Misplaced Pages

Bristol Type 223

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

A supersonic transport ( SST ) or a supersonic airliner is a civilian supersonic aircraft designed to transport passengers at speeds greater than the speed of sound . To date, the only SSTs to see regular service have been Concorde and the Tupolev Tu-144 . The last passenger flight of the Tu-144 was in June 1978 and it was last flown in 1999 by NASA . Concorde's last commercial flight was in October 2003, with a November 26, 2003 ferry flight being its last flight.

#859140

72-582: The Bristol Type 223 was an early design for a supersonic transport . In the late 1950s and early 1960s the Bristol Aeroplane Company studied a number of models as part of a large British inter-company effort funded by the government. These models eventually culminated in the Type 223, a transatlantic transport for about 100 passengers at a speed around Mach 2 . At about the same time Sud Aviation in France

144-543: A class, can supply increased fuel efficiency at supersonic speeds, even though their specific fuel consumption is greater at higher speeds. Because their speed over the ground is greater, this decrease in efficiency is less than proportional to speed until well above Mach 2, and the consumption per unit distance is lower. When Concorde was being designed by Aérospatiale – BAC , high bypass jet engines (" turbofan " engines) had not yet been deployed on subsonic aircraft. Had Concorde entered service against earlier designs like

216-473: A compromise in performance is chosen, often to the detriment of low speed flight. For example, Concorde had very high drag (a lift to drag ratio of about 4) at slow speed, but it travelled at high speed for most of the flight. Designers of Concorde spent 5000 hours optimizing the vehicle shape in wind tunnel tests to maximize the overall performance over the entire flightplan. The Boeing 2707 featured swing wings to give higher efficiency at low speeds, but

288-542: A controlled dive during a test flight at Edwards Air Force Base. The crew were William Magruder (pilot), Paul Patten (copilot), Joseph Tomich (flight engineer), and Richard H. Edwards (flight test engineer). This is the first supersonic flight by a civilian airliner. In total, 20 Concordes were built: two prototypes, two development aircraft and 16 production aircraft. Of the sixteen production aircraft, two did not enter commercial service and eight remained in service as of April 2003. All but two of these aircraft are preserved;

360-415: A few decades. These materials, such as carbon fibre and Kevlar are much stronger for their weight (important to deal with stresses) as well as being more rigid. As per-seat weight of the structure is much higher in an SST design, structural improvements would have led to a greater proportional improvement than the same changes in a subsonic aircraft. Higher fuel costs and lower passenger capacities due to

432-433: A guide and means of comparison, observing that no detectable ozone loss was evident from approximately 213 megatons of explosive energy being released in 1962, so therefore the equivalent amount of NOx from "1047" Concordes flying "10 hours a day", would likewise, not be unprecedented. In 1981 models and observations were still irreconcilable. More recent computer models in 1995 by David W. Fahey, an atmospheric scientist at

504-485: A mode of transport does not typically lead to such technological investments to increase the speed. Instead, the service providers prefer to compete in service quality and cost. An example of this phenomenon is high-speed rail . The speed limit of rail transport had been pushed so hard to enable it to effectively compete with road and air transport. But this achievement was not done for different rail operating companies to compete among themselves. This phenomenon also reduces

576-584: A much stronger (and therefore heavier) structure because their fuselage must be pressurized to a greater differential than subsonic aircraft, which do not operate at the high altitudes necessary for supersonic flight. These factors together meant that the empty weight per seat of Concorde is more than three times that of a Boeing 747. Concorde and the TU-144 were both constructed of conventional aluminum: Concorde of Hiduminium and TU-144 of duralumin . Modern, advanced materials were not to come out of development for

648-512: A second flight from Edinburgh , and a third which had taken off from Heathrow on a loop flight over the Bay of Biscay . By the end of the 20th century, projects like the Tupolev Tu-244 , Tupolev Tu-344 , SAI Quiet Supersonic Transport , Sukhoi-Gulfstream S-21 , High Speed Civil Transport , etc. had not been realized. For all vehicles traveling through air, the force of drag is proportional to

720-480: A serious issue due to the high altitudes at which the planes flew, but experiments in the mid-1960s such as the controversial Oklahoma City sonic boom tests and studies of the USAF 's North American XB-70 Valkyrie proved otherwise (see Sonic boom § Abatement ). By 1964, whether civilian supersonic aircraft would be licensed was unclear, because of the problem. The annoyance of a sonic boom can be avoided by waiting until

792-489: A sharply swept M-wing pioneered at Armstrong-Whitworth for slightly supersonic flight and very slender delta wings suitable for a wide range of speeds. Higher speeds up to Mach 3 had been considered and found to be possible, but it appeared that a practical upper limit was Mach 2.2; above this speed the duralumin used for most aircraft construction would start to soften due to the heat of friction, and some new material would have to be used instead. Stainless steel

SECTION 10

#1732844845860

864-620: A single return trip could be made per day, so the extra speed was not an advantage to the airline other than as a selling feature to its customers. The proposed American SSTs were intended to fly at Mach 3, partly for this reason. However, allowing for acceleration and deceleration time, a trans-Atlantic trip on a Mach 3 SST would be less than three times as fast as a Mach 1 trip. Since SSTs produce sonic booms at supersonic speeds they are rarely permitted to fly supersonic over land, and must fly supersonic over sea instead. Since they are inefficient at subsonic speeds compared to subsonic aircraft, range

936-424: A speed increase. Also, for-profit companies generally prefer low risk business plans with high probabilities of appreciable profit, but an expensive leading-edge technological research and development program is a high-risk enterprise, as it is possible that the program will fail for unforeseeable technical reasons or will meet cost overruns so great as to force the company, due to financial resource limits, to abandon

1008-435: A supersonic aircraft needs to change with its speed for optimal performance. Thus, an SST would ideally change shape during flight to maintain optimal performance at both subsonic and supersonic speeds. Such a design would introduce complexity which increases maintenance needs, operations costs, and safety concerns. In practice all supersonic transports have used essentially the same shape for subsonic and supersonic flight, and

1080-524: A threat that was, in 1974, seemingly validated by an MIT team commissioned by the United States Department of Transportation . However, while many purely theoretical models were indicating the potential for large ozone losses from SST nitrogen oxides ( NOx ), other scientists in the paper " Nitrogen Oxides, Nuclear Weapon Testing , Concorde and Stratospheric Ozone " turned to historical ozone monitoring and atmospheric nuclear testing to serve as

1152-454: A typical wing design will cut its L/D ratio in half (e.g., Concorde managed a ratio of 7.14, whereas the subsonic Boeing 747 has an L/D ratio of 17). Because an aircraft's design must provide enough lift to overcome its own weight, a reduction of its L/D ratio at supersonic speeds requires additional thrust to maintain its airspeed and altitude. Jet engine design shifts significantly between supersonic and subsonic aircraft. Jet engines, as

1224-624: A vice president with Lockheed , stated to various magazines that an SST constructed of steel weighing 250,000 pounds (110,000 kg) could be developed for $ 160 million and in production lots of 200 or more sold for around $ 9 million. But it was the Anglo-French development of the Concorde that set off panic in the US industry, where it was thought that Concorde would soon replace all other long range designs, especially after Pan Am took out purchase options on

1296-421: Is a function of forward speed, which decreases from propellers, to fans, to no bypass at all as speed increases. Additionally, the large frontal area taken up by the low-pressure fan at the front of the engine increases drag, especially at supersonic speeds, and means the bypass ratios are much more limited than on subsonic aircraft. For example, the early Tu-144S was fitted with a low bypass turbofan engine which

1368-457: Is aimed at producing an acceptable aircraft. Supersonic airliners have been the objects of numerous recent ongoing design studies. Drawbacks and design challenges are excessive noise generation (at takeoff and due to sonic booms during flight), high development costs, expensive construction materials, high fuel consumption, extremely high emissions, and an increased cost per seat over subsonic airliners. However, despite these challenges, Concorde

1440-442: Is deteriorated and the number of routes that the aircraft can fly non-stop is reduced. This also reduces the desirability of such aircraft for most airlines. Supersonic aircraft have higher per-passenger fuel consumption than subsonic aircraft; this makes the ticket price necessarily higher, all other factors being equal, as well as making that price more sensitive to the price of oil. (It also makes supersonic flights less friendly to

1512-403: Is low at take-off, but is forced high during supersonic cruise. Transition between the two modes would occur at some point during the climb and back again during the descent (to minimize jet noise upon approach). The difficulty is devising a variable cycle engine configuration that meets the requirement for a low cross-sectional area during supersonic cruise. The sonic boom was not thought to be

SECTION 20

#1732844845860

1584-433: Is more efficient, it is still less efficient than flying subsonically. Another issue in supersonic flight is the lift to drag ratio (L/D ratio) of the wings. At supersonic speeds, airfoils generate lift in an entirely different manner than at subsonic speeds, and are invariably less efficient. For this reason, considerable research has been put into designing wing planforms for sustained supersonic cruise. At about Mach 2,

1656-486: Is not able to withstand temperatures much over 127 °C; above 127 °C the aluminium gradually loses its properties that were brought about by age hardening. For aircraft that have flown at Mach 3, materials such as stainless steel ( XB-70 Valkyrie , MiG-25 ) or titanium ( SR-71 , Sukhoi T-4 ) have been used. The range of an aircraft depends on three efficiencies which appear in the Breguet range equation. They are

1728-509: The Aerion SBJ , Aerion AS2 , HyperMach SonicStar , Sukhoi-Gulfstream S-21 and Tupolev Tu-444 . Several companies, including Gulfstream Aerospace , work on sonic booms -mitigation technologies like the Quiet Spike . In 1997, Dassault Aviation was considering a Mach 1.8 supersonic business jet powered by three non-afterburning engines derived from subsonic aircraft, with a cabin similar to

1800-525: The Boeing 707 or de Havilland Comet , it would have been much more competitive, though the 707 and DC-8 still carried more passengers. When these high bypass jet engines reached commercial service in the 1960s, subsonic jet engines immediately became much more efficient, closer to the efficiency of turbojets at supersonic speeds. One major advantage of the SST disappeared. Turbofan engines improve efficiency by increasing

1872-413: The Boeing 747 carrying four times that, the speed and fuel advantages of the SST concept were taken away by sheer size. Another problem was that the wide range of speeds over which an SST operates makes it difficult to improve engines. While subsonic engines had made great strides in increased efficiency through the 1960s with the introduction of the turbofan engine with ever-increasing bypass ratios ,

1944-584: The Falcon 50 , capable of flying between Paris and New York. With a 40 t (88,000 lb) MTOW and over 20 t (44,000 lb) of fuel, it would cover a range of 7,200 km (4,500 nmi). In September 2004, the European Commission selected the HISAC High Speed Aircraft program, launched with Dassault in 2005 and evaluating the feasibility of a small supersonic aircraft. By 2019, Dassault

2016-467: The National Oceanic and Atmospheric Administration , and others, suggest that the drop in ozone would be at most, "no more" than 1 to 2% if a fleet of 500 supersonic aircraft [were] operated. Fahey expressed that this would not be a fatal obstacle for an advanced SST development – while "a big caution flag...[it] should not be a showstopper for advanced SST development" because "removing the sulfur in

2088-548: The Tu-144 , which the western press nicknamed the "Concordski". The SST was seen as particularly offensive due to its sonic boom and the potential for its engine exhaust to damage the ozone layer . Both problems impacted the thinking of lawmakers, and eventually Congress dropped funding for the US SST program in March 1971, and all overland commercial supersonic flight was banned over

2160-574: The Type 213 . Their designer, Archibald Russell , was influenced by the constructional problems and expense encountered with the Bristol 188 and favoured the lower speed alloy aircraft. The thin wing design of the Type 213 was preferred by the STC and a 1961 contract encouraged a detailed series of studies of a 130-seat, Mach 2.2 aircraft powered by six Bristol Olympus engines under the generic Type 198 label. Aware of

2232-409: The coefficient of drag ( C d ), to the square of the airspeed and to the air density. Since drag rises rapidly with speed, a key priority of supersonic aircraft design is to minimize this force by lowering the coefficient of drag. This gives rise to the highly streamlined shapes of SSTs. To some extent, supersonic aircraft also manage drag by flying at higher altitudes than subsonic aircraft, where

Bristol Type 223 - Misplaced Pages Continue

2304-577: The delta wing in most studies, including the Sud Aviation Super-Caravelle and Bristol Type 223 , although Armstrong-Whitworth proposed a more radical design, the Mach 1.2 M-Wing . Avro Canada proposed several designs to TWA that included Mach 1.6 double-ogee wing and Mach 1.2 delta-wing with separate tail and four under-wing engine configurations. Avro's team moved to the UK where its design formed

2376-516: The Concorde project was underway. Data from Barnes C.H. Bristol Aircraft since 1910 p.383 General characteristics Performance Aircraft of comparable role, configuration, and era Supersonic transport Following the termination of flying by Concorde, there have been no SSTs in commercial service. However, several companies have proposed supersonic business jet designs. Small SSTs have less environmental impact and design capability improves with continuing research which

2448-421: The Concorde. Congress was soon funding an SST design effort, selecting the existing Lockheed L-2000 and Boeing 2707 designs, to produce an even more advanced, larger, faster and longer ranged design. The Boeing 2707 design was eventually selected for continued work, with design goals of ferrying around 300 passengers and having a cruising speed near to Mach 3 . The Soviet Union set out to produce its own design,

2520-536: The London–New York route in mind. The plane was allowed into Washington, D.C. (at Dulles in Virginia ), and the service was so popular that New Yorkers were soon complaining because they did not have it. It was not long before Concorde was flying into JFK . Along with shifting political considerations, the flying public continued to show interest in high-speed ocean crossings. This started additional design studies in

2592-425: The SST fleet would emit ~96 million metric tons of CO₂ per year (like American , Delta and Southwest combined in 2017), 1.6 to 2.4 gigatonnes of CO₂ over their 25-year lifetime: one-fifth of the international aviation carbon budget if aviation maintains its emissions share to stay under a 1.5 °C climate trajectory . Noise exposed area around airports could double compared to existing subsonic aircraft of

2664-582: The Super Caravelle and the two companies had a specification for agreement to build an aircraft jointly. Throughout 1962 they and their respective governments negotiated the formation of a consortium to share development and production costs, estimated at £15m-£170m. On 29 November 1962 an agreement was jointly signed by the UK Minister for Aviation, Julian Amery and the French ambassador, Geoffrey de Courcel and

2736-466: The US, under the name "AST" (Advanced Supersonic Transport). Lockheed's SCV was a new design for this category, while Boeing continued studies with the 2707 as a baseline. By this time, the economics of past SST concepts were no longer reasonable. When first designed, the SSTs were envisioned to compete with long-range aircraft seating 80 to 100 passengers such as the Boeing 707 , but with newer aircraft such as

2808-415: The US. Presidential advisor Russell Train warned that a fleet of 500 SSTs flying at 65,000 ft (20 km) for a period of years could raise stratospheric water content by as much as 50% to 100%. According to Train, this could lead to greater ground-level heat and hamper the formation of ozone . Later, an additional threat to the ozone was hypothesized as a result of the exhaust's nitrogen oxides ,

2880-405: The aerodynamic efficiency, which says how much wanted lift can be produced without too much unwanted drag, powerplant efficiency, which says how much fuel is converted into moving the aircraft against its drag resistance, and structural efficiency, which says how heavy the structure is compared to the fuel and passengers it can carry. Airlines potentially value very fast aircraft, because it enables

2952-524: The aerodynamic requirement for a narrow fuselage make SSTs an expensive form of commercial civil transportation compared with subsonic aircraft. For example, the Boeing 747 can carry more than three times as many passengers as Concorde while using approximately the same amount of fuel. Nevertheless, fuel costs are not the bulk of the price for most subsonic aircraft passenger tickets. For the transatlantic business market that SST aircraft were utilized for, Concorde

Bristol Type 223 - Misplaced Pages Continue

3024-591: The air density is lower. As speeds approach the speed of sound, the additional phenomenon of wave drag appears. This is a powerful form of drag that begins at transonic speeds (around Mach 0.88 ). Around Mach 1, the peak coefficient of drag is four times that of subsonic drag. Above the transonic range, the coefficient drops drastically again, although remains 20% higher by Mach 2.5 than at subsonic speeds. Supersonic aircraft must have considerably more power than subsonic aircraft require to overcome this wave drag, and although cruising performance above transonic speed

3096-644: The aircraft is at high altitude over water before reaching supersonic speeds; this was the technique used by Concorde. However, it precludes supersonic flight over populated areas. Supersonic aircraft have poor lift/drag ratios at subsonic speeds as compared to subsonic aircraft (unless technologies such as variable-sweep wings are employed), and hence burn more fuel, which results in their use being economically disadvantageous on such flight paths. Concorde had an overpressure of 1.94 lb/sq ft (93 Pa) (133 dBA SPL). Overpressures over 1.5 lb/sq ft (72 Pa) (131 dBA SPL) often cause complaints. If

3168-502: The aircraft spends a considerable amount of time in cruise. SST designs flying at least three times as fast as existing subsonic transports were possible, and would thus be able to replace as many as three planes in service, and thereby lower costs in terms of manpower and maintenance. Serious work on SST designs started in the mid-1950s, when the first generation of supersonic fighter aircraft were entering service. In Britain and France, government-subsidized SST programs quickly settled on

3240-495: The aircraft to make more flights per day, providing a higher return on investment. Also, passengers generally prefer faster, shorter-duration trips to slower, longer-duration trips, so operating faster aircraft can give an airline a competitive advantage, even to the extent that many customers will willingly pay higher fares for the benefit of saving time and/or arriving sooner. However, Concorde's high noise levels around airports, time zone issues, and insufficient speed meant that only

3312-413: The airline desirability of SSTs, because, for very long-distance transportation (a couple of thousand kilometers), competition between different modes of transport is rather like a single-horse race: air transport does not have a significant competitor. The only competition is between the airline companies, and they would rather pay moderately to reduce cost and increase service quality than pay much more for

3384-408: The amount of cold low-pressure air they accelerate, using some of the energy normally used to accelerate hot air in the classic non-bypass turbojet. The ultimate expression of this design is the turboprop , where almost all of the jet thrust is used to power a very large fan – the propeller . The efficiency curve of the fan design means that the amount of bypass that maximizes overall engine efficiency

3456-494: The basis of Hawker Siddeley 's designs. By the early 1960s, the designs had progressed to the point where the go-ahead for production was given, but costs were so high that the Bristol Aeroplane Company and Sud Aviation eventually merged their efforts in 1962 to produce Concorde. In the early 1960s, various executives of US aerospace companies were telling the US public and Congress that there were no technical reasons an SST could not be produced. In April 1960, Burt C Monesmith,

3528-591: The capability of reducing the boom by about half. Even lengthening the vehicle (without significantly increasing the weight) would seem to reduce the boom intensity (see Sonic boom § Abatement ). When it comes to public policy, for example, the FAA prohibits commercial airplanes from flying at supersonic speeds above sovereign land governed by the United States because of the negative impact the sonic boom brings to humans and animal populations below. The aerodynamic design of

3600-742: The effort before it yields any marketable SST technology, causing potentially all investment to be lost. The International Council on Clean Transportation (ICCT) estimates a SST would burn 5 to 7 times as much fuel per passenger. The ICCT shows that a New York to London supersonic flight would consume more than twice as much fuel per passenger than in subsonic business-class , six times as much as for economy class , and three times as much as subsonic business for Los Angeles to Sydney. Designers can either meet existing environmental standards with advanced technology or lobby policymakers to establish new standards for SSTs. If there were 2,000 SSTs in 2035, there would be 5,000 flights per day at 160 airports and

3672-461: The environment and sustainability, two growing concerns of the general public, including air travelers.) Investing in research and development work to design a new SST can be considered as an effort to push the speed limit of air transport. Generally, other than an urge for new technological achievement, the major driving force for such an effort is competitive pressure from other modes of transport. Competition between different service providers within

SECTION 50

#1732844845860

3744-451: The fan concept is difficult to use at supersonic speeds where the "proper" bypass is about 0.45, as opposed to 2.0 or higher for subsonic designs. For both of these reasons the SST designs were doomed by higher operational costs, and the AST programs vanished by the early 1980s. Concorde only sold to British Airways and Air France, with subsidized purchases that were to return 80% of the profits to

3816-441: The fuel of the [Concorde]" would essentially eliminate the hypothesized 1%–2% ozone-destruction-reaction-pathway. Despite the model-observation discrepancy surrounding the ozone concern, in the mid-1970s, six years after its first supersonic test flight, Concorde was now ready for service. The US political outcry was so high that New York banned the plane. This threatened the aircraft's economic prospects — it had been built with

3888-424: The government. In practice for almost all of the length of the arrangement, there was no profit to be shared. After Concorde was privatized, cost reduction measures (notably the closing of the metallurgical wing testing site which had done enough temperature cycles to validate the aircraft through to 2010) and ticket price raises led to substantial profits. Since Concorde stopped flying, it has been revealed that over

3960-567: The great expense of the project, STAC required Bristol to share the cost with an overseas partner. In 1961, Sud Aviation revealed their plans for the Super-Caravelle at the Paris Air Show , a smaller aircraft than the Type 198. Bristol proposed a design which came between the Super Caravelle and the Type 198 which they called the Type 223 ; the French were looking at a slightly larger version of

4032-547: The increased space required for such a feature produced capacity problems that proved ultimately insurmountable. North American Aviation had an unusual approach to this problem with the XB-70 Valkyrie . By lowering the outer panels of the wings at high Mach numbers, they were able to take advantage of compression lift on the underside of the aircraft. This improved the L/D ratio by about 30%. Aircraft are surrounded by an air layer

4104-407: The intensity of the boom can be reduced, then this may make even very large designs of supersonic aircraft acceptable for overland flight. Research suggests that changes to the nose cone and tail can reduce the intensity of the sonic boom below that needed to cause complaints. During the original SST efforts in the 1960s, it was suggested that careful shaping of the fuselage of the aircraft could reduce

4176-422: The intensity of the sonic boom's shock waves that reach the ground. One design caused the shock waves to interfere with each other, greatly reducing the sonic boom. This was difficult to test at the time, but the increasing power of computer-aided design has since made this considerably easier. In 2003, a Shaped Sonic Boom Demonstration aircraft was flown which proved the soundness of the design and demonstrated

4248-617: The life of Concorde, the plane did prove profitable, at least to British Airways. Concorde operating costs over nearly 28 years of operation were approximately £1 billion, with revenues of £1.75 billion. On 25 July 2000, Air France Flight 4590 crashed shortly after take-off with all 109 occupants and four on ground killed; the only fatal incident involving Concorde . Commercial service was suspended until November 2001, and Concorde aircraft were retired in 2003 after 27 years of commercial operations. The last regular passenger flights landed at London Heathrow on October 24, 2003, from New York ,

4320-472: The other a straight wing, Mach 1.8 design with six wingtip engines. Soon after, however, studies at the Royal Aircraft Establishment began to favour the gothic delta and design contracts using this planform went to Hawker Siddeley and Bristol in late 1959. Both were asked to look at both Mach 2.2 aluminium alloy and Mach 2.7 stainless steel structures. Bristol's Mach 2.7 design was labelled

4392-453: The practice. SST engines need a fairly high specific thrust (net thrust/airflow) during supersonic cruise, to minimize engine cross-sectional area and, thereby, nacelle drag. Unfortunately this implies a high jet velocity, which makes the engines noisy, particularly at low speeds/altitudes and at take-off. Therefore, a future SST might well benefit from a variable cycle engine , where the specific thrust (and therefore jet velocity and noise)

SECTION 60

#1732844845860

4464-733: The same size as subsonic business jets. Only two commercial supersonic transports entered service: the Aérospatiale/British Aerospace Concorde and the Tupolev Tu-144 . Both were designed with government subsidies and did not recoup development costs. They had high operating costs and high noise. Some manufacturers believe these concerns can be addressed at a smaller scale, offering high speed transport for small groups of high-value passengers, executives or heads of state . Current proposals include SAI Quiet Supersonic Transport and Spike S-512 . Former proposals include

4536-556: The same size, with more than 300 operations per day at Dubai and London Heathrow , and over 100 in Los Angeles , Singapore , San Francisco , New York-JFK , Frankfurt , and Bangkok . Frequent sonic booms would be heard in Canada, Germany, Iraq, Ireland, Israel, Romania, Turkey, and parts of the United States, up to 150–200 per day or one every five minutes. On August 21, 1961, a Douglas DC-8-43 (registration N9604Z) exceeded Mach 1 in

4608-591: The temperature of which increases with aircraft speed. As a result the skin of the aircraft gets hotter with increasing supersonic speeds (kinetic heating from the high speed boundary layer ). Heat from the sun also raises the skin temperature. Heat transfers into the aircraft structure which also gets hotter. By the early 1960s many investigations in the United States, Britain and France had shown equilibrium skin temperatures varying from 130 degC at Mach 2.2 to 330 degC at Mach 3. Subsonic aircraft are usually made of aluminium. However aluminium, while being light and strong,

4680-429: The thrust, leading to considerably greater fuel use. This effect is pronounced at speeds close to the speed of sound, as the aircraft is using twice the thrust to travel at about the same speed. The relative effect is reduced as the aircraft accelerates to higher speeds. Offsetting this increase in fuel use was the potential to greatly increase sortie rates of the aircraft, at least on medium and long-range flights where

4752-577: The two that are not are F-BVFD (cn 211), parked as a spare-parts source in 1982 and scrapped in 1994, and F-BTSC (cn 203), which crashed outside Paris on July 25, 2000, killing 100 passengers, 9 crew members, and 4 people on the ground. Supersonic business jet A supersonic business jet ( SSBJ ) is a business jet travelling above the speed of sound : a supersonic aircraft . Some manufacturers are designing or have been designing SSBJs, but none are currently available. Usually intended to transport about ten passengers, proposed SSBJs would be about

4824-440: Was actually very successful, and was able to sustain a higher ticket price. Now that commercial SST aircraft have stopped flying, it has become clearer that Concorde made substantial profit for British Airways. Extreme jet velocities used during take-off caused Concorde and Tu-144s to produce significant take-off noise. Communities near the airport were affected by high engine noise levels, which prompted some regulators to disfavor

4896-440: Was claimed to have operated profitably. Throughout the 1950s an SST looked possible from a technical standpoint, but it was not clear if it could be made economically viable. Because of differences in lift generation, aircraft operating at supersonic speeds have approximately one-half the lift-to-drag ratio of subsonic aircraft. This implies that for any given required amount of lift, the aircraft will have to supply about twice

4968-485: Was considered, but the Bristol 188 proved this to be difficult and expensive. By 1956 there was enough official interest in this research for the Supersonic Transport Aircraft Committee , or STAC , to be formed under Sir Morien Morgan to investigate the creation of a supersonic transport. Its first report, in 1959, recommended two designs. One was an M-wing Mach 1.2 medium range airliner and

5040-573: Was developing the similar Super-Caravelle design, and in November 1962 the efforts were merged to create the Concorde project. In the UK , as elsewhere in the 1950s, the aero industry had been producing a series of supersonic test aircraft and had extensively studied the problems of sustained high-speed flight. By the mid-1950s, two designs had been shown to have a lift-to-drag ratio suitable for supersonic cruise,

5112-645: Was much less efficient than Concorde's turbojets in supersonic flight. The later TU-144D featured turbojet engines with comparable efficiency. These limitations meant that SST designs were not able to take advantage of the dramatic improvements in fuel economy that high bypass engines brought to the subsonic market, but they were already more efficient than their subsonic turbofan counterparts. Supersonic vehicle speeds demand narrower wing and fuselage designs, and are subject to greater stresses and temperatures. This leads to aeroelasticity problems, which require heavier structures to minimize unwanted flexing. SSTs also require

5184-546: Was reserved about the prospects for a supersonic business jet. In January 2018, Vladimir Putin proposed a civil SSBJ variant of the Tu-160 bomber, for a potential market of 20-30 units in Russia alone at $ 100–120 million each. UAC previously studied a SSBJ, displaying a scale model at MAKS Air Show 2017, to be designed and built in seven years with an existing engine like the NK-32 and

#859140