Misplaced Pages

Internet Protocol

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Early research and development:

#961038

44-536: Merging the networks and creating the Internet: Commercialization, privatization, broader access leads to the modern Internet: Examples of Internet services: The Internet Protocol ( IP ) is the network layer communications protocol in the Internet protocol suite for relaying datagrams across network boundaries. Its routing function enables internetworking , and essentially establishes

88-647: A data section (the payload data for the application). The UDP datagram header consists of 4 fields, each of which is 2 bytes (16 bits): The use of the Checksum and Source Port fields is optional in IPv4 (light purple background in table). In IPv6 only the Source Port field is optional. If not used, these fields should be set to zero. The method used to compute the checksum is defined in RFC ; 768 , and efficient calculation

132-497: A carry-out (17th bit) is produced, swing that 17th carry bit around and add it to the least significant bit of the running total. Finally, the sum is then ones' complemented to yield the value of the UDP checksum field. If the checksum calculation results in the value zero (all 16 bits 0) it should be sent as the ones' complement (all 1s) as a zero-value checksum indicates no checksum has been calculated. In this case, any specific processing

176-411: A combination of TCP and TLS to ensure reliability and security respectively. This means that HTTP/3 uses a single handshake to set up a connection, rather than having two separate handshakes for TCP and TLS, meaning the overall time to establish a connection is reduced. Transmission Control Protocol is a connection-oriented protocol and requires handshaking to set up end-to-end communications. Once

220-477: A different header layout, the method used to compute the checksum is changed accordingly: Any transport or other upper-layer protocol that includes the addresses from the IP header in its checksum computation must be modified for use over IPv6, to include the 128-bit IPv6 addresses instead of 32-bit IPv4 addresses. When computing the checksum, again a pseudo header is used that mimics the real IPv6 header : The checksum

264-573: A fixed-size 32-bit address in the final version of IPv4 . This remains the dominant internetworking protocol in use in the Internet Layer ; the number 4 identifies the protocol version, carried in every IP datagram. IPv4 is defined in RFC   791 (1981). Version number 5 was used by the Internet Stream Protocol , an experimental streaming protocol that was not adopted. The successor to IPv4

308-528: A high degree of reliability, a protocol such as the Transmission Control Protocol may be used instead. Most often, UDP applications do not employ reliability mechanisms and may even be hindered by them. Streaming media , real-time multiplayer games and voice over IP (VoIP) are examples of applications that often use UDP. In these particular applications, loss of packets is not usually a fatal problem. In VoIP, for example, latency and jitter are

352-520: A layer called the Internet layer , located above the link layer . In many textbooks and other secondary references, the TCP/IP Internet layer is equated with the OSI network layer. However, this comparison is misleading, as the allowed characteristics of protocols (e.g., whether they are connection-oriented or connection-less) placed into these layers are different in the two models. The TCP/IP Internet layer

396-471: A source to a destination host via one or more networks. Within the service layering semantics of the OSI (Open Systems Interconnection) network architecture, the network layer responds to service requests from the transport layer and issues service requests to the data link layer . Functions of the network layer include: The TCP/IP model describes the protocols used by the Internet. The TCP/IP model has

440-446: A thorough security assessment and proposed mitigation of problems was published. The IETF has been pursuing further studies. Network layer In the seven-layer OSI model of computer networking , the network layer is layer 3 . The network layer is responsible for packet forwarding including routing through intermediate routers . The network layer provides the means of transferring variable-length network packets from

484-576: Is IPv6 . IPv6 was a result of several years of experimentation and dialog during which various protocol models were proposed, such as TP/IX ( RFC   1475 ), PIP ( RFC   1621 ) and TUBA (TCP and UDP with Bigger Addresses, RFC   1347 ). Its most prominent difference from version 4 is the size of the addresses. While IPv4 uses 32 bits for addressing, yielding c. 4.3 billion ( 4.3 × 10 ) addresses, IPv6 uses 128-bit addresses providing c. 3.4 × 10 addresses. Although adoption of IPv6 has been slow, as of January 2023, most countries in

SECTION 10

#1732844129962

528-411: Is Internet Protocol version 6 (IPv6), which has been in increasing deployment on the public Internet since around 2006. The Internet Protocol is responsible for addressing host interfaces , encapsulating data into datagrams (including fragmentation and reassembly ) and routing datagrams from a source host interface to a destination host interface across one or more IP networks. For these purposes,

572-448: Is a connectionless protocol , in contrast to connection-oriented communication . Various fault conditions may occur, such as data corruption , packet loss and duplication. Because routing is dynamic, meaning every packet is treated independently, and because the network maintains no state based on the path of prior packets, different packets may be routed to the same destination via different paths, resulting in out-of-order delivery to

616-437: Is a simple message-oriented transport layer protocol that is documented in RFC  768 . Although UDP provides integrity verification (via checksum ) of the header and payload, it provides no guarantees to the upper layer protocol for message delivery and the UDP layer retains no state of UDP messages once sent. For this reason, UDP sometimes is referred to as Unreliable Datagram Protocol . If transmission reliability

660-560: Is a software structure that is identified by the port number , a 16-bit integer value, allowing for port numbers between 0 and 65535. Port 0 is reserved but is a permissible source port value if the sending process does not expect messages in response. The Internet Assigned Numbers Authority (IANA) has divided port numbers into three ranges. Port numbers 0 through 1023 are used for common, well-known services. On Unix -like operating systems , using one of these ports requires superuser operating permission. Port numbers 1024 through 49151 are

704-603: Is an example of a protocol that adjusts its segment size to be smaller than the MTU. The User Datagram Protocol (UDP) and ICMP disregard MTU size, thereby forcing IP to fragment oversized datagrams. During the design phase of the ARPANET and the early Internet, the security aspects and needs of a public, international network could not be adequately anticipated. Consequently, many Internet protocols exhibited vulnerabilities highlighted by network attacks and later security assessments. In 2008,

748-431: Is computed over the following fields: Lacking reliability, UDP applications may encounter some packet loss, reordering, errors or duplication. If using UDP, the end-user applications must provide any necessary handshaking such as real-time confirmation that the message has been received. Applications, such as TFTP , may add rudimentary reliability mechanisms into the application layer as needed. If an application requires

792-413: Is desired, it must be implemented in the user's application. A number of UDP's attributes make it especially suited for certain applications. Applications can use datagram sockets to establish host-to-host communications. An application binds a socket to its endpoint of data transmission, which is a combination of an IP address and a port . In this way, UDP provides application multiplexing . A port

836-403: Is discussed in RFC  1071 : Checksum is the 16-bit ones' complement of the ones' complement sum of a pseudo header of information from the IP header, the UDP header, and the data, padded with zero octets at the end (if necessary) to make a multiple of two octets. In other words, all 16-bit words are summed using ones' complement arithmetic. Add the 16-bit values up. On each addition, if

880-530: Is dynamic in terms of the availability of links and nodes. No central monitoring or performance measurement facility exists that tracks or maintains the state of the network. For the benefit of reducing network complexity , the intelligence in the network is located in the end nodes . As a consequence of this design, the Internet Protocol only provides best-effort delivery and its service is characterized as unreliable . In network architectural parlance, it

924-480: Is error-free. A routing node discards packets that fail a header checksum test. Although the Internet Control Message Protocol (ICMP) provides notification of errors, a routing node is not required to notify either end node of errors. IPv6, by contrast, operates without header checksums, since current link layer technology is assumed to provide sufficient error detection. The dynamic nature of

SECTION 20

#1732844129962

968-414: Is generally transmitted using UDP. Real-time video and audio streaming protocols are designed to handle occasional lost packets, so only slight degradation in quality occurs, rather than large delays if lost packets were retransmitted. Because both TCP and UDP run over the same network, in the mid-2000s a few businesses found that an increase in UDP traffic from these real-time applications slightly hindered

1012-511: Is in fact only a subset of functionality of the network layer. It describes only one type of network architecture, the Internet. The network layer is responsible for fragmentation and reassembly for IPv4 packets that are larger than the smallest MTU of all the intermediate links on the packet's path to its destination. It is the function of routers to fragment packets if needed, and of hosts to reassemble them if received. Conversely, IPv6 packets are not fragmented during forwarding, but

1056-459: Is not required at the receiver, because all 0s and all 1s are equal to zero in 1's complement arithmetic. The differences between IPv4 and IPv6 are in the pseudo header used to compute the checksum, and that the checksum is not optional in IPv6. Under specific conditions, a UDP application using IPv6 is allowed to use a zero UDP zero-checksum mode with a tunnel protocol. When UDP runs over IPv4,

1100-486: Is suitable for purposes where error checking and correction are either not necessary or are performed in the application; UDP avoids the overhead of such processing in the protocol stack . Time-sensitive applications often use UDP because dropping packets is preferable to waiting for packets delayed due to retransmission , which may not be an option in a real-time system . The protocol was designed by David P. Reed in 1980 and formally defined in RFC   768 . UDP

1144-460: The Internet . IP has the task of delivering packets from the source host to the destination host solely based on the IP addresses in the packet headers . For this purpose, IP defines packet structures that encapsulate the data to be delivered. It also defines addressing methods that are used to label the datagram with source and destination information. IP was the connectionless datagram service in

1188-521: The Internet protocol suite used to send messages (transported as datagrams in packets ) to other hosts on an Internet Protocol (IP) network. Within an IP network, UDP does not require prior communication to set up communication channels or data paths. UDP is a connectionless protocol meaning that messages are sent without negotiating a connection and that UDP doesn't keep track of what it has sent. UDP provides checksums for data integrity , and port numbers for addressing different functions at

1232-402: The registered ports used for IANA-registered services. Ports 49152 through 65535 are dynamic ports that are not officially designated for any specific service and may be used for any purpose. These may also be used as ephemeral ports , which software running on the host may use to dynamically create communications endpoints as needed. A UDP datagram consists of a datagram header followed by

1276-443: The Internet Protocol defines the format of packets and provides an addressing system. Each datagram has two components: a header and a payload . The IP header includes a source IP address, a destination IP address, and other metadata needed to route and deliver the datagram. The payload is the data that is transported. This method of nesting the data payload in a packet with a header is called encapsulation. IP addressing entails

1320-424: The Internet and the diversity of its components provide no guarantee that any particular path is actually capable of, or suitable for, performing the data transmission requested. One of the technical constraints is the size of data packets possible on a given link. Facilities exist to examine the maximum transmission unit (MTU) size of the local link and Path MTU Discovery can be used for the entire intended path to

1364-551: The MTU supported by a specific path must still be established, to avoid packet loss . For this, Path MTU discovery is used between endpoints, which makes it part of the Transport layer , instead of this layer. The following are examples of protocols operating at the network layer. User Datagram Protocol In computer networking , the User Datagram Protocol ( UDP ) is one of the core communication protocols of

Internet Protocol - Misplaced Pages Continue

1408-463: The assignment of IP addresses and associated parameters to host interfaces. The address space is divided into subnets , involving the designation of network prefixes. IP routing is performed by all hosts, as well as routers , whose main function is to transport packets across network boundaries. Routers communicate with one another via specially designed routing protocols , either interior gateway protocols or exterior gateway protocols , as needed for

1452-445: The checksum is computed using a pseudo header that contains some of the same information from the real IPv4 header . The pseudo header is not the real IPv4 header used to send an IP packet, it is used only for the checksum calculation. UDP checksum computation is optional for IPv4. If a checksum is not used it should be set to the value zero. The checksum is calculated over the following fields: As IPv6 has larger addresses and

1496-408: The destination. The IPv4 internetworking layer automatically fragments a datagram into smaller units for transmission when the link MTU is exceeded. IP provides re-ordering of fragments received out of order. An IPv6 network does not perform fragmentation in network elements, but requires end hosts and higher-layer protocols to avoid exceeding the path MTU. The Transmission Control Protocol (TCP)

1540-406: The evolution of the Internet Protocol into the modern version of IPv4: IP versions 1 to 3 were experimental versions, designed between 1973 and 1978. Versions 2 and 3 supported variable-length addresses ranging between 1 and 16 octets (between 8 and 128 bits). An early draft of version 4 supported variable-length addresses of up to 256 octets (up to 2048 bits) but this was later abandoned in favor of

1584-421: The original Transmission Control Program introduced by Vint Cerf and Bob Kahn in 1974, which was complemented by a connection-oriented service that became the basis for the Transmission Control Protocol (TCP). The Internet protocol suite is therefore often referred to as TCP/IP . The first major version of IP, Internet Protocol version 4 (IPv4), is the dominant protocol of the Internet. Its successor

1628-496: The performance of applications using TCP such as point of sale , accounting , and database systems (when TCP detects packet loss, it will throttle back its data rate usage). Some VPN systems such as OpenVPN may use UDP and perform error checking at the application level while implementing reliable connections. QUIC is a transport protocol built on top of UDP. QUIC provides a reliable and secure connection. HTTP/3 uses QUIC as opposed to earlier versions of HTTPS which use

1672-737: The primary concerns. The use of TCP would cause jitter if any packets were lost as TCP does not provide subsequent data to the application while it is requesting a re-send of the missing data. Numerous key Internet applications use UDP, including: the Domain Name System (DNS), the Simple Network Management Protocol (SNMP), the Routing Information Protocol (RIP) and the Dynamic Host Configuration Protocol (DHCP). Voice and video traffic

1716-415: The receiver. All fault conditions in the network must be detected and compensated by the participating end nodes. The upper layer protocols of the Internet protocol suite are responsible for resolving reliability issues. For example, a host may buffer network data to ensure correct ordering before the data is delivered to an application. IPv4 provides safeguards to ensure that the header of an IP packet

1760-468: The source and destination of the datagram. It has no handshaking dialogues and thus exposes the user's program to any unreliability of the underlying network; there is no guarantee of delivery, ordering, or duplicate protection. If error-correction facilities are needed at the network interface level, an application may instead use Transmission Control Protocol (TCP) or Stream Control Transmission Protocol (SCTP) which are designed for this purpose. UDP

1804-653: The topology of the network. [REDACTED] [REDACTED] [REDACTED] [REDACTED] There are four principal addressing methods in the Internet Protocol: In May 1974, the Institute of Electrical and Electronics Engineers (IEEE) published a paper entitled "A Protocol for Packet Network Intercommunication". The paper's authors, Vint Cerf and Bob Kahn , described an internetworking protocol for sharing resources using packet switching among network nodes . A central control component of this model

Internet Protocol - Misplaced Pages Continue

1848-489: The world show significant adoption of IPv6, with over 41% of Google's traffic being carried over IPv6 connections. The assignment of the new protocol as IPv6 was uncertain until due diligence assured that IPv6 had not been used previously. Other Internet Layer protocols have been assigned version numbers, such as 7 ( IP/TX ), 8 and 9 ( historic ). Notably, on April 1, 1994, the IETF published an April Fools' Day RfC about IPv9. IPv9

1892-575: Was also used in an alternate proposed address space expansion called TUBA. A 2004 Chinese proposal for an IPv9 protocol appears to be unrelated to all of these, and is not endorsed by the IETF. The design of the Internet protocol suite adheres to the end-to-end principle , a concept adapted from the CYCLADES project. Under the end-to-end principle, the network infrastructure is considered inherently unreliable at any single network element or transmission medium and

1936-694: Was the Transmission Control Program that incorporated both connection-oriented links and datagram services between hosts. The monolithic Transmission Control Program was later divided into a modular architecture consisting of the Transmission Control Protocol and User Datagram Protocol at the transport layer and the Internet Protocol at the internet layer . The model became known as the Department of Defense (DoD) Internet Model and Internet protocol suite , and informally as TCP/IP . The following Internet Experiment Note (IEN) documents describe

#961038