Misplaced Pages

Titan IIIC

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The Titan IIIC was an expendable launch system used by the United States Air Force from 1965 until 1982. It was the first Titan booster to feature large solid rocket motors and was planned to be used as a launcher for the Dyna-Soar , though the spaceplane was cancelled before it could fly. The majority of the launcher's payloads were DoD satellites, for military communications and early warning, though one flight ( ATS-6 ) was performed by NASA. The Titan IIIC was launched exclusively from Cape Canaveral while its sibling, the Titan IIID , was launched only from Vandenberg AFB.

#627372

60-763: The Titan rocket family was established in October 1955 when the Air Force awarded the Glenn L. Martin Company (later Martin Marietta and now Lockheed Martin ) a contract to build an intercontinental ballistic missile (SM-68). It became known as the Titan I , the nation's first two-stage ICBM , and replaced the Atlas ICBM as the second underground, vertically stored, silo-based ICBM . Both stages of

120-709: A Defense Meteorological Satellite Program (DMSP) weather satellite on 18 October 2003. The Titan III was a modified Titan II with optional solid rocket boosters . It was developed on behalf of the United States Air Force (USAF) as a heavy-lift satellite launcher to be used mainly to launch American military payloads and civilian intelligence agency satellites such as the Vela Hotel nuclear-test-ban monitoring satellites, observation and reconnaissance satellites (for intelligence-gathering), and various series of defense communications satellites. As USAF project, Titan III

180-605: A Delco Carousel VB IMU and MAGIC 352 Missile Guidance Computer (MGC). The Titan IIIA was a prototype rocket booster and consisted of a standard Titan II rocket with a Transtage upper stage. The Titan IIIB with its different versions (23B, 24B, 33B, and 34B) had the Titan III core booster with an Agena D upper stage. This combination was used to launch the KH-8 GAMBIT series of intelligence-gathering satellites. They were all launched from Vandenberg Air Force Base, due south over

240-545: A crater 250 feet (76 m) in diameter. The 54 Titan IIs in Arizona, Arkansas, and Kansas were replaced by 50 MX "Peacekeeper" solid-fuel rocket missiles in the mid-1980s; the last Titan II silo was deactivated in May 1987. The 54 Titan IIs had been fielded along with a thousand Minuteman missiles from the mid-1960s through the mid-1980s. A number of Titan I and Titan II missiles have been distributed as museum displays across

300-581: A further consideration. Lockheed Martin decided to extend its Atlas family of rockets instead of its more expensive Titans, along with participating in joint-ventures to sell launches on the Russian Proton rocket and the new Boeing -built Delta IV class of medium and heavy-lift launch vehicles. The Titan IVB was the last Titan rocket to remain in service, making its penultimate launch from Cape Canaveral on 30 April 2005, followed by its final launch from Vandenberg Air Force Base on 19 October 2005, carrying

360-618: A hardened underground bunker. Using radar data, it made course corrections during the burn phase. Unlike decommissioned Thor, Atlas, and Titan II missiles, the Titan I inventory was scrapped and never reused for space launches or RV tests, as all support infrastructure for the missile had been converted to the Titan II/III family by 1965. Most of the Titan rockets were the Titan II ICBM and their civilian derivatives for NASA . The Titan II used

420-465: A launch of two DSCS II satellites ended up in the Atlantic Ocean when the Titan second stage hydraulic pump failed, resulting in engine shutdown approximately 470 seconds after launch. The Range Safety destruct command was sent, but it was unclear if the stage received it or if it had already broken up by that point. The first Titan IIIC flew on June 18, 1965, and was the most powerful launcher used by

480-515: A location often used for launch into non-polar orbits. The Titan V was a proposed development of the Titan IV, that saw several designs being suggested. One Titan V proposal was for an enlarged Titan IV, capable of lifting up to 90,000 pounds (41,000 kg) of payload. Another used a cryogenic first stage with LOX/LH2 propellants; however the Atlas V EELV was selected for production instead. Most of

540-518: A loss of attitude control. The onboard computer shut off Engine 2 at T+256 seconds and began a premature separation and ignition of Stage 2. With the Titan now tumbling and headed back towards land, the destruct command was issued at T+272 seconds and the KH-11 crashed into the Pacific Ocean. During Stage 1's powered flight, the oxidizer tank began leaking N 2 O 4 which was thought to have resulted in

600-530: A silo outside Rock, Kansas , an oxidizer transfer line carrying NTO ruptured on August 24, 1978. An ensuing orange vapor cloud forced 200 rural residents to evacuate the area. A staff sergeant of the maintenance crew was killed while attempting a rescue and a total of twenty were hospitalized. Another site at Potwin, Kansas leaked NTO oxidizer in April 1980 with no fatalities, and was later closed. In September 1980, at Titan II silo 374-7 near Damascus, Arkansas ,

660-593: A single Titan 3C rocket. It transmitted in X-band. The fifth Titan IIIC (August 26, 1966) failed shortly after launch when pieces of the payload fairing started breaking off. Around 80 seconds, the remainder of the shroud disintegrated, causing loss of launch vehicle control as well as the payload (a group of IDCSP satellites intended to provide radio communication for the US Army in Vietnam). The ISDS activated automatically when one of

SECTION 10

#1732844711628

720-560: A special range safety system known as the Inadvertent Separation Destruction System (ISDS) that would activate and destroy the first stage if there was a premature second stage separation. Titans that carried Solid Rocket Boosters (SRBs) (Titan IIIC, IIID, 34D, and IV) had a second ISDS that consisted of several lanyards attached to the SRBs that would trigger and automatically destroy them if they prematurely separated from

780-402: A technician dropped an 8 lb (3.6 kg) socket that fell 70 ft (21 m), bounced off a thrust mount, and broke the skin of the missile's first stage, over eight hours prior to an eventual explosion . The puncture occurred about 6:30 p.m. and when a leak was detected shortly after, the silo was flooded with water and civilian authorities were advised to evacuate the area. As

840-473: The Challenger disaster created a renewed emphasis on ELVs and would see a considerable expansion of the upcoming Titan IV program, which was originally intended for just ten launches. The exact reason for the air pocket in the #2 SRM was never satisfactorily determined. While all the rocket segments were at least five years old (since all flight article Titan 34Ds had been manufactured and delivered by 1982 and

900-693: The Charles Stark Draper Laboratory at MIT. The missile guidance computer (MGC) was the IBM ASC-15 . When spares for this system became hard to obtain, it was replaced by a more modern guidance system, the Delco Electronics Universal Space Guidance System (USGS). The USGS used a Carousel IV IMU and a Magic 352 computer. The USGS was already in use on the Titan III space launcher when work began in March 1978 to replace

960-730: The Inertial Upper Stage , the Transfer Orbit Stage , and the Transtage . The Titan 34D made its maiden flight in the year of 1982 on the 30th of October with two DSCS defense communications satellites for the United States Department of Defense (DOD). All of the launches were conducted from either LC-40 at Cape Canaveral Air Force Station or SLC-4E at Vandenberg Air Force Base . Overall, fifteen launches were carried out, of which three failed. The first failure

1020-566: The LR-87-5 engine, a modified version of the LR-87 , that used a hypergolic propellant combination of nitrogen tetroxide (NTO) for its oxidizer and Aerozine 50 (a 50/50 mix of hydrazine and unsymmetrical dimethylhydrazine (UDMH) instead of the liquid oxygen and RP-1 propellant of the Titan I. The first Titan II guidance system was built by AC Spark Plug . It used an inertial measurement unit made by AC Spark Plug derived from original designs from

1080-694: The Titan I used kerosene (RP-1) and liquid oxygen (LOX) as propellants. A subsequent version of the Titan family, the Titan II , was similar to the Titan I , but was much more powerful. Designated as LGM-25C, the Titan II was the largest USAF missile at the time and burned Aerozine 50 and nitrogen tetroxide (NTO) rather than RP-1 and LOX. The Titan III family consisted of an enhanced Titan II core with or without solid rocket strap-on boosters and an assortment of upper stages. All Solid Rocket Motor (SRM)-equipped Titans (IIIC, IIID, IIIE, 34D, and IV) launched with only

1140-528: The Air Force until it was replaced by the Titan 34D in 1982. The last IIIC was launched in March 1982. The Titan IIIC weighed about 1,380,000 lb (626,000 kg) at liftoff and consisted of a two-stage Titan core and upper stage called the Titan Transtage , both burning hypergolic liquid fuel, and two large UA1205 solid rocket motors. The solid motors were ignited on the ground and were designated "stage 0". Each motor composed of five segments and

1200-608: The Pacific into polar orbits . Their maximum payload mass was about 7,500 lb (3,000 kg). The powerful Titan IIIC used a Titan III core rocket with two large strap-on solid-fuel boosters to increase its launch thrust and maximum payload mass. The solid-fuel boosters that were developed for the Titan IIIC represented a significant engineering advance over previous solid-fueled rockets, due to their large size and thrust, and their advanced thrust-vector control systems. The Titan IIID

1260-513: The SRB exhaust. Titan III/IV SRBs were fixed nozzle and for roll control, a small tank of nitrogen tetroxide was mounted to each motor. The N 2 O 4 would be injected into the SRB exhaust to deflect it in the desired direction. As the IIIC consisted of mostly proven hardware, launch problems were generally only caused by the upper stages and/or payload. The second launch in October 1965 failed when

SECTION 20

#1732844711628

1320-616: The SRBs broke away from the stack and destroyed the entire launch vehicle. The exact reason for the shroud failure was not determined, but the fiberglass payload shrouds used on the Titan III up to this point were replaced with a metal shroud afterwards. A Titan IIIC in November 1970 failed to place its missile early warning satellite in the correct orbit due to a Transtage failure and a 1975 launch of two DSCS II military communication satellites left in LEO by another Transtage failure. On March 25, 1978,

1380-475: The SRMs firing at liftoff, the core stage not activating until T+105 seconds, shortly before SRM jettison. The Titan IIIA (an early test variant flown in 1964–65) and IIIB (flown from 1966 to 1987 with an Agena D upper stage in both standard and extended tank variants) had no SRMs. The Titan III launchers provided assured capability and flexibility for launch of large-class payloads. All Titan II/III/IV vehicles contained

1440-681: The Solar System. The HGM-25A Titan I, built by the Martin Company , was the first version of the Titan family of rockets. It began as a backup ICBM project in case the SM-65 Atlas was delayed. It was a two-stage rocket operational from early 1962 to mid-1965 whose LR-87 booster engine was powered by RP-1 (kerosene) and liquid oxygen (LOX). The ground guidance for the Titan was the UNIVAC ATHENA computer , designed by Seymour Cray , based in

1500-691: The Titan 3A-2, contained about 55,000 lb (25,000 kg) of propellant and was powered by a single Aerojet LR-91-AJ9, which produced 453.7 kN (102,000 lbf) for 145 seconds. The upper stage, the Titan Transtage , also burned Aerozine 50 and NTO. Its two Aerojet AJ-10-138 engines were restartable, allowing flexible orbital operations including orbital trimming, geostationary transfer and insertion, and delivery of multiple payloads to different orbits. This required complex guidance and instrumentation. Transtage contained about 22,000 lb (10,000 kg) of propellant and its engines delivered 16,000 lbf (71 kN). Titan rocket Titan

1560-423: The Titan II guidance system. The main reason was to reduce the cost of maintenance by $ 72 million per year; the conversions were completed in 1981. Liquid oxygen is dangerous to use in an enclosed space, such as a missile silo , and cannot be stored for long periods in the booster oxidizer tank. Several Atlas and Titan I rockets exploded and destroyed their silos, although without loss of life. The Martin Company

1620-567: The Transtage suffered an oxidizer leak and was unable to put its payload (several small satellites) into the correct orbit. The third launch in December experienced a similar failure. The fourth IIIC launch was used to send the LES 4 (Lincoln Experimental Satellite 4) into orbit. It was a US Air Force experimental communications satellite launched along with OV2-3, LES 3, and Oscar 4 from Cape Canaveral aboard

1680-581: The USA-186 optical imaging satellite for the National Reconnaissance Office. Titan 34D The Titan 34D was a United States expendable launch vehicle used to launch a number of satellites for military applications. Derived from the Titan III , the Titan 34D featured Stage 1 and Stage 2 stretched with more powerful UA1206 solid motors. A variety of upper stages were available, including

1740-578: The United States Department of Defense (DOD). Derived from the Titan 34D and originally proposed as a medium-lift expendable launch system for the US Air Force, who selected the Delta II instead. Development was continued as a commercial launch system, and the first rocket flew in 1990. The Commercial Titan III differed from the Titan 34D in that it had a stretched second stage, and a larger payload fairing to accommodate dual satellite payloads. The Titan IIIM

1800-662: The United States. The most famous use of the civilian Titan II was in the NASA Gemini program of crewed space capsules in the mid-1960s. Twelve Titan II GLVs were used to launch two U.S. uncrewed Gemini test launches and ten crewed capsules with two-person crews. All of the launches were successful. Starting in the late 1980s, some of the deactivated Titan IIs were converted into space launch vehicles to be used for launching U.S. Government payloads. Titan 23G rockets consisted of two stages burning liquid propellant . The first stage

1860-432: The adjacent SLC-4W (used for Titan IIIB launches) with debris and toxic propellant. The investigation indicated the right solid rocket motor rupturing starting at T+6 seconds with the resulting torque on the launch vehicle caused the left SRM to break away. This triggered its automatic destruct system, blowing Stage 1 to pieces and rupturing Stage 2's N 2 O 4 tank. The upper stages were ejected and launched through

Titan IIIC - Misplaced Pages Continue

1920-439: The air until a manual destruct command was sent by the range safety officer at T+20 seconds. The KH-9 was also blown up by its internal self-destruct mechanism, which was designed to destroy the classified satellite in the event of a launch malfunction. Debris rained onto SLC-4E, badly damaging the launch complex in the process and starting numerous small fires, some of which burned for up to two days. Extracting launch personnel from

1980-641: The blockhouse proved difficult due to the area around the pad being filled with toxic fumes and burning debris. The casing rupture had damaged the Inadvertent Separation Destruct System (ISDS) lanyards and prevented proper destruction of the SRM, which came down largely intact onto a concrete structure near the pad, which was unoccupied at the time of launch. The disaster drew comparisons to the Challenger shuttle accident three months earlier, which

2040-464: The clamps had not failed on any previous launches so it was not clear why they would suddenly fail now. Some members of the investigative board even proposed that the SRBs had suffered an exhaust gas leak which caused damage to the core stage. As evidence, they noted that a piece of cork insulation had broken off one SRB shortly after launch. The official cause of the failure was "Leakage of oxidizer resulting in loss of turbopump lubrication and breakdown of

2100-467: The core, said "destruction" consisting mainly of splitting the casings open to release the pressure inside and terminate thrust. The ISDS would end up being used a few times over the Titan's career. Another slight modification to SRB-equipped Titans was the first stage engines being covered instead of the open truss structure on the Titan II/IIIA/IIIB. This was to protect the engines from the heat of

2160-409: The decommissioned Titan II ICBMs were refurbished and used for Air Force space launch vehicles, with a perfect launch success record. For orbital launches, there were strong advantages to using higher-performance liquid hydrogen or RP-1 fueled vehicles with liquid oxygen ; the high cost of using hydrazine and nitrogen tetroxide, along with the special care that was needed due to their toxicity, were

2220-588: The internal disintegration of the Soviet Union . As a result of these events and improvements in technology, the unit cost of a Titan IV launch was very high. Additional expenses were generated by the ground operations and facilities for the Titan IV at Vandenberg Air Force Base for launching satellites into polar orbits. Titan IVs were also launched from the Cape Canaveral Air Force Station in Florida,

2280-537: The loss of lubrication to the Engine 1 turbopump and breakdown of the pinion gear. The attempts by the Navy to salvage booster debris from the ocean floor were largely unsuccessful. Investigators also complained that tracking camera coverage during the core stage burn was inadequate. Titan 34D-7 was the first failed launch of a solid motor-equipped Titan vehicle from Vandenberg (there has been several failures from Cape Canaveral over

2340-497: The most powerful uncrewed rocket available to the United States, with proportionally high manufacturing and operations expenses. By the time the Titan IV became operational, the requirements of the Department of Defense and the NRO for launching satellites had tapered off due to improvements in the longevity of reconnaissance satellites and the declining demand for reconnaissance that followed

2400-649: The pad area. The satellite debris was taken away for burial in an undisclosed location in the State of Nevada . The investigation found that the manufacturer of the UA1206 motors, Chemical Systems Division of United Technologies had inadequate quality control measures. Due to the Shuttle program, demand for expendable launch vehicles (ELVs) was greatly reduced during the 1980s and manufacturers had been cutting costs, dropping technical personnel, and preparing to phase out ELVs. However,

2460-434: The pinion gear." However, most of the members of the investigative team were unsatisfied with this verdict. As a result of 34D-7, the Air Force took measures to ensure that a repeat failure would not occur. These included reinstalling some of the deleted telemetry probes on the Titan as well as improved camera coverage; the next launch would even have the aircraft flying overhead to provide additional photography. Titan 34D-9

Titan IIIC - Misplaced Pages Continue

2520-410: The problem was being attended to at around 3 a.m., leaking rocket fuel ignited and blew the 8,000 lb (3,630 kg) nuclear warhead out of the silo. It landed harmlessly several hundred feet away. There was one fatality and 21 were injured, all from the emergency response team from Little Rock AFB . The explosion blew the 740-ton launch tube cover 200 ft (60 m) into the air and left

2580-466: The production line long since shut down), there had been no similar problems on other SRMs of the same age. Thanks to Titan 34D-9 (and because an SRB malfunction was a possible cause of 34D-7's failure), more stringent measures were put in place. This included the construction of the Non-Destructive Testing (NDT) High Energy X-Ray Facility at Cape Canaveral in a crash program lasting 83 days from

2640-477: The true cause of 34D-9's failure, was so puzzled at the loss of two Titan IIIs in a row that it believed for a time that saboteurs had been at work on Vandenberg Air Force Base, and it had base personnel comb the nearby hills for bullet casings. Due to the classified payload, extensive efforts were made to clean up all remains of the KH-9, whose film reels were ripped apart into hundreds of small pieces and scattered around

2700-469: The two Viking missions to place two orbiters around Mars and two instrumented landers on its surface. The Titan 34D featured Stage 1 and Stage 2 stretched with more powerful UA1206 solid motors. A variety of upper stages were available, including the Inertial Upper Stage , the Transfer Orbit Stage , and the Transtage . The Titan 34D made its maiden flight in the year of 1982 on the 30th of October with two DSCS defense communications satellites for

2760-442: The years) and was particularly vexing because of inadequate launch data. The Titan III's flawless West Coast launch record meant that the Air Force felt confident enough to remove several telemetry measurements from the boosters in the interest of reduced weight and complexity. There had evidently been leaks from both the fuel and oxidizer tanks, as well as suspicion hinged on clamps that held the propellant feed lines in place. However,

2820-606: The years), however SRB-equipped variants had a heat shield over them as protection from the SRB exhaust and the engines were modified for air-starting. The first guidance system for the Titan III used the AC Spark Plug company IMU (inertial measurement unit) and an IBM ASC-15 guidance computer from the Titan II. For the Titan III, the ASC-15 drum memory of the computer was lengthened to add 20 more usable tracks, which increased its memory capacity by 35%. The more-advanced Titan IIIC used

2880-474: Was Aerozine 50 , a 50/50 mix of hydrazine and UDMH, and the oxidizer was NTO. There were several accidents in Titan II silos resulting in loss of life and/or serious injuries. In August 1965, 53 construction workers were killed in fire in a missile silo northwest of Searcy, Arkansas . The fire started when hydraulic fluid used in the Titan II was ignited by a welding torch. The liquid fuel missiles were prone to developing leaks of their toxic propellants. At

2940-412: Was 10 ft (3.0 m) in diameter, 85 ft (26 m) long, and weighed nearly 500,000 lb (230,000 kg). They produced a combined 2,380,000 lbf (10,600 kN) thrust at sea level and burned for approximately 115 seconds. Solid motor jettison occurred at approximately 116 seconds. The first core stage ignited about 5 seconds before SRM jettison. Designated the Titan 3A-1, this stage

3000-641: Was a family of United States expendable rockets used between 1959 and 2005. The Titan I and Titan II were part of the US Air Force 's intercontinental ballistic missile (ICBM) fleet until 1987. The space launch vehicle versions contributed the majority of the 368 Titan launches, including all the Project Gemini crewed flights of the mid-1960s. Titan vehicles were also used to lift US military payloads as well as civilian agency reconnaissance satellites and to send interplanetary scientific probes throughout

3060-431: Was able to improve the design with the Titan II. The RP-1/LOX combination was replaced by a room-temperature fuel whose oxidizer did not require cryogenic storage. The same first-stage rocket engine was used with some modifications. The diameter of the second stage was increased to match the first stage. The Titan II's hypergolic fuel and oxidizer ignited on contact, but they were highly toxic and corrosive liquids. The fuel

SECTION 50

#1732844711628

3120-543: Was also the victim of a solid rocket motor malfunction. However, the Titan incident was found to have a different cause, as the O-rings had not burned-through. A small air pocket between the SRM propellant and its metal motor casing allowed hot exhaust gases to burn through the casing and eventually rupture the SRM. The loss of two photoreconnaissance satellites in a row also badly hampered American efforts to acquire intelligence on Soviet activities. The Air Force, before finding out

3180-610: Was intended to launch the Manned Orbiting Laboratory and other payloads. Development was cancelled in 1969. The projected UA1207 solid booster rockets were eventually used on the Titan IV . The Titan IV was an extended length Titan III with solid rocket boosters on its sides. The Titan IV could be launched with a Centaur upper stage, the USAF Inertial Upper Stage (IUS), or no upper stage at all. This rocket

3240-421: Was launched 18 April 1986 at Vandenberg AFB. Instead of the advanced KH-11 satellite carried on 34D-7, this booster carried the older model KH-9 in what would be the final launch of that satellite and the final launch of a film capsule photoreconnaissance satellite by the United States. Lifting off at 10:45 AM Pacific Time, the Titan catastrophically exploded just above SLC-4E, showering the launch complex as well as

3300-422: Was more formally known as Program 624A ( SSLS ), Standard Space Launch System , Standardized Space Launch System , Standardized Space Launching System or Standard Space Launching System (all abbreviated SSLS ). The Titan III core was similar to the Titan II, but had a few differences. These included: The Titan III family used the same basic LR-87 engines as Titan II (with performance enhancements over

3360-414: Was powered by a twin nozzle Aerojet LR-87-AJ9 engine that burned about 240,000 lb (110,000 kg) of Aerozine 50 and nitrogen tetroxide (NTO) and produced 1,941.7 kN (436,500 lbf) thrust over 147 seconds. The Aerozine 50 and NTO were stored in structurally independent tanks to minimize the hazard of the two mixing if a leak should have developed in either tank. The second core stage,

3420-511: Was powered by one Aerojet LR87 engine with two combustion chambers and nozzles, and the second stage was propelled by an LR91 . On some flights, the spacecraft included a kick motor, usually the Star-37XFP-ISS ; however, the Star-37S was also used. Thirteen were launched from Space Launch Complex 4W (SLC-4W) at Vandenberg Air Force Base starting in 1988. The final such vehicle launched

3480-535: Was the Vandenberg Air Force Base version of the Titan IIIC, without a Transtage, that was used to place members of the Key Hole series of reconnaissance satellites into polar low Earth orbits . The Titan IIIE, with a high- specific-impulse Centaur upper stage, was used to launch several scientific spacecraft, including both of NASA's two Voyager space probes to Jupiter, Saturn and beyond, and both of

3540-412: Was the launch of a KH-11 photoreconnaissance satellite in the year 1985 on the 28th of August. The core stage suffered a propulsion system malfunction and was destroyed by Range Safety. The flight proceeded normally until the core engine starts at T+108 seconds. At T+112 seconds, an abnormal start transient occurred and Engine 2 began experiencing thrust decay. At T+212 seconds, Engine 1 shut down, causing

3600-531: Was used almost exclusively to launch US military or Central Intelligence Agency payloads. However, it was also used for a purely scientific purpose to launch the NASA–ESA Cassini / Huygens space probe to Saturn in 1997. The primary intelligence agency that needed the Titan IV's launch capabilities was the National Reconnaissance Office (NRO). When it was being produced, the Titan IV was

#627372