In physics , spacetime , also called the space-time continuum , is a mathematical model that fuses the three dimensions of space and the one dimension of time into a single four-dimensional continuum . Spacetime diagrams are useful in visualizing and understanding relativistic effects, such as how different observers perceive where and when events occur.
98-442: Time is the continued sequence of existence and events, and a fundamental quantity of measuring systems. Time or times may also refer to: Time Time is the continued sequence of existence and events that occurs in an apparently irreversible succession from the past , through the present , and into the future . It is a component quantity of various measurements used to sequence events, to compare
196-529: A causal relation . General relativity does not address the nature of time for extremely small intervals where quantum mechanics holds. In quantum mechanics, time is treated as a universal and absolute parameter, differing from general relativity's notion of independent clocks. The problem of time consists of reconciling these two theories. As of 2024, there is no generally accepted theory of quantum general relativity. Generally speaking, methods of temporal measurement, or chronometry , take two distinct forms:
294-448: A . The pulse is reflected from a mirror situated a distance a from the light source (event Q), and returns to the light source at x ′ = 0, ct ′ = a (event R). The same events P, Q, R are plotted in Fig. 2-3b in the frame of observer O. The light paths have slopes = 1 and −1, so that △PQR forms a right triangle with PQ and QR both at 45 degrees to
392-611: A calendar based solely on twelve lunar months. Lunisolar calendars have a thirteenth month added to some years to make up for the difference between a full year (now known to be about 365.24 days) and a year of just twelve lunar months. The numbers twelve and thirteen came to feature prominently in many cultures, at least partly due to this relationship of months to years. Other early forms of calendars originated in Mesoamerica, particularly in ancient Mayan civilization. These calendars were religiously and astronomically based, with 18 months in
490-620: A dimension. Isaac Newton said that we are merely occupying time, he also says that humans can only understand relative time . Relative time is a measurement of objects in motion. The anti-realists believed that time is merely a convenient intellectual concept for humans to understand events. This means that time was useless unless there were objects that it could interact with, this was called relational time . René Descartes , John Locke , and David Hume said that one's mind needs to acknowledge time, in order to understand what time is. Immanuel Kant believed that we can not know what something
588-445: A fourth dimension, it is treated differently than the spatial dimensions. Minkowski space hence differs in important respects from four-dimensional Euclidean space . The fundamental reason for merging space and time into spacetime is that space and time are separately not invariant, which is to say that, under the proper conditions, different observers will disagree on the length of time between two events (because of time dilation ) or
686-420: A geometric interpretation of special relativity that fused time and the three spatial dimensions into a single four-dimensional continuum now known as Minkowski space . This interpretation proved vital to the general theory of relativity , wherein spacetime is curved by mass and energy . Non-relativistic classical mechanics treats time as a universal quantity of measurement that is uniform throughout,
784-453: A great shock when Einstein published his paper in which the equivalence of the different local times of observers moving relative to each other was pronounced; for he had reached the same conclusions independently but did not publish them because he wished first to work out the mathematical structure in all its splendor. He never made a priority claim and always gave Einstein his full share in the great discovery. Minkowski had been concerned with
882-403: A head in the famous Leibniz–Clarke correspondence . Philosophers in the 17th and 18th century questioned if time was real and absolute, or if it was an intellectual concept that humans use to understand and sequence events. These questions lead to realism vs anti-realism; the realists believed that time is a fundamental part of the universe, and be perceived by events happening in a sequence, in
980-407: A hundred minutes of a hundred seconds, which marked a deviation from the base 12 ( duodecimal ) system used in many other devices by many cultures. The system was abolished in 1806. A large variety of devices have been invented to measure time. The study of these devices is called horology . An Egyptian device that dates to c. 1500 BC , similar in shape to a bent T-square , measured
1078-574: A light signal in that same time interval Δ t {\displaystyle \Delta t} . If the event separation is due to a light signal, then this difference vanishes and Δ s = 0 {\displaystyle \Delta s=0} . When the event considered is infinitesimally close to each other, then we may write In a different inertial frame, say with coordinates ( t ′ , x ′ , y ′ , z ′ ) {\displaystyle (t',x',y',z')} ,
SECTION 10
#17328374783411176-434: A location. In Fig. 1-1, imagine that the frame under consideration is equipped with a dense lattice of clocks, synchronized within this reference frame, that extends indefinitely throughout the three dimensions of space. Any specific location within the lattice is not important. The latticework of clocks is used to determine the time and position of events taking place within the whole frame. The term observer refers to
1274-442: A mere shadow, and only some sort of union of the two shall preserve independence." Space and Time included the first public presentation of spacetime diagrams (Fig. 1-4), and included a remarkable demonstration that the concept of the invariant interval ( discussed below ), along with the empirical observation that the speed of light is finite, allows derivation of the entirety of special relativity. The spacetime concept and
1372-577: A number or calendar date to an instant (point in time), quantifying the duration of a time interval, and establishing a chronology (ordering of events). In modern times, several time specifications have been officially recognized as standards, where formerly they were matters of custom and practice. The invention in 1955 of the caesium atomic clock has led to the replacement of older and purely astronomical time standards such as sidereal time and ephemeris time , for most practical purposes, by newer time standards based wholly or partly on atomic time using
1470-419: A person moving with respect to the first observer will see the two events occurring at different places, because the moving point of view sees itself as stationary, and the position of the event as receding or approaching. Thus, a different measure must be used to measure the effective "distance" between two events. In four-dimensional spacetime, the analog to distance is the interval. Although time comes in as
1568-488: A prime motivation in navigation and astronomy . Time is also of significant social importance, having economic value (" time is money ") as well as personal value, due to an awareness of the limited time in each day and in human life spans . The concept of time can be complex. Multiple notions exist and defining time in a manner applicable to all fields without circularity has consistently eluded scholars. Nevertheless, diverse fields such as business, industry, sports,
1666-482: A recurring pattern of ages or cycles, where events and phenomena repeated themselves in a predictable manner. One of the most famous examples of this concept is found in Hindu philosophy , where time is depicted as a wheel called the " Kalachakra " or "Wheel of Time." According to this belief, the universe undergoes endless cycles of creation, preservation, and destruction. Similarly, in other ancient cultures such as those of
1764-413: A single point in spacetime. Although it is possible to be in motion relative to the popping of a firecracker or a spark, it is not possible for an observer to be in motion relative to an event. The path of a particle through spacetime can be considered to be a sequence of events. The series of events can be linked together to form a curve that represents the particle's progress through spacetime. That path
1862-433: A spacetime diagram illustrating the world lines (i.e. paths in spacetime) of two photons, A and B, originating from the same event and going in opposite directions. In addition, C illustrates the world line of a slower-than-light-speed object. The vertical time coordinate is scaled by c {\displaystyle c} so that it has the same units (meters) as the horizontal space coordinate. Since photons travel at
1960-490: A spatial distance Δ x . {\displaystyle \Delta x.} Then the squared spacetime interval ( Δ s ) 2 {\displaystyle (\Delta {s})^{2}} between the two events that are separated by a distance Δ x {\displaystyle \Delta {x}} in space and by Δ c t = c Δ t {\displaystyle \Delta {ct}=c\Delta t} in
2058-516: A year and 20 days in a month, plus five epagomenal days at the end of the year. The reforms of Julius Caesar in 45 BC put the Roman world on a solar calendar . This Julian calendar was faulty in that its intercalation still allowed the astronomical solstices and equinoxes to advance against it by about 11 minutes per year. Pope Gregory XIII introduced a correction in 1582; the Gregorian calendar
SECTION 20
#17328374783412156-626: A year before his death), Minkowski introduced his geometric interpretation of spacetime in a lecture to the Göttingen Mathematical society with the title, The Relativity Principle ( Das Relativitätsprinzip ). On 21 September 1908, Minkowski presented his talk, Space and Time ( Raum und Zeit ), to the German Society of Scientists and Physicians. The opening words of Space and Time include Minkowski's statement that "Henceforth, space for itself, and time for itself shall completely reduce to
2254-408: Is "invariant". In special relativity, however, the distance between two points is no longer the same if measured by two different observers, when one of the observers is moving, because of Lorentz contraction . The situation is even more complicated if the two points are separated in time as well as in space. For example, if one observer sees two events occur at the same place, but at different times,
2352-765: Is a fundamental concept to define other quantities, such as velocity . To avoid a circular definition, time in physics is operationally defined as "what a clock reads", specifically a count of repeating events such as the SI second . Although this aids in practical measurements, it does not address the essence of time. Physicists developed the concept of the spacetime continuum, where events are assigned four coordinates: three for space and one for time. Events like particle collisions , supernovas , or rocket launches have coordinates that may vary for different observers, making concepts like "now" and "here" relative. In general relativity , these coordinates do not directly correspond to
2450-415: Is a measure of separation between events A and B that are time separated and in addition space separated either because there are two separate objects undergoing events, or because a single object in space is moving inertially between its events. The separation interval is the difference between the square of the spatial distance separating event B from event A and the square of the spatial distance traveled by
2548-454: Is a theoretical ideal scale realized by TAI. Geocentric Coordinate Time and Barycentric Coordinate Time are scales defined as coordinate times in the context of the general theory of relativity. Barycentric Dynamical Time is an older relativistic scale that is still in use. Many ancient cultures, particularly in the East, had a cyclical view of time. In these traditions, time was often seen as
2646-419: Is actually what is indicated by moving clocks by applying an explicitly operational definition of clock synchronization assuming constant light speed. In 1900 and 1904, he suggested the inherent undetectability of the aether by emphasizing the validity of what he called the principle of relativity . In 1905/1906 he mathematically perfected Lorentz's theory of electrons in order to bring it into accordance with
2744-408: Is called an event , and requires four numbers to be specified: the three-dimensional location in space, plus the position in time (Fig. 1). An event is represented by a set of coordinates x , y , z and t . Spacetime is thus four-dimensional . Unlike the analogies used in popular writings to explain events, such as firecrackers or sparks, mathematical events have zero duration and represent
2842-550: Is called the particle's world line . Mathematically, spacetime is a manifold , which is to say, it appears locally "flat" near each point in the same way that, at small enough scales, the surface of a globe appears to be flat. A scale factor, c {\displaystyle c} (conventionally called the speed-of-light ) relates distances measured in space to distances measured in time. The magnitude of this scale factor (nearly 300,000 kilometres or 190,000 miles in space being equivalent to one second in time), along with
2940-430: Is credited to Egyptians because of their sundials, which operated on a duodecimal system. The importance of the number 12 is due to the number of lunar cycles in a year and the number of stars used to count the passage of night. The most precise timekeeping device of the ancient world was the water clock , or clepsydra , one of which was found in the tomb of Egyptian pharaoh Amenhotep I . They could be used to measure
3038-500: Is dominated by temporality ( kala ), everything within time is subject to change and decay. Overcoming pain and death requires knowledge that transcends temporal existence and reveals its eternal foundation. Two contrasting viewpoints on time divide prominent philosophers. One view is that time is part of the fundamental structure of the universe – a dimension independent of events, in which events occur in sequence . Isaac Newton subscribed to this realist view, and hence it
Time (disambiguation) - Misplaced Pages Continue
3136-498: Is in Byrhtferth 's Enchiridion (a science text) of 1010–1012, where it was defined as 1/564 of a momentum (1 1 ⁄ 2 minutes), and thus equal to 15/94 of a second. It was used in the computus , the process of calculating the date of Easter. As of May 2010 , the smallest time interval uncertainty in direct measurements is on the order of 12 attoseconds (1.2 × 10 seconds), about 3.7 × 10 Planck times . The second (s)
3234-812: Is kept within 0.9 second of UT1 by the introduction of one-second steps to UTC, the leap second . The Global Positioning System broadcasts a very precise time signal based on UTC time. The surface of the Earth is split into a number of time zones . Standard time or civil time in a time zone deviates a fixed, round amount, usually a whole number of hours, from some form of Universal Time, usually UTC. Most time zones are exactly one hour apart, and by convention compute their local time as an offset from UTC. For example, time zones at sea are based on UTC. In many locations (but not at sea) these offsets vary twice yearly due to daylight saving time transitions. Some other time standards are used mainly for scientific work. Terrestrial Time
3332-411: Is neither an event nor a thing, and thus is not itself measurable nor can it be travelled. Furthermore, it may be that there is a subjective component to time, but whether or not time itself is "felt", as a sensation, or is a judgment, is a matter of debate. In Philosophy, time was questioned throughout the centuries; what time is and if it is real or not. Ancient Greek philosophers asked if time
3430-562: Is no preferred origin, single coordinate values have no essential meaning. The equation above is similar to the Pythagorean theorem, except with a minus sign between the ( c t ) 2 {\displaystyle (ct)^{2}} and the x 2 {\displaystyle x^{2}} terms. The spacetime interval is the quantity s 2 , {\displaystyle s^{2},} not s {\displaystyle s} itself. The reason
3528-483: Is not rather than what it is, an approach similar to that taken in other negative definitions . However, Augustine ends up calling time a "distention" of the mind (Confessions 11.26) by which we simultaneously grasp the past in memory, the present by attention, and the future by expectation. Isaac Newton believed in absolute space and absolute time; Leibniz believed that time and space are relational. The differences between Leibniz's and Newton's interpretations came to
3626-514: Is positive, the spacetime interval is referred to as timelike . Since spatial distance traversed by any massive object is always less than distance traveled by the light for the same time interval, positive intervals are always timelike. If s 2 {\displaystyle s^{2}} is negative, the spacetime interval is said to be spacelike . Spacetime intervals are equal to zero when x = ± c t . {\displaystyle x=\pm ct.} In other words,
3724-655: Is qualitative, as opposed to quantitative. In Greek mythology, Chronos (ancient Greek: Χρόνος) is identified as the Personification of Time. His name in Greek means "time" and is alternatively spelled Chronus (Latin spelling) or Khronos. Chronos is usually portrayed as an old, wise man with a long, gray beard, such as "Father Time". Some English words whose etymological root is khronos/chronos include chronology , chronometer , chronic , anachronism , synchronise , and chronicle . Rabbis sometimes saw time like "an accordion that
3822-588: Is seen as progressing in a straight line from past to future without repetition. In general, the Islamic and Judeo-Christian world-view regards time as linear and directional , beginning with the act of creation by God. The traditional Christian view sees time ending, teleologically, with the eschatological end of the present order of things, the " end time ". In the Old Testament book Ecclesiastes , traditionally ascribed to Solomon (970–928 BC), time (as
3920-412: Is separate from space, and is agreed on by all observers. Classical mechanics assumes that time has a constant rate of passage, independent of the observer's state of motion , or anything external. It assumes that space is Euclidean : it assumes that space follows the geometry of common sense. In the context of special relativity , time cannot be separated from the three dimensions of space, because
4018-447: Is sometimes referred to as Newtonian time . The opposing view is that time does not refer to any kind of "container" that events and objects "move through", nor to any entity that "flows", but that it is instead part of a fundamental intellectual structure (together with space and number) within which humans sequence and compare events. This second view, in the tradition of Gottfried Leibniz and Immanuel Kant , holds that time
Time (disambiguation) - Misplaced Pages Continue
4116-589: Is that unlike distances in Euclidean geometry, intervals in Minkowski spacetime can be negative. Rather than deal with square roots of negative numbers, physicists customarily regard s 2 {\displaystyle s^{2}} as a distinct symbol in itself, rather than the square of something. In general s 2 {\displaystyle s^{2}} can assume any real number value. If s 2 {\displaystyle s^{2}}
4214-402: Is the SI base unit. A minute (min) is 60 seconds in length (or, rarely, 59 or 61 seconds when leap seconds are employed), and an hour is 60 minutes or 3600 seconds in length. A day is usually 24 hours or 86,400 seconds in length; however, the duration of a calendar day can vary due to Daylight saving time and Leap seconds . A time standard is a specification for measuring time: assigning
4312-561: Is the second , which is defined by measuring the electronic transition frequency of caesium atoms. General relativity is the primary framework for understanding how spacetime works. Through advances in both theoretical and experimental investigations of spacetime, it has been shown that time can be distorted and dilated , particularly at the edges of black holes . Throughout history, time has been an important subject of study in religion, philosophy, and science. Temporal measurement has occupied scientists and technologists and has been
4410-436: Is unless we experience it first hand. Time is not an empirical concept. For neither co-existence nor succession would be perceived by us, if the representation of time did not exist as a foundation a priori . Without this presupposition, we could not represent to ourselves that things exist together at one and the same time, or at different times, that is, contemporaneously, or in succession. Spacetime interval Until
4508-400: The c t {\displaystyle ct} -coordinate is: or for three space dimensions, The constant c , {\displaystyle c,} the speed of light, converts time t {\displaystyle t} units (like seconds) into space units (like meters). The squared interval Δ s 2 {\displaystyle \Delta s^{2}}
4606-455: The distance Δ d {\displaystyle \Delta {d}} between two points can be defined using the Pythagorean theorem : Although two viewers may measure the x , y , and z position of the two points using different coordinate systems, the distance between the points will be the same for both, assuming that they are measuring using the same units. The distance
4704-569: The Clock of the Long Now . They can be driven by a variety of means, including gravity, springs, and various forms of electrical power, and regulated by a variety of means such as a pendulum . Alarm clocks first appeared in ancient Greece around 250 BC with a water clock that would set off a whistle. This idea was later mechanized by Levi Hutchins and Seth E. Thomas . A chronometer is a portable timekeeper that meets certain precision standards. Initially,
4802-425: The calendar , a mathematical tool for organising intervals of time, and the clock , a physical mechanism that counts the passage of time. In day-to-day life, the clock is consulted for periods less than a day, whereas the calendar is consulted for periods longer than a day. Increasingly, personal electronic devices display both calendars and clocks simultaneously. The number (as on a clock dial or calendar) that marks
4900-429: The ct ′ axis is tilted with respect to the ct axis by an angle θ given by The x ′ axis is also tilted with respect to the x axis. To determine the angle of this tilt, we recall that the slope of the world line of a light pulse is always ±1. Fig. 2-3c presents a spacetime diagram from the viewpoint of observer O′. Event P represents the emission of a light pulse at x ′ = 0, ct ′ = −
4998-587: The data reduction following an experiment, the time when a signal is received will be corrected to reflect its actual time were it to have been recorded by an idealized lattice of clocks. In many books on special relativity, especially older ones, the word "observer" is used in the more ordinary sense of the word. It is usually clear from context which meaning has been adopted. Physicists distinguish between what one measures or observes , after one has factored out signal propagation delays, versus what one visually sees without such corrections. Failing to understand
SECTION 50
#17328374783415096-668: The Hebrew word עידן, זמן iddan (age, as in "Ice age") zĕman(time) is often translated) is a medium for the passage of predestined events. (Another word, زمان" זמן" zamān , meant time fit for an event , and is used as the modern Arabic , Persian , and Hebrew equivalent to the English word "time".) The Greek language denotes two distinct principles, Chronos and Kairos . The former refers to numeric, or chronological, time. The latter, literally "the right or opportune moment", relates specifically to metaphysical or Divine time. In theology, Kairos
5194-580: The Lorentz group are closely connected to certain types of sphere , hyperbolic , or conformal geometries and their transformation groups already developed in the 19th century, in which invariant intervals analogous to the spacetime interval are used. Einstein, for his part, was initially dismissive of Minkowski's geometric interpretation of special relativity, regarding it as überflüssige Gelehrsamkeit (superfluous learnedness). However, in order to complete his search for general relativity that started in 1907,
5292-520: The Mayans, Aztecs, and Chinese, there were also beliefs in cyclical time, often associated with astronomical observations and calendars. These cultures developed complex systems to track time, seasons, and celestial movements, reflecting their understanding of cyclical patterns in nature and the universe. The cyclical view of time contrasts with the linear concept of time more common in Western thought, where time
5390-474: The Middle Dutch word klocke which, in turn, derives from the medieval Latin word clocca , which ultimately derives from Celtic and is cognate with French, Latin, and German words that mean bell . The passage of the hours at sea was marked by bells and denoted the time (see ship's bell ). The hours were marked by bells in abbeys as well as at sea. Clocks can range from watches to more exotic varieties such as
5488-514: The SI second. International Atomic Time (TAI) is the primary international time standard from which other time standards are calculated. Universal Time (UT1) is mean solar time at 0° longitude, computed from astronomical observations. It varies from TAI because of the irregularities in Earth's rotation. Coordinated Universal Time (UTC) is an atomic time scale designed to approximate Universal Time. UTC differs from TAI by an integral number of seconds. UTC
5586-435: The best suited to the description of our world". Even as late as 1909, Poincaré continued to describe the dynamical interpretation of the Lorentz transform. In 1905, Albert Einstein analyzed special relativity in terms of kinematics (the study of moving bodies without reference to forces) rather than dynamics. His results were mathematically equivalent to those of Lorentz and Poincaré. He obtained them by recognizing that
5684-523: The causal structure of events. Instead, the spacetime interval is calculated and classified as either space-like or time-like, depending on whether an observer exists that would say the events are separated by space or by time. Since the time required for light to travel a specific distance is the same for all observers—a fact first publicly demonstrated by the Michelson–Morley experiment —all observers will consistently agree on this definition of time as
5782-446: The difference between what one measures and what one sees is the source of much confusion among students of relativity. By the mid-1800s, various experiments such as the observation of the Arago spot and differential measurements of the speed of light in air versus water were considered to have proven the wave nature of light as opposed to a corpuscular theory . Propagation of waves
5880-457: The distance between the two events (because of length contraction ). Special relativity provides a new invariant, called the spacetime interval , which combines distances in space and in time. All observers who measure the time and distance between any two events will end up computing the same spacetime interval. Suppose an observer measures two events as being separated in time by Δ t {\displaystyle \Delta t} and
5978-499: The duration of events or the intervals between them, and to quantify rates of change of quantities in material reality or in the conscious experience . Time is often referred to as a fourth dimension , along with three spatial dimensions . Time is one of the seven fundamental physical quantities in both the International System of Units (SI) and International System of Quantities . The SI base unit of time
SECTION 60
#17328374783416076-422: The entire theory can be built upon two postulates: the principle of relativity and the principle of the constancy of light speed. His work was filled with vivid imagery involving the exchange of light signals between clocks in motion, careful measurements of the lengths of moving rods, and other such examples. Einstein in 1905 superseded previous attempts of an electromagnetic mass –energy relation by introducing
6174-517: The events of the abbeys and monasteries of the Middle Ages. Richard of Wallingford (1292–1336), abbot of St. Alban's abbey, famously built a mechanical clock as an astronomical orrery about 1330. Great advances in accurate time-keeping were made by Galileo Galilei and especially Christiaan Huygens with the invention of pendulum-driven clocks along with the invention of the minute hand by Jost Burgi. The English word clock probably comes from
6272-553: The fact that spacetime is a manifold, implies that at ordinary, non-relativistic speeds and at ordinary, human-scale distances, there is little that humans might observe that is noticeably different from what they might observe if the world were Euclidean. It was only with the advent of sensitive scientific measurements in the mid-1800s, such as the Fizeau experiment and the Michelson–Morley experiment , that puzzling discrepancies began to be noted between observation versus predictions based on
6370-439: The first mechanical clocks driven by an escapement mechanism. The hourglass uses the flow of sand to measure the flow of time. They were used in navigation. Ferdinand Magellan used 18 glasses on each ship for his circumnavigation of the globe (1522). Incense sticks and candles were, and are, commonly used to measure time in temples and churches across the globe. Water clocks, and, later, mechanical clocks, were used to mark
6468-472: The frequency of electronic transitions in certain atoms to measure the second. One of the atoms used is caesium ; most modern atomic clocks probe caesium with microwaves to determine the frequency of these electron vibrations. Since 1967, the International System of Measurements bases its unit of time, the second, on the properties of caesium atoms. SI defines the second as 9,192,631,770 cycles of
6566-556: The further development of general relativity, Einstein fully incorporated the spacetime formalism. When Einstein published in 1905, another of his competitors, his former mathematics professor Hermann Minkowski , had also arrived at most of the basic elements of special relativity. Max Born recounted a meeting he had made with Minkowski, seeking to be Minkowski's student/collaborator: I went to Cologne, met Minkowski and heard his celebrated lecture 'Space and Time' delivered on 2 September 1908. [...] He told me later that it came to him as
6664-497: The general equivalence of mass and energy , which was instrumental for his subsequent formulation of the equivalence principle in 1907, which declares the equivalence of inertial and gravitational mass. By using the mass–energy equivalence, Einstein showed that the gravitational mass of a body is proportional to its energy content, which was one of the early results in developing general relativity . While it would appear that he did not at first think geometrically about spacetime, in
6762-408: The geometric interpretation of relativity proved to be vital. In 1916, Einstein fully acknowledged his indebtedness to Minkowski, whose interpretation greatly facilitated the transition to general relativity. Since there are other types of spacetime, such as the curved spacetime of general relativity, the spacetime of special relativity is today known as Minkowski spacetime. In three dimensions,
6860-438: The hours even at night but required manual upkeep to replenish the flow of water. The ancient Greeks and the people from Chaldea (southeastern Mesopotamia) regularly maintained timekeeping records as an essential part of their astronomical observations. Arab inventors and engineers, in particular, made improvements on the use of water clocks up to the Middle Ages. In the 11th century, Chinese inventors and engineers invented
6958-418: The hypothetical aether on the speed of light, and the most likely explanation, complete aether dragging, was in conflict with the observation of stellar aberration . George Francis FitzGerald in 1889, and Hendrik Lorentz in 1892, independently proposed that material bodies traveling through the fixed aether were physically affected by their passage, contracting in the direction of motion by an amount that
7056-419: The implicit assumption of Euclidean space. In special relativity, an observer will, in most cases, mean a frame of reference from which a set of objects or events is being measured. This usage differs significantly from the ordinary English meaning of the term. Reference frames are inherently nonlocal constructs, and according to this usage of the term, it does not make sense to speak of an observer as having
7154-438: The math with no loss of generality in the conclusions that are reached. In Fig. 2-2, two Galilean reference frames (i.e. conventional 3-space frames) are displayed in relative motion. Frame S belongs to a first observer O, and frame S′ (pronounced "S prime") belongs to a second observer O′. Fig. 2-3a redraws Fig. 2-2 in a different orientation. Fig. 2-3b illustrates a relativistic spacetime diagram from
7252-573: The nature of time. Plato , in the Timaeus , identified time with the period of motion of the heavenly bodies. Aristotle , in Book IV of his Physica defined time as 'number of movement in respect of the before and after'. In Book 11 of his Confessions , St. Augustine of Hippo ruminates on the nature of time, asking, "What then is time? If no one asks me, I know: if I wish to explain it to one that asketh, I know not." He begins to define time by what it
7350-512: The observed rate at which time passes for an object depends on the object's velocity relative to the observer. General relativity provides an explanation of how gravitational fields can slow the passage of time for an object as seen by an observer outside the field. In ordinary space, a position is specified by three numbers, known as dimensions . In the Cartesian coordinate system , these are often called x , y and z . A point in spacetime
7448-505: The occurrence of a specified event as to hour or date is obtained by counting from a fiducial epoch – a central reference point. Artifacts from the Paleolithic suggest that the moon was used to reckon time as early as 6,000 years ago. Lunar calendars were among the first to appear, with years of either 12 or 13 lunar months (either 354 or 384 days). Without intercalation to add days or months to some years, seasons quickly drift in
7546-419: The passage of time from the shadow cast by its crossbar on a nonlinear rule. The T was oriented eastward in the mornings. At noon, the device was turned around so that it could cast its shadow in the evening direction. A sundial uses a gnomon to cast a shadow on a set of markings calibrated to the hour. The position of the shadow marks the hour in local time . The idea to separate the day into smaller parts
7644-467: The physical constituents of matter. Lorentz's equations predicted a quantity that he called local time , with which he could explain the aberration of light , the Fizeau experiment and other phenomena. Henri Poincaré was the first to combine space and time into spacetime. He argued in 1898 that the simultaneity of two events is a matter of convention. In 1900, he recognized that Lorentz's "local time"
7742-486: The postulate of relativity. While discussing various hypotheses on Lorentz invariant gravitation, he introduced the innovative concept of a 4-dimensional spacetime by defining various four vectors , namely four-position , four-velocity , and four-force . He did not pursue the 4-dimensional formalism in subsequent papers, however, stating that this line of research seemed to "entail great pain for limited profit", ultimately concluding "that three-dimensional language seems
7840-618: The radiation that corresponds to the transition between two electron spin energy levels of the ground state of the Cs atom. Today, the Global Positioning System in coordination with the Network Time Protocol can be used to synchronize timekeeping systems across the globe. In medieval philosophical writings, the atom was a unit of time referred to as the smallest possible division of time. The earliest known occurrence in English
7938-576: The sciences, and the performing arts all incorporate some notion of time into their respective measuring systems . Traditional definitions of time involved the observation of periodic motion such as the apparent motion of the sun across the sky, the phases of the moon, and the passage of a free-swinging pendulum. More modern systems include the Global Positioning System , other satellite systems, Coordinated Universal Time and mean solar time . Although these systems differ from one another, with careful measurements they can be synchronized. In physics, time
8036-733: The spacetime interval d s ′ {\displaystyle ds'} can be written in a same form as above. Because of the constancy of speed of light, the light events in all inertial frames belong to zero interval, d s = d s ′ = 0 {\displaystyle ds=ds'=0} . For any other infinitesimal event where d s ≠ 0 {\displaystyle ds\neq 0} , one can prove that d s 2 = d s ′ 2 {\displaystyle ds^{2}=ds'^{2}} which in turn upon integration leads to s = s ′ {\displaystyle s=s'} . The invariance of
8134-584: The spacetime interval between the same events for all inertial frames of reference is one of the fundamental results of special theory of relativity. Although for brevity, one frequently sees interval expressions expressed without deltas, including in most of the following discussion, it should be understood that in general, x {\displaystyle x} means Δ x {\displaystyle \Delta {x}} , etc. We are always concerned with differences of spatial or temporal coordinate values belonging to two events, and since there
8232-416: The spacetime interval between two events on the world line of something moving at the speed of light is zero. Such an interval is termed lightlike or null . A photon arriving in our eye from a distant star will not have aged, despite having (from our perspective) spent years in its passage. A spacetime diagram is typically drawn with only a single space and a single time coordinate. Fig. 2-1 presents
8330-436: The speed of light, their world lines have a slope of ±1. In other words, every meter that a photon travels to the left or right requires approximately 3.3 nanoseconds of time. To gain insight in how spacetime coordinates measured by observers in different reference frames compare with each other, it is useful to work with a simplified setup with frames in a standard configuration. With care, this allows simplification of
8428-402: The state of electrodynamics after Michelson's disruptive experiments at least since the summer of 1905, when Minkowski and David Hilbert led an advanced seminar attended by notable physicists of the time to study the papers of Lorentz, Poincaré et al. Minkowski saw Einstein's work as an extension of Lorentz's, and was most directly influenced by Poincaré. On 5 November 1907 (a little more than
8526-580: The term was used to refer to the marine chronometer , a timepiece used to determine longitude by means of celestial navigation , a precision first achieved by John Harrison . More recently, the term has also been applied to the chronometer watch , a watch that meets precision standards set by the Swiss agency COSC . The most accurate timekeeping devices are atomic clocks , which are accurate to seconds in many millions of years, and are used to calibrate other clocks and timekeeping instruments. Atomic clocks use
8624-470: The turn of the 20th century, the assumption had been that the three-dimensional geometry of the universe (its description in terms of locations, shapes, distances, and directions) was distinct from time (the measurement of when events occur within the universe). However, space and time took on new meanings with the Lorentz transformation and special theory of relativity . In 1908, Hermann Minkowski presented
8722-447: The viewpoint of observer O. Since S and S′ are in standard configuration, their origins coincide at times t = 0 in frame S and t ′ = 0 in frame S′. The ct ′ axis passes through the events in frame S′ which have x ′ = 0. But the points with x ′ = 0 are moving in the x -direction of frame S with velocity v , so that they are not coincident with the ct axis at any time other than zero. Therefore,
8820-406: The whole ensemble of clocks associated with one inertial frame of reference. In this idealized case, every point in space has a clock associated with it, and thus the clocks register each event instantly, with no time delay between an event and its recording. A real observer, will see a delay between the emission of a signal and its detection due to the speed of light. To synchronize the clocks, in
8918-480: Was an illusion to humans. Plato believed that time was made by the Creator at the same instant as the heavens. He also says that time is a period of motion of the heavenly bodies . Aristotle believed that time correlated to movement, that time did not exist on its own but was relative to motion of objects. He also believed that time was related to the motion of celestial bodies ; the reason that humans can tell time
9016-466: Was because of orbital periods and therefore there was a duration on time. The Vedas , the earliest texts on Indian philosophy and Hindu philosophy dating to the late 2nd millennium BC , describe ancient Hindu cosmology , in which the universe goes through repeated cycles of creation, destruction and rebirth, with each cycle lasting 4,320 million years. Ancient Greek philosophers , including Parmenides and Heraclitus , wrote essays on
9114-555: Was exactly what was necessary to explain the negative results of the Michelson–Morley experiment. No length changes occur in directions transverse to the direction of motion. By 1904, Lorentz had expanded his theory such that he had arrived at equations formally identical with those that Einstein was to derive later, i.e. the Lorentz transformation . As a theory of dynamics (the study of forces and torques and their effect on motion), his theory assumed actual physical deformations of
9212-480: Was expanded and collapsed at will." According to Kabbalists , "time" is a paradox and an illusion . According to Advaita Vedanta , time is integral to the phenomenal world, which lacks independent reality. Time and the phenomenal world are products of maya , influenced by our senses, concepts, and imaginations. The phenomenal world, including time, is seen as impermanent and characterized by plurality, suffering, conflict, and division. Since phenomenal existence
9310-536: Was less than the sum of the speed of light in air plus the speed of the water by an amount dependent on the water's index of refraction. Among other issues, the dependence of the partial aether-dragging implied by this experiment on the index of refraction (which is dependent on wavelength) led to the unpalatable conclusion that aether simultaneously flows at different speeds for different colors of light. The Michelson–Morley experiment of 1887 (Fig. 1-2) showed no differential influence of Earth's motions through
9408-462: Was linear or cyclical and if time was endless or finite . These philosophers had different ways of explaining time; for instance, ancient Indian philosophers had something called the Wheel of Time. It is believed that there was repeating ages over the lifespan of the universe. This led to beliefs like cycles of rebirth and reincarnation . The Greek philosophers believe that the universe was infinite, and
9506-520: Was only slowly adopted by different nations over a period of centuries, but it is now by far the most commonly used calendar around the world. During the French Revolution , a new clock and calendar were invented as part of the dechristianization of France and to create a more rational system in order to replace the Gregorian calendar. The French Republican Calendar 's days consisted of ten hours of
9604-414: Was then assumed to require the existence of a waving medium; in the case of light waves, this was considered to be a hypothetical luminiferous aether . The various attempts to establish the properties of this hypothetical medium yielded contradictory results. For example, the Fizeau experiment of 1851, conducted by French physicist Hippolyte Fizeau , demonstrated that the speed of light in flowing water
#340659