , heavy- to super-heavy lift . Launch vehicles are classed by NASA according to low Earth orbit payload capability: Sounding rockets are similar to small-lift launch vehicles, however they are usually even smaller and do not place payloads into orbit. A modified SS-520 sounding rocket

782-442: The ground. In contrast, reusable launch vehicles are designed to be recovered intact and launched again. The Falcon 9 is an example of a reusable launch vehicle. As of 2023, all reusable launch vehicles that were ever operational have been partially reusable, meaning some components are recovered and others are not. This usually means the recovery of specific stages, usually just the first stage, but sometimes specific components of

816-452: The help of an additional boost engine or travel along a sub-orbital trajectory to be recovered at the landing site. Volna can be launched from Delta III-class submarine or from land based facilities. Because of its mobile launch platform the Volna launch vehicle can reach a large number of different inclinations and could increase its performance to low Earth orbit by launching from equatorial sites. All flights to date have taken place from

850-514: The launch site (RTLS). Both the US Space Shuttle —with one of its abort modes —and the Soviet Buran had a designed-in capability to return a part of the launch vehicle to the launch site via the mechanism of horizontal-landing of the spaceplane portion of the launch vehicle. In both cases, the main vehicle thrust structure and the large propellant tank were expendable , as had been

884-556: The launch site. The Falcon Heavy is similarly designed to reuse the three cores comprising its first stage. On its first flight in February 2018, the two outer cores successfully returned to the launch site landing pads while the center core targeted the landing platform at sea but did not successfully land on it. Blue Origin developed similar technologies for bringing back and landing their suborbital New Shepard , and successfully demonstrated return in 2015, and successfully reused

918-513: The launch tower, and Ship 30, the upper stage, successfully landing in the Indian Ocean. Expendable launch vehicle Arianespace SA is a French company founded in March 1980 as the world's first commercial launch service provider . It operates two launch vehicles : Vega C , a small-lift rocket , and Ariane 6 , a medium -to- heavy-lift rocket. Arianespace is a subsidiary of ArianeGroup ,

952-504: The maximum altitude of 68 kilometres. The Israel Space Agency is one of only seven countries that both build their own satellites and launch their own launchers. The Shavit is a space launch vehicle capable of sending payload into low Earth orbit . The Shavit launcher has been used to send every Ofeq satellite to date. The development of the Shavit began in 1983 and its operational capabilities were proven on three successful launches of

986-608: The partially reusable Space Shuttle , NASA's newest ELV, the Space Launch System flew successfully in November 2022 after delays of more than six years. It is planned to serve in a major role on crewed exploration programs going forward. The United States Air Force is also an ELV customer, having designed the Titan, Atlas, and Delta families. The Atlas V from the 1994 Evolved ELV (EELV) program remains in active service, operated by

1020-546: The same booster on a second suborbital flight in January 2016. By October 2016, Blue had reflown, and landed successfully, that same launch vehicle a total of five times. The launch trajectories of both vehicles are very different, with New Shepard going straight up and down, whereas Falcon 9 has to cancel substantial horizontal velocity and return from a significant distance downrange. Both Blue Origin and SpaceX also have additional reusable launch vehicles under development. Blue

1054-428: The standard procedure for all orbital launch vehicles flown prior to that time. Both were subsequently demonstrated on actual orbital nominal flights, although both also had an abort mode during launch that could conceivably allow the crew to land the spaceplane following an off-nominal launch. In the 2000s, both SpaceX and Blue Origin have privately developed a set of technologies to support vertical landing of

Volna - Misplaced Pages Continue

1088-498: The surface of the Earth. To reach orbit, the vehicle must travel vertically to leave the atmosphere and horizontally to prevent re-contacting the ground. The required velocity varies depending on the orbit but will always be extreme when compared to velocities encountered in normal life. Launch vehicles provide varying degrees of performance. For example, a satellite bound for Geostationary orbit (GEO) can either be directly inserted by

1122-655: Was successful, putting a four kilogram CubeSat into Earth orbit. The rocket, known as the SS-520-5, is the world's smallest orbital launcher. Roscosmos uses a family of several launch rockets, the most famous of them being the R-7 , commonly known as the Soyuz rocket that is capable of launching about 7.5 tons into low Earth orbit (LEO). The Proton rocket (or UR-500K) has a lift capacity of over 20 tons to LEO. Smaller rockets include Rokot and other Stations. Several governmental agencies of

1156-596: Was used to place a 4-kilogram payload ( TRICOM-1R ) into orbit in 2018. Orbital spaceflight requires a satellite or spacecraft payload to be accelerated to very high velocity. In the vacuum of space, reaction forces must be provided by the ejection of mass, resulting in the rocket equation . The physics of spaceflight are such that rocket stages are typically required to achieve the desired orbit. Expendable launch vehicles are designed for one-time use, with boosters that usually separate from their payload and disintegrate during atmospheric reentry or on contact with

#478521