Universal 3D ( U3D ) is a compressed file format standard for 3D computer graphics data.
105-449: The format was defined by a special consortium called 3D Industry Forum that brought together a diverse group of companies and organizations, including Intel , Boeing , HP , Adobe Systems , Bentley Systems , Right Hemisphere and others whose main focus had been the promotional development of 3D graphics for use in various industries, specifically at this time manufacturing as well as construction and industrial plant design. The format
210-625: A band gap of zero and thus cannot be used in transistors because of its constant conductivity, an inability to turn off. The zigzag edges of the nanoribbons introduce localized energy states in the conduction and valence bands and thus a bandgap that enables switching when fabricated as a transistor. As an example, a typical GNR of width of 10 nm has a desirable bandgap energy of 0.4 eV. ) More research will need to be performed, however, on sub-50 nm graphene layers, as its resistivity value increases and thus electron mobility decreases. In April 2005, Gordon Moore stated in an interview that
315-542: A self-fulfilling prophecy . The doubling period is often misquoted as 18 months because of a separate prediction by Moore's colleague, Intel executive David House . In 1975, House noted that Moore's revised law of doubling transistor count every 2 years in turn implied that computer chip performance would roughly double every 18 months (with no increase in power consumption). Mathematically, Moore's law predicted that transistor count would double every 2 years due to shrinking transistor dimensions and other improvements. As
420-479: A basic measure of value for a digital camera, demonstrating the historical linearity (on a log scale) of this market and the opportunity to predict the future trend of digital camera price, LCD and LED screens, and resolution. The great Moore's law compensator (TGMLC) , also known as Wirth's law – generally is referred to as software bloat and is the principle that successive generations of computer software increase in size and complexity, thereby offsetting
525-459: A consequence of shrinking dimensions, Dennard scaling predicted that power consumption per unit area would remain constant. Combining these effects, David House deduced that computer chip performance would roughly double every 18 months. Also due to Dennard scaling, this increased performance would not be accompanied by increased power, i.e., the energy-efficiency of silicon -based computer chips roughly doubles every 18 months. Dennard scaling ended in
630-611: A decade, from 2007 to 2016 fiscal years, until it was removed from the ranking in 2018. In 2020, it was reinstated and ranked 45th, being the 7th-largest technology company in the ranking . Intel supplies microprocessors for most manufacturers of computer systems, and is one of the developers of the x86 series of instruction sets found in most personal computers (PCs). It also manufactures chipsets , network interface controllers , flash memory , graphics processing units (GPUs), field-programmable gate arrays (FPGAs), and other devices related to communications and computing. Intel has
735-483: A factor of two per year". Dennard scaling – This posits that power usage would decrease in proportion to area (both voltage and current being proportional to length) of transistors. Combined with Moore's law, performance per watt would grow at roughly the same rate as transistor density, doubling every 1–2 years. According to Dennard scaling transistor dimensions would be scaled by 30% (0.7×) every technology generation, thus reducing their area by 50%. This would reduce
840-891: A functional transistor. Below are several non-silicon substitutes in the fabrication of small nanometer transistors. One proposed material is indium gallium arsenide , or InGaAs. Compared to their silicon and germanium counterparts, InGaAs transistors are more promising for future high-speed, low-power logic applications. Because of intrinsic characteristics of III–V compound semiconductors , quantum well and tunnel effect transistors based on InGaAs have been proposed as alternatives to more traditional MOSFET designs. Biological computing research shows that biological material has superior information density and energy efficiency compared to silicon-based computing. Various forms of graphene are being studied for graphene electronics , e.g. graphene nanoribbon transistors have shown promise since its appearance in publications in 2008. (Bulk graphene has
945-538: A fundamental limit. By then they'll be able to make bigger chips and have transistor budgets in the billions. In 2016 the International Technology Roadmap for Semiconductors , after using Moore's Law to drive the industry since 1998, produced its final roadmap. It no longer centered its research and development plan on Moore's law. Instead, it outlined what might be called the More than Moore strategy in which
1050-437: A limited group of private investors (equivalent to $ 21 million in 2022), convertible at $ 5 per share. Just 2 years later, Intel became a public company via an initial public offering (IPO), raising $ 6.8 million ($ 23.50 per share). Intel was one of the very first companies to be listed on the then-newly established National Association of Securities Dealers Automated Quotations ( NASDAQ ) stock exchange. Intel's third employee
1155-426: A log–linear relationship between device complexity (higher circuit density at reduced cost) and time. In a 2015 interview, Moore noted of the 1965 article: "... I just did a wild extrapolation saying it's going to continue to double every year for the next 10 years." One historian of the law cites Stigler's law of eponymy , to introduce the fact that the regular doubling of components was known to many working in
SECTION 10
#17331056366951260-563: A major retrenchment for most of the major semiconductor manufacturers, except for Qualcomm, which continued to see healthy purchases from its largest customer, Apple. As of July 2013, five companies were using Intel's fabs via the Intel Custom Foundry division: Achronix , Tabula , Netronome , Microsemi , and Panasonic – most are field-programmable gate array (FPGA) makers, but Netronome designs network processors. Only Achronix began shipping chips made by Intel using
1365-407: A more compressed alternative to the mesh blocks defined in the first edition. Deep Exploration, Tetra4D for Acrobat Pro and PDF3D-SDK can author this data, and Adobe Acrobat and Reader 8.1 can read this data. The fourth edition provides definitions for higher order primitives (curved surfaces). Applications which support PDFs with embedded U3D objects include: Intel Intel Corporation
1470-616: A new microprocessor manufacturing facility in Chandler, Arizona , completed in 2013 at a cost of $ 5 billion. The building is now the 10 nm-certified Fab 42 and is connected to the other Fabs (12, 22, 32) on Ocotillo Campus via an enclosed bridge known as the Link. The company produces three-quarters of its products in the United States, although three-quarters of its revenue come from overseas. The Alliance for Affordable Internet (A4AI)
1575-578: A non-planar tri-gate FinFET at 22 nm in 2012 that is faster and consumes less power than a conventional planar transistor. The rate of performance improvement for single-core microprocessors has slowed significantly. Single-core performance was improving by 52% per year in 1986–2003 and 23% per year in 2003–2011, but slowed to just seven percent per year in 2011–2018. Quality adjusted price of IT equipment – The price of information technology (IT), computers and peripheral equipment, adjusted for quality and inflation, declined 16% per year on average over
1680-422: A physical limit, some forecasters are optimistic about the continuation of technological progress in a variety of other areas, including new chip architectures, quantum computing, and AI and machine learning. Nvidia CEO Jensen Huang declared Moore's law dead in 2022; several days later, Intel CEO Pat Gelsinger countered with the opposite claim. Digital electronics have contributed to world economic growth in
1785-676: A processor for tablets and smartphones – to the market in 2012, as an effort to compete with Arm. As a 32-nanometer processor, Medfield is designed to be energy-efficient, which is one of the core features in Arm's chips. At the Intel Developers Forum (IDF) 2011 in San Francisco, Intel's partnership with Google was announced. In January 2012, Google announced Android 2.3, supporting Intel's Atom microprocessor. In 2013, Intel's Kirk Skaugen said that Intel's exclusive focus on Microsoft platforms
1890-443: A single quarter-square-inch (~ 1.6 cm ) semiconductor. The complexity for minimum component costs has increased at a rate of roughly a factor of two per year. Certainly over the short term this rate can be expected to continue, if not to increase. Over the longer term, the rate of increase is a bit more uncertain, although there is no reason to believe it will not remain nearly constant for at least 10 years. Moore posited
1995-579: A standalone business unit. Unlike Intel Custom Foundry, IFS will offer a combination of packaging and process technology, and Intel's IP portfolio including x86 cores. Other plans for the company include a partnership with IBM and a new event for developers and engineers, called "Intel ON". Gelsinger also confirmed that Intel's 7 nm process is on track, and that the first products using their 7 nm process (also known as Intel 4) are Ponte Vecchio and Meteor Lake . In January 2022, Intel reportedly selected New Albany, Ohio , near Columbus, Ohio , as
2100-623: A stroke regained much of its leadership of the field. In 2008, Intel had another "tick" when it introduced the Penryn microarchitecture, fabricated using the 45 nm process node. Later that year, Intel released a processor with the Nehalem architecture to positive reception. On June 27, 2006, the sale of Intel's XScale assets was announced. Intel agreed to sell the XScale processor business to Marvell Technology Group for an estimated $ 600 million and
2205-418: A strong presence in the high-performance general-purpose and gaming PC market with its Intel Core line of CPUs, whose high-end models are among the fastest consumer CPUs, as well as its Intel Arc series of GPUs. The Open Source Technology Center at Intel hosts PowerTOP and LatencyTOP , and supports other open source projects such as Wayland , Mesa , Threading Building Blocks (TBB), and Xen . Intel
SECTION 20
#17331056366952310-531: A struggle with Microsoft for control over the direction of the PC industry. Since the 2000s and especially since the late 2010s, Intel has faced increasing competition, which has led to a reduction in Intel's dominance and market share in the PC market. Nevertheless, with a 68.4% market share as of 2023, Intel still leads the x86 market by a wide margin. In addition, Intel's ability to design and manufacture its own chips
2415-585: A year 2000 computer. Library expansion – was calculated in 1945 by Fremont Rider to double in capacity every 16 years, if sufficient space were made available. He advocated replacing bulky, decaying printed works with miniaturized microform analog photographs, which could be duplicated on-demand for library patrons or other institutions. He did not foresee the digital technology that would follow decades later to replace analog microform with digital imaging, storage, and transmission media. Automated, potentially lossless digital technologies allowed vast increases in
2520-452: Is RISC-V , which is an open source CPU instruction set. The major Chinese phone and telecommunications manufacturer Huawei has released chips based on the RISC-V instruction set due to US sanctions against China . Intel has been involved in several disputes regarding the violation of antitrust laws , which are noted below. Intel reported total CO 2 e emissions (direct + indirect) for
2625-507: Is "a natural part of the history of Moore's law". The rate of improvement in physical dimensions known as Dennard scaling also ended in the mid-2000s. As a result, much of the semiconductor industry has shifted its focus to the needs of major computing applications rather than semiconductor scaling. Nevertheless, leading semiconductor manufacturers TSMC and Samsung Electronics have claimed to keep pace with Moore's law with 10 , 7 , and 5 nm nodes in mass production. As
2730-608: Is an American multinational corporation and technology company headquartered in Santa Clara, California , and incorporated in Delaware . Intel designs, manufactures, and sells computer components and related products for business and consumer markets. It is considered one of the world's largest semiconductor chip manufacturers by revenue and ranked in the Fortune 500 list of the largest United States corporations by revenue for nearly
2835-498: Is another large customer for Intel. In September 2024, Intel reportedly qualified for as much as $ 3.5 billion in federal grants to make semiconductors for the Defense Department. According to IDC , while Intel enjoyed the biggest market share in both the overall worldwide PC microprocessor market (73.3%) and the mobile PC microprocessor (80.4%) in the second quarter of 2011, the numbers decreased by 1.5% and 1.9% compared to
2940-400: Is another version, called Butters' Law of Photonics, a formulation that deliberately parallels Moore's law. Butters' law says that the amount of data coming out of an optical fiber is doubling every nine months. Thus, the cost of transmitting a bit over an optical network decreases by half every nine months. The availability of wavelength-division multiplexing (sometimes called WDM) increased
3045-411: Is considered a rarity in the semiconductor industry , as most chip designers do not have their own production facilities and instead rely on contract manufacturers (e.g. AMD and Nvidia ). In 2023, Dell accounted for about 19% of Intel's total revenues, Lenovo accounted for 11% of total revenues, and HP Inc. accounted for 10% of total revenues. As of May 2024, the U.S. Department of Defense
3150-438: Is expected to affect Intel minimally; however, it might prompt other PC manufacturers to reevaluate their reliance on Intel and the x86 architecture. On March 23, 2021, CEO Pat Gelsinger laid out new plans for the company. These include a new strategy, called IDM 2.0, that includes investments in manufacturing facilities, use of both internal and external foundries, and a new foundry business called Intel Foundry Services (IFS),
3255-466: Is planned for 2027. Including subcontractors, this would create 10,000 new jobs. In August 2022, Intel signed a $ 30 billion partnership with Brookfield Asset Management to fund its recent factory expansions. As part of the deal, Intel would have a controlling stake by funding 51% of the cost of building new chip-making facilities in Chandler, with Brookfield owning the remaining 49% stake, allowing
Universal 3D - Misplaced Pages Continue
3360-454: Is supported by many/all of the various applications mentioned below. It is capable of storing vertex based geometry, color, textures, lighting, bones, and transform based animation. The second and third editions correct some errata in the first edition, and the third edition also adds the concept of vendor specified blocks. One such block widely deployed is the RHAdobeMesh block, which provides
3465-572: The 22 nm feature width around 2012, and continuing at 14 nm . Pat Gelsinger, Intel CEO, stated at the end of 2023 that "we're no longer in the golden era of Moore's Law, it's much, much harder now, so we're probably doubling effectively closer to every three years now, so we've definitely seen a slowing." The physical limits to transistor scaling have been reached due to source-to-drain leakage, limited gate metals and limited options for channel material. Other approaches are being investigated, which do not rely on physical scaling. These include
3570-507: The PowerPC architecture developed by the AIM alliance . This was seen as a win for Intel; an analyst called the move "risky" and "foolish", as Intel's current offerings at the time were considered to be behind those of AMD and IBM. In 2006, Intel unveiled its Core microarchitecture to widespread critical acclaim; the product range was perceived as an exceptional leap in processor performance that at
3675-587: The Semiconductor Chip Protection Act of 1984 , a law sought by Intel and the Semiconductor Industry Association (SIA). During the late 1980s and 1990s (after this law was passed), Intel also sued companies that tried to develop competitor chips to the 80386 CPU . The lawsuits were noted to significantly burden the competition with legal bills, even if Intel lost the suits. Antitrust allegations had been simmering since
3780-489: The Zen microarchitecture and a new chiplet -based design to critical acclaim. Since its introduction, AMD, once unable to compete with Intel in the high-end CPU market, has undergone a resurgence, and Intel's dominance and market share have considerably decreased. In addition, Apple began to transition away from the x86 architecture and Intel processors to their own Apple silicon for their Macintosh computers in 2020. The transition
3885-479: The gate-all-around MOSFET ( GAAFET ) structure has even better gate control. Microprocessor architects report that semiconductor advancement has slowed industry-wide since around 2010, below the pace predicted by Moore's law. Brian Krzanich, the former CEO of Intel, announced, "Our cadence today is closer to two and a half years than two." Intel stated in 2015 that improvements in MOSFET devices have slowed, starting at
3990-519: The semiconductor memory market, widely predicted to replace magnetic-core memory . Its first product, a quick entry into the small, high-speed memory market in 1969, was the 3101 Schottky TTL bipolar 64-bit static random-access memory (SRAM), which was nearly twice as fast as earlier Schottky diode implementations by Fairchild and the Electrotechnical Laboratory in Tsukuba, Japan . In
4095-457: The x86 processor market is AMD, with which Intel has had full cross-licensing agreements since 1976: each partner can use the other's patented technological innovations without charge after a certain time. However, the cross-licensing agreement is canceled in the event of an AMD bankruptcy or takeover. Some smaller competitors, such as VIA Technologies, produce low-power x86 processors for small factor computers and portable equipment. However,
4200-468: The 2000s. Koomey later showed that a similar rate of efficiency improvement predated silicon chips and Moore's law, for technologies such as vacuum tubes. Microprocessor architects report that since around 2010, semiconductor advancement has slowed industry-wide below the pace predicted by Moore's law. Brian Krzanich , the former CEO of Intel, cited Moore's 1975 revision as a precedent for the current deceleration, which results from technical challenges and
4305-459: The 22 nm Tri-Gate process. Several other customers also exist but were not announced at the time. The foundry business was closed in 2018 due to Intel's issues with its manufacturing. Intel continued its tick-tock model of a microarchitecture change followed by a die shrink until the 6th-generation Core family based on the Skylake microarchitecture. This model was deprecated in 2016, with
Universal 3D - Misplaced Pages Continue
4410-595: The UN Broadband Commission's worldwide target of 5% of monthly income. In April 2011, Intel began a pilot project with ZTE Corporation to produce smartphones using the Intel Atom processor for China's domestic market. In December 2011, Intel announced that it reorganized several of its business units into a new mobile and communications group that would be responsible for the company's smartphone, tablet, and wireless efforts. Intel planned to introduce Medfield –
4515-682: The United States. Intel was incorporated in Mountain View, California , on July 18, 1968, by Gordon E. Moore (known for " Moore's law "), a chemist ; Robert Noyce , a physicist and co-inventor of the integrated circuit ; and Arthur Rock , an investor and venture capitalist . Moore and Noyce had left Fairchild Semiconductor , where they were part of the " traitorous eight " who founded it. There were originally 500,000 shares outstanding of which Dr. Noyce bought 245,000 shares, Dr. Moore 245,000 shares, and Mr. Rock 10,000 shares; all at $ 1 per share. Rock offered $ 2,500,000 of convertible debentures to
4620-448: The Xeon 6 processor, aiming for better performance and power efficiency compared to its predecessor. Intel's Gaudi 2 and Gaudi 3 AI accelerators were revealed to be more cost-effective than competitors' offerings. Additionally, Intel disclosed architecture details for its Lunar Lake processors for AI PCs, which were released on September 24, 2024. Moore%27s law Moore's law is
4725-584: The advent of such mobile computing devices, in particular, smartphones , has led to a decline in PC sales . Since over 95% of the world's smartphones currently use processors cores designed by Arm , using the Arm instruction set , Arm has become a major competitor for Intel's processor market. Arm is also planning to make attempts at setting foot into the PC and server market, with Ampere and IBM each individually designing CPUs for servers and supercomputers . The only other major competitor in processor instruction sets
4830-402: The assumption of unspecified liabilities. The move was intended to permit Intel to focus its resources on its core x86 and server businesses, and the acquisition completed on November 9, 2006. In 2008, Intel spun off key assets of a solar startup business effort to form an independent company, SpectraWatt Inc. In 2011, SpectraWatt filed for bankruptcy. In February 2011, Intel began to build
4935-498: The breakdown is that at small sizes, current leakage poses greater challenges, and also causes the chip to heat up, which creates a threat of thermal runaway and therefore, further increases energy costs. The breakdown of Dennard scaling prompted a greater focus on multicore processors, but the gains offered by switching to more cores are lower than the gains that would be achieved had Dennard scaling continued. In another departure from Dennard scaling, Intel microprocessors adopted
5040-508: The capacity that could be placed on a single fiber by as much as a factor of 100. Optical networking and dense wavelength-division multiplexing (DWDM) is rapidly bringing down the cost of networking, and further progress seems assured. As a result, the wholesale price of data traffic collapsed in the dot-com bubble . Nielsen's Law says that the bandwidth available to users increases by 50% annually. Pixels per dollar – Similarly, Barry Hendy of Kodak Australia has plotted pixels per dollar as
5145-828: The cause of the productivity acceleration to technological innovations in the production of semiconductors that sharply reduced the prices of such components and of the products that contain them (as well as expanding the capabilities of such products)." The primary negative implication of Moore's law is that obsolescence pushes society up against the Limits to Growth . As technologies continue to rapidly "improve", they render predecessor technologies obsolete. In situations in which security and survivability of hardware or data are paramount, or in which resources are limited, rapid obsolescence often poses obstacles to smooth or continued operations. Several measures of digital technology are improving at exponential rates related to Moore's law, including
5250-469: The co-founder of Fairchild Semiconductor and Intel (and former CEO of the latter), who in 1965 noted that the number of components per integrated circuit had been doubling every year , and projected this rate of growth would continue for at least another decade. In 1975, looking forward to the next decade, he revised the forecast to doubling every two years, a compound annual growth rate (CAGR) of 41%. Moore's empirical evidence did not directly imply that
5355-420: The companies to split the revenue from those facilities. On January 31, 2023, as part of $ 3 billion in cost reductions, Intel announced pay cuts affecting employees above midlevel, ranging from 5% upwards. It also suspended bonuses and merit pay increases, while reducing retirement plan matching. These cost reductions followed layoffs announced in the fall of 2022. In October 2023, Intel confirmed it would be
SECTION 50
#17331056366955460-451: The company as NM Electronics on July 18, 1968, but by the end of the month had changed the name to Intel , which stood for Int egrated El ectronics. Since "Intel" was already trademarked by the hotel chain Intelco, they had to buy the rights for the name. At its founding, Intel was distinguished by its ability to make logic circuits using semiconductor devices . The founders' goal was
5565-425: The company's focus to microprocessors and to change fundamental aspects of that business model. Moore's decision to sole-source Intel's 386 chip played into the company's continuing success. By the end of the 1980s, buoyed by its fortuitous position as microprocessor supplier to IBM and IBM's competitors within the rapidly growing personal computer market , Intel embarked on a 10-year period of unprecedented growth as
5670-409: The cost of computer power to the consumer falls, the cost for producers to fulfill Moore's law follows an opposite trend: R&D, manufacturing, and test costs have increased steadily with each new generation of chips. The cost of the tools, principally EUVL ( Extreme ultraviolet lithography ), used to manufacture chips doubles every 4 years. Rising manufacturing costs are an important consideration for
5775-812: The delay by 30% (0.7×) and therefore increase operating frequency by about 40% (1.4×). Finally, to keep electric field constant, voltage would be reduced by 30%, reducing energy by 65% and power (at 1.4× frequency) by 50%. Therefore, in every technology generation transistor density would double, circuit becomes 40% faster, while power consumption (with twice the number of transistors) stays the same. Dennard scaling ended in 2005–2010, due to leakage currents. The exponential processor transistor growth predicted by Moore does not always translate into exponentially greater practical CPU performance. Since around 2005–2007, Dennard scaling has ended, so even though Moore's law continued after that, it has not yielded proportional dividends in improved performance. The primary reason cited for
5880-450: The density of transistors at which the cost per transistor is the lowest. As more transistors are put on a chip, the cost to make each transistor decreases, but the chance that the chip will not work due to a defect increases. In 1965, Moore examined the density of transistors at which cost is minimized, and observed that, as transistors were made smaller through advances in photolithography , this number would increase at "a rate of roughly
5985-400: The disk media, thermal stability, and writability using available magnetic fields. Fiber-optic capacity – The number of bits per second that can be sent down an optical fiber increases exponentially, faster than Moore's law. Keck's law , in honor of Donald Keck . Network capacity – According to Gerald Butters, the former head of Lucent's Optical Networking Group at Bell Labs, there
6090-560: The early 1980s, and manufacturing and development centers in China, India, and Costa Rica in the 1990s. By the early 1980s, its business was dominated by DRAM chips. However, increased competition from Japanese semiconductor manufacturers had, by 1983, dramatically reduced the profitability of this market. The growing success of the IBM personal computer, based on an Intel microprocessor, was among factors that convinced Gordon Moore (CEO since 1975) to shift
6195-506: The early 1990s and had been the cause of one lawsuit against Intel in 1991. In 2004 and 2005, AMD brought further claims against Intel related to unfair competition . In 2005, CEO Paul Otellini reorganized the company to refocus its core processor and chipset business on platforms (enterprise, digital home, digital health, and mobility). On June 6, 2005, Steve Jobs , then CEO of Apple , announced that Apple would be using Intel's x86 processors for its Macintosh computers, switching from
6300-436: The field. In 1974, Robert H. Dennard at IBM recognized the rapid MOSFET scaling technology and formulated what became known as Dennard scaling , which describes that as MOS transistors get smaller, their power density stays constant such that the power use remains in proportion with area. Evidence from the semiconductor industry shows that this inverse relationship between power density and areal density broke down in
6405-653: The first commercial user of high-NA EUV lithography tool, as part of its plan to regain process leadership from TSMC . In August 2024, following a below-expectations Q2 earnings announcement, Intel announced "significant actions to reduce our costs. We plan to deliver $ 10 billion in cost savings in 2025, and this includes reducing our head count by roughly 15,000 roles, or 15% of our workforce." In December 2023, Intel unveiled Gaudi3, an artificial intelligence (AI) chip for generative AI software which will launch in 2024 and compete with rival chips from Nvidia and AMD. On 4 June 2024, Intel announced AI chips for data centers,
SECTION 60
#17331056366956510-445: The first commercially available dynamic random-access memory (DRAM), the 1103 released in 1970, solved these issues. The 1103 was the bestselling semiconductor memory chip in the world by 1972, as it replaced core memory in many applications. Intel's business grew during the 1970s as it expanded and improved its manufacturing processes and produced a wider range of products , still dominated by various memory devices. Intel created
6615-456: The first commercially available microprocessor, the Intel 4004 , in 1971. The microprocessor represented a notable advance in the technology of integrated circuitry, as it miniaturized the central processing unit of a computer, which then made it possible for small machines to perform calculations that in the past only very large machines could do. Considerable technological innovation was needed before
6720-440: The first quarter of 2011. Intel's market share decreased significantly in the enthusiast market as of 2019, and they have faced delays for their 10 nm products. According to former Intel CEO Bob Swan, the delay was caused by the company's overly aggressive strategy for moving to its next node. In the 1980s, Intel was among the world's top ten sellers of semiconductors (10th in 1987 ). Along with Microsoft Windows , it
6825-454: The five decades from 1959 to 2009. The pace accelerated, however, to 23% per year in 1995–1999 triggered by faster IT innovation, and later, slowed to 2% per year in 2010–2013. While quality-adjusted microprocessor price improvement continues, the rate of improvement likewise varies, and is not linear on a log scale. Microprocessor price improvement accelerated during the late 1990s, reaching 60% per year (halving every nine months) versus
6930-442: The historical trend would continue, nevertheless his prediction has held since 1975 and has since become known as a "law". Moore's prediction has been used in the semiconductor industry to guide long-term planning and to set targets for research and development , thus functioning to some extent as a self-fulfilling prophecy . Advancements in digital electronics , such as the reduction in quality-adjusted microprocessor prices,
7035-547: The increase in memory capacity ( RAM and flash ), the improvement of sensors , and even the number and size of pixels in digital cameras , are strongly linked to Moore's law. These ongoing changes in digital electronics have been a driving force of technological and social change, productivity , and economic growth. Industry experts have not reached a consensus on exactly when Moore's law will cease to apply. Microprocessor architects report that semiconductor advancement has slowed industry-wide since around 2010, slightly below
7140-444: The key economic indicator of innovation." Moore's law describes a driving force of technological and social change, productivity, and economic growth. An acceleration in the rate of semiconductor progress contributed to a surge in U.S. productivity growth, which reached 3.4% per year in 1997–2004, outpacing the 1.6% per year during both 1972–1996 and 2005–2013. As economist Richard G. Anderson notes, "Numerous studies have traced
7245-465: The key technical challenges of engineering future nanoscale transistors is the design of gates. As device dimensions shrink, controlling the current flow in the thin channel becomes more difficult. Modern nanoscale transistors typically take the form of multi-gate MOSFETs , with the FinFET being the most common nanoscale transistor. The FinFET has gate dielectric on three sides of the channel. In comparison,
7350-400: The late twentieth and early twenty-first centuries. The primary driving force of economic growth is the growth of productivity , which Moore's law factors into. Moore (1995) expected that "the rate of technological progress is going to be controlled from financial realities". The reverse could and did occur around the late-1990s, however, with economists reporting that "Productivity growth is
7455-416: The majority of its business until 1981. Although Intel created the world's first commercial microprocessor chip—the Intel 4004 —in 1971, it was not until the success of the PC in the early 1990s that this became its primary business. During the 1990s, the partnership between Microsoft Windows and Intel, known as " Wintel ", became instrumental in shaping the PC landscape and solidified Intel's position on
7560-400: The market. As a result, Intel invested heavily in new microprocessor designs in the mid to late 1990s, fostering the rapid growth of the computer industry . During this period, it became the dominant supplier of PC microprocessors, with a market share of 90%, and was known for aggressive and anti-competitive tactics in defense of its market position, particularly against AMD , as well as
7665-526: The microprocessor could actually become the basis of what was first known as a "mini computer" and then known as a "personal computer". Intel also created one of the first microcomputers in 1973. Intel opened its first international manufacturing facility in 1972, in Malaysia , which would host multiple Intel operations, before opening assembly facilities and semiconductor plants in Singapore and Jerusalem in
7770-427: The mid-2000s. At the 1975 IEEE International Electron Devices Meeting , Moore revised his forecast rate, predicting semiconductor complexity would continue to double annually until about 1980, after which it would decrease to a rate of doubling approximately every two years. He outlined several contributing factors for this exponential behavior: Shortly after 1975, Caltech professor Carver Mead popularized
7875-482: The most complex chips. The graph at the top of this article shows this trend holds true today. As of 2017 , the commercially available processor possessing the highest number of transistors is the 48 core Centriq with over 18 billion transistors. Density at minimum cost per transistor – This is the formulation given in Moore's 1965 paper. It is not just about the density of transistors that can be achieved, but about
7980-493: The needs of applications drive chip development, rather than a focus on semiconductor scaling. Application drivers range from smartphones to AI to data centers. IEEE began a road-mapping initiative in 2016, "Rebooting Computing", named the International Roadmap for Devices and Systems (IRDS). Some forecasters, including Gordon Moore, predict that Moore's law will end by around 2025. Although Moore's Law will reach
8085-605: The node. The first microprocessor under that node, Cannon Lake (marketed as 8th-generation Core), was released in small quantities in 2018. The company first delayed the mass production of their 10 nm products to 2017. They later delayed mass production to 2018, and then to 2019. Despite rumors of the process being cancelled, Intel finally introduced mass-produced 10 nm 10th-generation Intel Core mobile processors (codenamed " Ice Lake ") in September 2019. Intel later acknowledged that their strategy to shrink to 10 nm
8190-406: The observation that the number of transistors in an integrated circuit (IC) doubles about every two years. Moore's law is an observation and projection of a historical trend. Rather than a law of physics , it is an empirical relationship . It is an experience-curve law , a type of law quantifying efficiency gains from experience in production. The observation is named after Gordon Moore ,
8295-508: The pace predicted by Moore's law. In September 2022, Nvidia CEO Jensen Huang considered Moore's law dead, while Intel CEO Pat Gelsinger was of the opposite view. In 1959, Douglas Engelbart studied the projected downscaling of integrated circuit (IC) size, publishing his results in the article "Microelectronics, and the Art of Similitude". Engelbart presented his findings at the 1960 International Solid-State Circuits Conference , where Moore
8400-506: The performance gains predicted by Moore's law. In a 2008 article in InfoWorld , Randall C. Kennedy, formerly of Intel, introduces this term using successive versions of Microsoft Office between the year 2000 and 2007 as his premise. Despite the gains in computational performance during this time period according to Moore's law, Office 2007 performed the same task at half the speed on a prototypical year 2007 computer as compared to Office 2000 on
8505-670: The primary and most profitable hardware supplier to the PC industry, part of the winning 'Wintel' combination. Moore handed over his position as CEO to Andy Grove in 1987. By launching its Intel Inside marketing campaign in 1991, Intel was able to associate brand loyalty with consumer selection, so that by the end of the 1990s, its line of Pentium processors had become a household name. After 2000, growth in demand for high-end microprocessors slowed. Competitors, most notably AMD (Intel's largest competitor in its primary x86 architecture market), garnered significant market share, initially in low-end and mid-range processors but ultimately across
8610-514: The product range, and Intel's dominant position in its core market was greatly reduced, mostly due to controversial NetBurst microarchitecture. In the early 2000s then-CEO, Craig Barrett attempted to diversify the company's business beyond semiconductors, but few of these activities were ultimately successful. Bob had also for a number of years been embroiled in litigation. U.S. law did not initially recognize intellectual property rights related to microprocessor topology (circuit layouts), until
8715-550: The projection cannot be sustained indefinitely: "It can't continue forever. The nature of exponentials is that you push them out and eventually disaster happens." He also noted that transistors eventually would reach the limits of miniaturization at atomic levels: In terms of size [of transistors] you can see that we're approaching the size of atoms which is a fundamental barrier, but it'll be two or three generations before we get that far—but that's as far out as we've ever been able to see. We have another 10 to 20 years before we reach
8820-437: The rapid (in some cases hyperexponential) decreases in cost, and increases in performance, of a variety of technologies, including DNA sequencing, DNA synthesis, and a range of physical and computational tools used in protein expression and in determining protein structures. Eroom's law – is a pharmaceutical drug development observation that was deliberately written as Moore's Law spelled backwards in order to contrast it with
8925-499: The rapidity of information growth in an era that now sometimes is called the Information Age . Carlson curve – is a term coined by The Economist to describe the biotechnological equivalent of Moore's law, and is named after author Rob Carlson. Carlson accurately predicted that the doubling time of DNA sequencing technologies (measured by cost and performance) would be at least as fast as Moore's law. Carlson Curves illustrate
9030-531: The release of the 7th-generation Core family (codenamed Kaby Lake ), ushering in the process–architecture–optimization model . As Intel struggled to shrink their process node from 14 nm to 10 nm , processor development slowed down and the company continued to use the Skylake microarchitecture until 2020, albeit with optimizations. While Intel originally planned to introduce 10 nm products in 2016, it later became apparent that there were manufacturing issues with
9135-405: The same year, Intel also produced the 3301 Schottky bipolar 1024-bit read-only memory (ROM) and the first commercial metal–oxide–semiconductor field-effect transistor (MOSFET) silicon gate SRAM chip, the 256-bit 1101. While the 1101 was a significant advance, its complex static cell structure made it too slow and costly for mainframe memories. The three- transistor cell implemented in
9240-526: The semiconductor industry that on a semi-log plot approximates a straight line. I hesitate to review its origins and by doing so restrict its definition." Hard disk drive areal density – A similar prediction (sometimes called Kryder's law ) was made in 2005 for hard disk drive areal density . The prediction was later viewed as over-optimistic. Several decades of rapid progress in areal density slowed around 2010, from 30 to 100% per year to 10–15% per year, because of noise related to smaller grain size of
9345-508: The site for a major new manufacturing facility. The facility will cost at least $ 20 billion. The company expects the facility to begin producing chips by 2025. The same year Intel also choose Magdeburg , Germany , as a site for two new chip mega factories for €17 billion (topping Tesla 's investment in Brandenburg ). The start of the construction was initially planned for 2023, but this has been postponed to late 2024, while production start
9450-419: The size, cost, density, and speed of components. Moore wrote only about the density of components, "a component being a transistor, resistor, diode or capacitor", at minimum cost. Transistors per integrated circuit – The most popular formulation is of the doubling of the number of transistors on ICs every two years. At the end of the 1970s, Moore's law became known as the limit for the number of transistors on
9555-498: The smartphone market. Finding itself with excess fab capacity after the failure of the Ultrabook to gain market traction and with PC sales declining, in 2013 Intel reached a foundry agreement to produce chips for Altera using a 14 nm process. General Manager of Intel's custom foundry division Sunit Rikhi indicated that Intel would pursue further such deals in the future. This was after poor sales of Windows 8 hardware caused
9660-461: The spin state of electron spintronics , tunnel junctions , and advanced confinement of channel materials via nano-wire geometry. Spin-based logic and memory options are being developed actively in labs. The vast majority of current transistors on ICs are composed principally of doped silicon and its alloys. As silicon is fabricated into single nanometer transistors, short-channel effects adversely change desired material properties of silicon as
9765-822: The sustaining of Moore's law. This led to the formulation of Moore's second law , also called Rock's law (named after Arthur Rock ), which is that the capital cost of a semiconductor fabrication plant also increases exponentially over time. Numerous innovations by scientists and engineers have sustained Moore's law since the beginning of the IC era. Some of the key innovations are listed below, as examples of breakthroughs that have advanced integrated circuit and semiconductor device fabrication technology, allowing transistor counts to grow by more than seven orders of magnitude in less than five decades. Computer industry technology road maps predicted in 2001 that Moore's law would continue for several generations of semiconductor chips. One of
9870-400: The term "Moore's law". Moore's law eventually came to be widely accepted as a goal for the semiconductor industry, and it was cited by competitive semiconductor manufacturers as they strove to increase processing power. Moore viewed his eponymous law as surprising and optimistic: "Moore's law is a violation of Murphy's law . Everything gets better and better." The observation was even seen as
9975-400: The twelve months ending December 31, 2020, at 2,882 Kt (+94/+3.4% y-o-y). Intel plans to reduce carbon emissions 10% by 2030 from a 2020 base year. Intel has self-reported that they have Wafer fabrication plants in the United States, Ireland , and Israel. They have also self-reported that they have assembly and testing sites mostly in China, Costa Rica, Malaysia, and Vietnam, and one site in
10080-489: The typical 30% improvement rate (halving every two years) during the years earlier and later. Laptop microprocessors in particular improved 25–35% per year in 2004–2010, and slowed to 15–25% per year in 2010–2013. The number of transistors per chip cannot explain quality-adjusted microprocessor prices fully. Moore's 1995 paper does not limit Moore's law to strict linearity or to transistor count, "The definition of 'Moore's Law' has come to refer to almost anything related to
10185-408: Was Andy Grove , a chemical engineer , who later ran the company through much of the 1980s and the high-growth 1990s. In deciding on a name, Moore and Noyce quickly rejected "Moore Noyce", near homophone for "more noise" – an ill-suited name for an electronics company, since noise in electronics is usually undesirable and typically associated with bad interference . Instead, they founded
10290-547: Was a thing of the past and that they would now support all "tier-one operating systems" such as Linux, Android, iOS, and Chrome. In 2014, Intel cut thousands of employees in response to "evolving market trends", and offered to subsidize manufacturers for the extra costs involved in using Intel chips in their tablets. In April 2016, Intel cancelled the SoFIA platform and the Broxton Atom SoC for smartphones, effectively leaving
10395-402: Was founded on July 18, 1968, by semiconductor pioneers Gordon Moore (of Moore's law ) and Robert Noyce , along with investor Arthur Rock , and is associated with the executive leadership and vision of Andrew Grove . The company was a key component of the rise of Silicon Valley as a high-tech center, as well as being an early developer of SRAM and DRAM memory chips, which represented
10500-679: Was later standardized by Ecma International in August 2005 as ECMA-363. The goal is a universal standard for three-dimensional data of all kinds, to facilitate data exchange. The consortium promoted also the development of an open source library for facilitating the adoption of the format. The format is natively supported by the PDF format and 3D objects in U3D format can be inserted into PDF documents and interactively visualized by Acrobat Reader (since version 7). There are four editions to date. The first edition
10605-505: Was launched in October 2013 and Intel is part of the coalition of public and private organizations that also includes Facebook , Google , and Microsoft . Led by Sir Tim Berners-Lee , the A4AI seeks to make Internet access more affordable so that access is broadened in the developing world, where only 31% of people are online. Google will help to decrease Internet access prices so that they fall below
10710-955: Was part of the " Wintel " personal computer domination in the 1990s and early 2000s. In 1992, Intel became the biggest semiconductor chip maker by revenue and held the position until 2018 when Samsung Electronics surpassed it, but Intel returned to its former position the year after. Other major semiconductor companies include TSMC , GlobalFoundries , Texas Instruments , ASML , STMicroelectronics , United Microelectronics Corporation (UMC), Micron , SK Hynix , Kioxia , and SMIC . Intel's competitors in PC chipsets included AMD , VIA Technologies , Silicon Integrated Systems , and Nvidia . Intel's competitors in networking include NXP Semiconductors , Infineon , Broadcom Limited , Marvell Technology Group and Applied Micro Circuits Corporation , and competitors in flash memory included Spansion , Samsung Electronics, Qimonda , Kioxia, STMicroelectronics, Micron , and SK Hynix . The only major competitor in
10815-559: Was present in the audience. In 1965, Gordon Moore, who at the time was working as the director of research and development at Fairchild Semiconductor , was asked to contribute to the thirty-fifth anniversary issue of Electronics magazine with a prediction on the future of the semiconductor components industry over the next ten years. His response was a brief article entitled "Cramming more components onto integrated circuits". Within his editorial, he speculated that by 1975 it would be possible to contain as many as 65 000 components on
10920-401: Was reported that all Intel processors made since 1995 (besides Intel Itanium and pre-2013 Intel Atom ) had been subject to two security flaws dubbed Meltdown and Spectre. Due to Intel's issues with its 10 nm process node and the company's slow processor development, the company now found itself in a market with intense competition. The company's main competitor, AMD, introduced
11025-428: Was too aggressive. While other foundries used up to four steps in 10 nm or 7 nm processes, the company's 10 nm process required up to five or six multi-pattern steps. In addition, Intel's 10 nm process is denser than its counterpart processes from other foundries. Since Intel's microarchitecture and process node development were coupled, processor development stagnated. In early January 2018, it
#694305