Misplaced Pages

Super NES Mouse

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The Super NES Mouse , sold as the Super Famicom Mouse ( スーパーファミコンマウス , Sūpā Famikon Mausu ) in Japan, is a peripheral created by Nintendo for the Super Nintendo Entertainment System . It was released in 1992, on July 14 in Japan , in August in North America , and on December 10 in Europe . Originally designed for use with the game Mario Paint , the Super NES Mouse was sold in a bundle with the game and included a plastic mouse pad. Soon after its introduction, several other titles were released with Mouse support.

#284715

99-423: Although this device closely resembles and mimics the functionality of a two-button computer mouse , it is smaller than most computer mice of the time and has a significantly shorter cord than the standard Super NES controller . Due to its proprietary connector it is not compatible with PCs' motherboards. The Mario Paint and Mouse package sold more than 1 million units by March 1993. In 2017, Hyperkin released

198-460: A display , which allows a smooth control of the graphical user interface of a computer . The first public demonstration of a mouse controlling a computer system was done by Doug Engelbart in 1968 as part of the Mother of All Demos . Mice originally used two separate wheels to directly track movement across a surface: one in the x-dimension and one in the Y. Later, the standard design shifted to use

297-428: A pointer in two dimensions in a graphical user interface (GUI). The mouse turns movements of the hand backward and forward, left and right into equivalent electronic signals that in turn are used to move the pointer. The relative movements of the mouse on the surface are applied to the position of the pointer on the screen, which signals the point where actions of the user take place, so hand movements are replicated by

396-408: A Fourier synthesizer, a tide-predicting machine , which summed the individual harmonic components. Another category, not nearly as well known, used rotating shafts only for input and output, with precision racks and pinions. The racks were connected to linkages that performed the computation. At least one U.S. Naval sonar fire control computer of the later 1950s, made by Librascope, was of this type, as

495-430: A ball rolling on a surface to detect motion, in turn connected to internal rollers. Most modern mice use optical movement detection with no moving parts. Though originally all mice were connected to a computer by a cable, many modern mice are cordless, relying on short-range radio communication with the connected system. In addition to moving a cursor , computer mice have one or more buttons to allow operations such as

594-428: A comparatively intimate control and understanding of the problem, relative to digital simulations. Electronic analog computers are especially well-suited to representing situations described by differential equations. Historically, they were often used when a system of differential equations proved very difficult to solve by traditional means. As a simple example, the dynamics of a spring-mass system can be described by

693-609: A fully electronic analog computer at Peenemünde Army Research Center as an embedded control system ( mixing device ) to calculate V-2 rocket trajectories from the accelerations and orientations (measured by gyroscopes ) and to stabilize and guide the missile. Mechanical analog computers were very important in gun fire control in World War II, the Korean War and well past the Vietnam War; they were made in significant numbers. In

792-643: A large organization believed at first that his company sold lab mice . Hawley, who manufactured mice for Xerox, stated that "Practically, I have the market all to myself right now"; a Hawley mouse cost $ 415. In 1982, Logitech introduced the P4 Mouse at the Comdex trade show in Las Vegas, its first hardware mouse. That same year Microsoft made the decision to make the MS-DOS program Microsoft Word mouse-compatible, and developed

891-439: A more elegant input device was needed and invented what they called a "roller ball" for this purpose. The device was patented in 1947, but only a prototype using a metal ball rolling on two rubber-coated wheels was ever built, and the device was kept as a military secret. Another early trackball was built by Kenyon Taylor , a British electrical engineer working in collaboration with Tom Cranston and Fred Longstaff. Taylor

990-547: A mouse as well. The third marketed version of an integrated mouse shipped as a part of a computer and intended for personal computer navigation came with the Xerox 8010 Star in 1981. By 1982, the Xerox 8010 was probably the best-known computer with a mouse. The Sun-1 also came with a mouse, and the forthcoming Apple Lisa was rumored to use one, but the peripheral remained obscure; Jack Hawley of The Mouse House reported that one buyer for

1089-568: A mouse device named Rollkugelsteuerung (German for "Trackball control") was shown in a sales brochure by the German company AEG - Telefunken as an optional input device for the SIG ;100 vector graphics terminal, part of the system around their process computer TR 86 and the TR 440  [ de ] main frame. Based on an even earlier trackball device, the mouse device had been developed by

SECTION 10

#1732851639285

1188-505: A pair of light beams, located so that a given beam becomes interrupted or again starts to pass light freely when the other beam of the pair is about halfway between changes. Simple logic circuits interpret the relative timing to indicate which direction the wheel is rotating. This incremental rotary encoder scheme is sometimes called quadrature encoding of the wheel rotation, as the two optical sensors produce signals that are in approximately quadrature phase . The mouse sends these signals to

1287-400: A physical panel with connectors or, in more modern systems, as a software interface that allows virtual management of signal connections and routes. Output devices in analog machines can vary depending on the specific goals of the system. For example, they could be graphical indicators, oscilloscopes , graphic recording devices, TV connection module , voltmeter , etc. These devices allow for

1386-403: A similar product. Modern computer mice took form at the École Polytechnique Fédérale de Lausanne (EPFL) under the inspiration of Professor Jean-Daniel Nicoud and at the hands of engineer and watchmaker André Guignard . This new design incorporated a single hard rubber mouseball and three buttons, and remained a common design until the mainstream adoption of the scroll-wheel mouse during

1485-517: A tiny low-resolution video camera) to take successive images of the surface on which the mouse operates. Battery powered, wireless optical mice flash the LED intermittently to save power, and only glow steadily when movement is detected. Analog computer An analog computer or analogue computer is a type of computation machine (computer) that uses physical phenomena such as electrical , mechanical , or hydraulic quantities behaving according to

1584-419: A user can drag and drop a picture representing a file onto an image of a trash can, indicating the intention to delete the file. This intuitive and visual approach to interaction has become synonymous with organizing digital content and simplifying file management tasks. Standard Semantic Gestures In addition to the drag and drop gesture, several other semantic gestures have emerged as standard conventions within

1683-444: A voltage on a particular wire). Therefore, each problem must be scaled so its parameters and dimensions can be represented using voltages that the circuit can supply —e.g., the expected magnitudes of the velocity and the position of a spring pendulum . Improperly scaled variables can have their values "clamped" by the limits of the supply voltage. Or if scaled too small, they can suffer from higher noise levels . Either problem can cause

1782-410: A warning message indicating that the mouse is incompatible with that game. This is an incomplete list of games that support the accessory: Computer mouse A computer mouse (plural mice , also mouses ) is a hand-held pointing device that detects two-dimensional motion relative to a surface. This motion is typically translated into the motion of the pointer (called a cursor) on

1881-522: Is one of the few fields where slide rules are still in widespread use, particularly for solving time–distance problems in light aircraft. In 1831–1835, mathematician and engineer Giovanni Plana devised a perpetual-calendar machine , which, through a system of pulleys and cylinders, could predict the perpetual calendar for every year from AD 0 (that is, 1 BC) to AD 4000, keeping track of leap years and varying day length. The tide-predicting machine invented by Sir William Thomson in 1872

1980-513: Is striking in terms of mathematics. They can be modeled using equations of the same form. However, the difference between these systems is what makes analog computing useful. Complex systems often are not amenable to pen-and-paper analysis, and require some form of testing or simulation. Complex mechanical systems, such as suspensions for racing cars, are expensive to fabricate and hard to modify. And taking precise mechanical measurements during high-speed tests adds further difficulty. By contrast, it

2079-726: Is the PEAC (Practical Electronics analogue computer), published in Practical Electronics in the January 1968 edition. Another more modern hybrid computer design was published in Everyday Practical Electronics in 2002. An example described in the EPE hybrid computer was the flight of a VTOL aircraft such as the Harrier jump jet . The altitude and speed of the aircraft were calculated by

SECTION 20

#1732851639285

2178-401: Is the drag and drop gesture, which has become pervasive across various applications and platforms. The Drag and Drop Gesture The drag and drop gesture is a fundamental gestural convention that enables users to manipulate objects on the screen seamlessly. It involves a series of actions performed by the user: This gesture allows users to transfer or rearrange objects effortlessly. For instance,

2277-497: Is to combine the two processes for the best efficiency. An example of such hybrid elementary device is the hybrid multiplier, where one input is an analog signal, the other input is a digital signal and the output is analog. It acts as an analog potentiometer, upgradable digitally. This kind of hybrid technique is mainly used for fast dedicated real time computation when computing time is very critical, as signal processing for radars and generally for controllers in embedded systems . In

2376-454: Is typically designed to be plug compatible with an analog joystick. The "Color Mouse", originally marketed by RadioShack for their Color Computer (but also usable on MS-DOS machines equipped with analog joystick ports, provided the software accepted joystick input) was the best-known example. Early optical mice relied entirely on one or more light-emitting diodes (LEDs) and an imaging array of photodiodes to detect movement relative to

2475-405: Is very inexpensive to build an electrical equivalent of a complex mechanical system, to simulate its behavior. Engineers arrange a few operational amplifiers (op amps) and some passive linear components to form a circuit that follows the same equations as the mechanical system being simulated. All measurements can be taken directly with an oscilloscope . In the circuit, the (simulated) stiffness of

2574-803: The Leibniz Supercomputing Centre in Munich in 1972 are well preserved in a museum, two others survived in a museum at Stuttgart University, two in Hamburg, the one from Aachen at the Computer History Museum in the US, and yet another sample was recently donated to the Heinz Nixdorf MuseumsForum (HNF) in Paderborn. Anecdotal reports claim that Telefunken's attempt to patent the device

2673-471: The Mozilla web browser will follow a link in response to a primary button click, will bring up a contextual menu of alternative actions for that link in response to a secondary-button click, and will often open the link in a new tab or window in response to a click with the tertiary (middle) mouse button. The German company Telefunken published on their early ball mouse on 2 October 1968. Telefunken's mouse

2772-458: The flight computer in aircraft , and for teaching control systems in universities. Perhaps the most relatable example of analog computers are mechanical watches where the continuous and periodic rotation of interlinked gears drives the second, minute and hour needles in the clock. More complex applications, such as aircraft flight simulators and synthetic-aperture radar , remained the domain of analog computing (and hybrid computing ) well into

2871-465: The spring constant and g {\displaystyle g} the gravity of Earth . For analog computing, the equation is programmed as y ¨ = − d m y ˙ − c m y − g {\displaystyle {\ddot {y}}=-{\tfrac {d}{m}}{\dot {y}}-{\tfrac {c}{m}}y-g} . The equivalent analog circuit consists of two integrators for

2970-482: The "Direct Analogy Electric Analog Computer" ("the largest and most impressive general-purpose analyzer facility for the solution of field problems") developed there by Gilbert D. McCann, Charles H. Wilts, and Bart Locanthi . Educational analog computers illustrated the principles of analog calculation. The Heathkit EC-1, a $ 199 educational analog computer, was made by the Heath Company, US c.  1960 . It

3069-465: The 1950s to the 1970s, general-purpose analog computers were the only systems fast enough for real time simulation of dynamic systems, especially in the aircraft, military and aerospace field. In the 1960s, the major manufacturer was Electronic Associates of Princeton, New Jersey , with its 231R Analog Computer (vacuum tubes, 20 integrators) and subsequently its EAI 8800 Analog Computer (solid state operational amplifiers, 64 integrators). Its challenger

Super NES Mouse - Misplaced Pages Continue

3168-410: The 1980s, since digital computers were insufficient for the task. This is a list of examples of early computation devices considered precursors of the modern computers. Some of them may even have been dubbed 'computers' by the press, though they may fail to fit modern definitions. The Antikythera mechanism , a type of device used to determine the positions of heavenly bodies known as an orrery ,

3267-458: The 1990s. In 1985, René Sommer added a microprocessor to Nicoud's and Guignard's design. Through this innovation, Sommer is credited with inventing a significant component of the mouse, which made it more "intelligent"; though optical mice from Mouse Systems had incorporated microprocessors by 1984. Another type of mechanical mouse, the "analog mouse" (now generally regarded as obsolete), uses potentiometers rather than encoder wheels, and

3366-515: The Antikythera mechanism would not reappear until a thousand years later. Many mechanical aids to calculation and measurement were constructed for astronomical and navigation use. The planisphere was first described by Ptolemy in the 2nd century AD. The astrolabe was invented in the Hellenistic world in either the 1st or 2nd centuries BC and is often attributed to Hipparchus . A combination of

3465-642: The Dumaresq were produced of increasing complexity as development proceeded. By 1912, Arthur Pollen had developed an electrically driven mechanical analog computer for fire-control systems , based on the differential analyser. It was used by the Imperial Russian Navy in World War I . Starting in 1929, AC network analyzers were constructed to solve calculation problems related to electrical power systems that were too large to solve with numerical methods at

3564-588: The Hyper Click Mouse, an aftermarket Super NES mouse that utilizes optical motion detection in place of the rolling ball used in the original model. The Super NES Mouse was supported by many games during its lifetime, and even by the Super Game Boy accessory. Certain games released after the Mouse—such as Super Mario All-Stars , Tetris & Dr. Mario , Yoshi's Island , and Kirby Super Star —display

3663-568: The analog computer readout was limited chiefly by the precision of the readout equipment used, generally three or four significant figures. (Modern digital simulations are much better in this area. Digital arbitrary-precision arithmetic can provide any desired degree of precision.) However, in most cases the precision of an analog computer is absolutely sufficient given the uncertainty of the model characteristics and its technical parameters. Many small computers dedicated to specific computations are still part of industrial regulation equipment, but from

3762-676: The analog part of the computer and sent to a PC via a digital microprocessor and displayed on the PC screen. In industrial process control , analog loop controllers were used to automatically regulate temperature, flow, pressure, or other process conditions. The technology of these controllers ranged from purely mechanical integrators, through vacuum-tube and solid-state devices, to emulation of analog controllers by microprocessors. The similarity between linear mechanical components, such as springs and dashpots (viscous-fluid dampers), and electrical components, such as capacitors , inductors , and resistors

3861-642: The ball. By counting the pulses, the physical movement of the ball could be determined. A digital computer calculated the tracks and sent the resulting data to other ships in a task force using pulse-code modulation radio signals. This trackball used a standard Canadian five-pin bowling ball. It was not patented, since it was a secret military project. Douglas Engelbart of the Stanford Research Institute (now SRI International ) has been credited in published books by Thierry Bardini , Paul Ceruzzi , Howard Rheingold , and several others as

3960-407: The circuit to produce an incorrect simulation of the physical system. (Modern digital simulations are much more robust to widely varying values of their variables, but are still not entirely immune to these concerns: floating-point digital calculations support a huge dynamic range , but can suffer from imprecision if tiny differences of huge values lead to numerical instability .) The precision of

4059-854: The command to delete the selected shape. This gesture-based interaction enables users to perform actions quickly and efficiently without relying solely on traditional input methods. Challenges and Benefits of Gestural Interfaces While gestural interfaces offer a more immersive and interactive user experience, they also present challenges. One of the primary difficulties lies in the requirement of finer motor control from users. Gestures demand precise movements, which can be more challenging for individuals with limited dexterity or those who are new to this mode of interaction. However, despite these challenges, gestural interfaces have gained popularity due to their ability to simplify complex tasks and improve efficiency. Several gestural conventions have become widely adopted, making them more accessible to users. One such convention

Super NES Mouse - Misplaced Pages Continue

4158-517: The company in 1966 in what had been a parallel and independent discovery . As the name suggests and unlike Engelbart's mouse, the Telefunken model already had a ball (diameter 40 mm, weight 40 g ) and two mechanical 4-bit rotational position transducers with Gray code -like states, allowing easy movement in any direction. The bits remained stable for at least two successive states to relax debouncing requirements. This arrangement

4257-420: The computer system via the mouse cable, directly as logic signals in very old mice such as the Xerox mice, and via a data-formatting IC in modern mice. The driver software in the system converts the signals into motion of the mouse cursor along X and Y axes on the computer screen. The ball is mostly steel, with a precision spherical rubber surface. The weight of the ball, given an appropriate working surface under

4356-513: The device was based on an earlier trackball-like device (also named Rollkugel ) that was embedded into radar flight control desks. This trackball had been originally developed by a team led by Rainer Mallebrein  [ de ] at Telefunken Konstanz for the German Bundesanstalt für Flugsicherung  [ de ] (Federal Air Traffic Control). It was part of the corresponding workstation system SAP 300 and

4455-435: The drag and drop convention, form the building blocks of gestural interfaces, allowing users to interact with digital content using intuitive and natural movements. At the end of 20th century, digitizer mice (puck) with magnifying glass was used with AutoCAD for the digitizations of blueprints . Other uses of the mouse's input occur commonly in special application domains. In interactive three-dimensional graphics ,

4554-630: The earlier trackball device. The device was finished in early 1968, and together with light pens and trackballs , it was commercially offered as an optional input device for their system starting later that year. Not all customers opted to buy the device, which added costs of DM  1,500 per piece to the already up to 20-million DM deal for the main frame, of which only a total of 46 systems were sold or leased. They were installed at more than 20 German universities including RWTH Aachen , Technische Universität Berlin , University of Stuttgart and Konstanz . Several Rollkugel mice installed at

4653-515: The early 1970s, analog computer manufacturers tried to tie together their analog computers with a digital computers to get the advantages of the two techniques. In such systems, the digital computer controlled the analog computer, providing initial set-up, initiating multiple analog runs, and automatically feeding and collecting data. The digital computer may also participate to the calculation itself using analog-to-digital and digital-to-analog converters . The largest manufacturer of hybrid computers

4752-432: The equation m y ¨ + d y ˙ + c y = m g {\displaystyle m{\ddot {y}}+d{\dot {y}}+cy=mg} , with y {\displaystyle y} as the vertical position of a mass m {\displaystyle m} , d {\displaystyle d} the damping coefficient , c {\displaystyle c}

4851-420: The few axes of movement mice can detect. When mice have more than one button, the software may assign different functions to each button. Often, the primary (leftmost in a right-handed configuration) button on the mouse will select items, and the secondary (rightmost in a right-handed) button will bring up a menu of alternative actions applicable to that item. For example, on platforms with more than one button,

4950-523: The file in a window. Different ways of operating the mouse cause specific things to happen in the GUI: The Concept of Gestural Interfaces Gestural interfaces have become an integral part of modern computing, allowing users to interact with their devices in a more intuitive and natural way. In addition to traditional pointing-and-clicking actions, users can now employ gestural inputs to issue commands or perform specific actions. These stylized motions of

5049-611: The first PC-compatible mouse. The Microsoft Mouse shipped in 1983, thus beginning the Microsoft Hardware division of the company. However, the mouse remained relatively obscure until the appearance of the Macintosh 128K (which included an updated version of the single-button Lisa Mouse ) in 1984, and of the Amiga 1000 and the Atari ST in 1985. A mouse typically controls the motion of

SECTION 50

#1732851639285

5148-427: The forward-backward motion of the mouse and the other the left-right motion. Opposite the two rollers is a third one (white, in the photo, at 45 degrees) that is spring-loaded to push the ball against the other two rollers. Each roller is on the same shaft as an encoder wheel that has slotted edges; the slots interrupt infrared light beams to generate electrical pulses that represent wheel movement. Each wheel's disc has

5247-667: The gestural interface paradigm. These gestures serve specific purposes and contribute to a more intuitive user experience. Some of the notable semantic gestures include: Crossing-based goal: This gesture involves crossing a specific boundary or threshold on the screen to trigger an action or complete a task. For example, swiping across the screen to unlock a device or confirm a selection. Menu traversal: Menu traversal gestures facilitate navigation through hierarchical menus or options. Users can perform gestures such as swiping or scrolling to explore different menu levels or activate specific commands. Pointing: Pointing gestures involve positioning

5346-648: The inventor of the computer mouse. Engelbart was also recognized as such in various obituary titles after his death in July 2013. By 1963, Engelbart had already established a research lab at SRI, the Augmentation Research Center (ARC), to pursue his objective of developing both hardware and software computer technology to "augment" human intelligence. That November, while attending a conference on computer graphics in Reno, Nevada , Engelbart began to ponder how to adapt

5445-462: The keyboard". In 1964, Bill English joined ARC, where he helped Engelbart build the first mouse prototype. They christened the device the mouse as early models had a cord attached to the rear part of the device which looked like a tail, and in turn, resembled the common mouse . According to Roger Bates, a hardware designer in English, another reason for choosing this name was because the cursor on

5544-443: The mathematical principles in question ( analog signals ) to model the problem being solved. In contrast, digital computers represent varying quantities symbolically and by discrete values of both time and amplitude ( digital signals ). Analog computers can have a very wide range of complexity. Slide rules and nomograms are the simplest, while naval gunfire control computers and large hybrid digital/analog computers were among

5643-521: The mathematical understanding of the Gibbs phenomenon of overshoot in Fourier representation near discontinuities. In a differential analyzer, the output of one integrator drove the input of the next integrator, or a graphing output. The torque amplifier was the advance that allowed these machines to work. Starting in the 1920s, Vannevar Bush and others developed mechanical differential analyzers. The Dumaresq

5742-499: The most complicated. Complex mechanisms for process control and protective relays used analog computation to perform control and protective functions. Analog computers were widely used in scientific and industrial applications even after the advent of digital computers, because at the time they were typically much faster, but they started to become obsolete as early as the 1950s and 1960s, although they remained in use in some specific applications, such as aircraft flight simulators ,

5841-405: The mouse became widely used in personal computers. In any event, the invention of the mouse was just a small part of Engelbart's much larger project of augmenting human intellect. Several other experimental pointing-devices developed for Engelbart's oN-Line System ( NLS ) exploited different body movements – for example, head-mounted devices attached to the chin or nose – but ultimately

5940-456: The mouse cursor over an object or element to interact with it. This fundamental gesture enables users to select, click, or access contextual menus. Mouseover (pointing or hovering): Mouseover gestures occur when the cursor is positioned over an object without clicking. This action often triggers a visual change or displays additional information about the object, providing users with real-time feedback. These standard semantic gestures, along with

6039-454: The mouse cursor, known as "gestures", have the potential to enhance user experience and streamline workflow. Mouse Gestures in Action To illustrate the concept of gestural interfaces, let's consider a drawing program as an example. In this scenario, a user can employ a gesture to delete a shape on the canvas. By rapidly moving the mouse cursor in an "x" motion over the shape, the user can trigger

SECTION 60

#1732851639285

6138-495: The mouse won out because of its speed and convenience. The first mouse, a bulky device (pictured) used two potentiometers perpendicular to each other and connected to wheels: the rotation of each wheel translated into motion along one axis . At the time of the "Mother of All Demos", Engelbart's group had been using their second-generation, 3-button mouse for about a year. On 2 October 1968, three years after Engelbart's prototype but more than two months before his public demo ,

6237-617: The mouse's motion often translates directly into changes in the virtual objects' or camera's orientation. For example, in the first-person shooter genre of games (see below), players usually employ the mouse to control the direction in which the virtual player's "head" faces: moving the mouse up will cause the player to look up, revealing the view above the player's head. A related function makes an image of an object rotate so that all sides can be examined. 3D design and animation software often modally chord many different combinations to allow objects and cameras to be rotated and moved through space with

6336-557: The mouse, provides a reliable grip so the mouse's movement is transmitted accurately. Ball mice and wheel mice were manufactured for Xerox by Jack Hawley, doing business as The Mouse House in Berkeley, California, starting in 1975. Based on another invention by Jack Hawley, proprietor of the Mouse House, Honeywell produced another type of mechanical mouse. Instead of a ball, it had two wheels rotating at off axes. Key Tronic later produced

6435-561: The patch panel, various connections and routes can be set and switched to configure the machine and determine signal flows. This allows users to flexibly configure and reconfigure the analog computing system to perform specific tasks. Patch panels are used to control data flows , connect and disconnect connections between various blocks of the system, including signal sources, amplifiers, filters, and other components. They provide convenience and flexibility in configuring and experimenting with analog computations. Patch panels can be presented as

6534-654: The period 1930–1945 in the Netherlands, Johan van Veen developed an analogue computer to calculate and predict tidal currents when the geometry of the channels are changed. Around 1950, this idea was developed into the Deltar , a hydraulic analogy computer supporting the closure of estuaries in the southwest of the Netherlands (the Delta Works ). The FERMIAC was an analog computer invented by physicist Enrico Fermi in 1947 to aid in his studies of neutron transport. Project Cyclone

6633-465: The planisphere and dioptra , the astrolabe was effectively an analog computer capable of working out several different kinds of problems in spherical astronomy . The sector , a calculating instrument used for solving problems in proportion, trigonometry, multiplication and division, and for various functions, such as squares and cube roots, was developed in the late 16th century and found application in gunnery, surveying and navigation. The planimeter

6732-420: The pointer. Clicking or pointing (stopping movement while the cursor is within the bounds of an area) can select files, programs or actions from a list of names, or (in graphical interfaces) through small images called "icons" and other elements. For example, a text file might be represented by a picture of a paper notebook and clicking while the cursor points at this icon might cause a text editing program to open

6831-478: The possible construction of such calculators, but he had been stymied by the limited output torque of the ball-and-disk integrators . Several systems followed, notably those of Spanish engineer Leonardo Torres Quevedo , who built various analog machines for solving real and complex roots of polynomials ; and Michelson and Stratton, whose Harmonic Analyser performed Fourier analysis, but using an array of 80 springs rather than Kelvin integrators. This work led to

6930-405: The potentiometer was then equivalent to the formula of the equation being solved. Multiplication or division could be performed, depending on which dials were inputs and which was the output. Accuracy and resolution was limited and a simple slide rule was more accurate. However, the unit did demonstrate the basic principle. Analog computer designs were published in electronics magazines. One example

7029-408: The screen was also referred to as "CAT" at this time. As noted above, this "mouse" was first mentioned in print in a July 1965 report, on which English was the lead author. On 9 December 1968, Engelbart publicly demonstrated the mouse at what would come to be known as The Mother of All Demos . Engelbart never received any royalties for it, as his employer SRI held the patent, which expired before

7128-467: The selection of a menu item on a display. Mice often also feature other elements, such as touch surfaces and scroll wheels , which enable additional control and dimensional input. The earliest known written use of the term mouse or mice in reference to a computer pointing device is in Bill English 's July 1965 publication, "Computer-Aided Display Control". This likely originated from its resemblance to

7227-419: The shape and size of a mouse , with the cord resembling its tail . The popularity of wireless mice without cords makes the resemblance less obvious. According to Roger Bates, a hardware designer under English, the term also came about because the cursor on the screen was, for an unknown reason, referred to as "CAT" and was seen by the team as if it would be chasing the new desktop device. The plural for

7326-416: The small rodent is always "mice" in modern usage. The plural for a computer mouse is either "mice" or "mouses" according to most dictionaries, with "mice" being more common. The first recorded plural usage is "mice"; the online Oxford Dictionaries cites a 1984 use, and earlier uses include J. C. R. Licklider 's "The Computer as a Communication Device" of 1968. The trackball , a related pointing device,

7425-730: The speed of analog computers was their fully parallel computation, but this was also a limitation. The more equations required for a problem, the more analog components were needed, even when the problem wasn't time critical. "Programming" a problem meant interconnecting the analog operators; even with a removable wiring panel this was not very versatile. While a wide variety of mechanisms have been developed throughout history, some stand out because of their theoretical importance, or because they were manufactured in significant quantities. Most practical mechanical analog computers of any significant complexity used rotating shafts to carry variables from one mechanism to another. Cables and pulleys were used in

7524-445: The spring, for instance, can be changed by adjusting the parameters of an integrator. The electrical system is an analogy to the physical system, hence the name, but it is much less expensive than a mechanical prototype, much easier to modify, and generally safer. The electronic circuit can also be made to run faster or slower than the physical system being simulated. Experienced users of electronic analog computers said that they offered

7623-411: The state variables − y ˙ {\displaystyle -{\dot {y}}} (speed) and y {\displaystyle y} (position), one inverter, and three potentiometers. Electronic analog computers have drawbacks: the value of the circuit's supply voltage limits the range over which the variables may vary (since the value of a variable is represented by

7722-548: The terminal SIG 3001, which had been designed and developed since 1963. Development for the TR ;440 main frame began in 1965. This led to the development of the TR 86 process computer system with its SIG 100-86 terminal. Inspired by a discussion with a university customer, Mallebrein came up with the idea of "reversing" the existing Rollkugel trackball into a moveable mouse-like device in 1966, so that customers did not have to be bothered with mounting holes for

7821-503: The time. These were essentially scale models of the electrical properties of the full-size system. Since network analyzers could handle problems too large for analytic methods or hand computation, they were also used to solve problems in nuclear physics and in the design of structures. More than 50 large network analyzers were built by the end of the 1950s. World War II era gun directors , gun data computers , and bomb sights used mechanical analog computers. In 1942 Helmut Hölzer built

7920-470: The underlying principles of the planimeter to inputting X- and Y-coordinate data. On 14 November 1963, he first recorded his thoughts in his personal notebook about something he initially called a " bug ", which is a "3-point" form could have a "drop point and 2 orthogonal wheels". He wrote that the "bug" would be "easier" and "more natural" to use, and unlike a stylus, it would stay still when let go, which meant it would be "much better for coordination with

8019-607: The underlying surface, eschewing the internal moving parts a mechanical mouse uses in addition to its optics. A laser mouse is an optical mouse that uses coherent (laser) light. The earliest optical mice detected movement on pre-printed mousepad surfaces, whereas the modern LED optical mouse works on most opaque diffuse surfaces; it is usually unable to detect movement on specular surfaces like polished stone. Laser diodes provide good resolution and precision, improving performance on opaque specular surfaces. Later, more surface-independent optical mice use an optoelectronic sensor (essentially,

8118-470: The visualization of analog signals and the representation of the results of measurements or mathematical operations. These are just general blocks that can be found in a typical analog computing machine. The actual configuration and components may vary depending on the specific implementation and the intended use of the machine. Analog computing devices are fast; digital computing devices are more versatile and accurate. The idea behind an analog-digital hybrid

8217-486: The way to light sensors, thus detecting in their turn the motion of the ball. This variant of the mouse resembled an inverted trackball and became the predominant form used with personal computers throughout the 1980s and 1990s. The Xerox PARC group also settled on the modern technique of using both hands to type on a full-size keyboard and grabbing the mouse when required. The ball mouse has two freely rotating rollers. These are located 90 degrees apart. One roller detects

8316-529: Was Electronic Associates . Their hybrid computer model 8900 was made of a digital computer and one or more analog consoles. These systems were mainly dedicated to large projects such as the Apollo program and Space Shuttle at NASA , or Ariane in Europe, especially during the integration step where at the beginning everything is simulated, and progressively real components replace their simulated parts. Only one company

8415-513: Was described as an early mechanical analog computer by British physicist, information scientist, and historian of science Derek J. de Solla Price . It was discovered in 1901, in the Antikythera wreck off the Greek island of Antikythera , between Kythera and Crete , and has been dated to c.  150~100 BC , during the Hellenistic period . Devices of a level of complexity comparable to that of

8514-653: Was Applied Dynamics of Ann Arbor, Michigan . Although the basic technology for analog computers is usually operational amplifiers (also called "continuous current amplifiers" because they have no low frequency limitation), in the 1960s an attempt was made in the French ANALAC computer to use an alternative technology: medium frequency carrier and non dissipative reversible circuits. In the 1970s, every large company and administration concerned with problems in dynamics had an analog computing center, such as: An analog computing machine consists of several main components: On

8613-567: Was a manual instrument to calculate the area of a closed figure by tracing over it with a mechanical linkage. The slide rule was invented around 1620–1630, shortly after the publication of the concept of the logarithm . It is a hand-operated analog computer for doing multiplication and division. As slide rule development progressed, added scales provided reciprocals, squares and square roots, cubes and cube roots, as well as transcendental functions such as logarithms and exponentials, circular and hyperbolic trigonometry and other functions . Aviation

8712-492: Was a mechanical calculating device invented around 1902 by Lieutenant John Dumaresq of the Royal Navy . It was an analog computer that related vital variables of the fire control problem to the movement of one's own ship and that of a target ship. It was often used with other devices, such as a Vickers range clock to generate range and deflection data so the gun sights of the ship could be continuously set. A number of versions of

8811-465: Was an analog computer developed by Reeves in 1950 for the analysis and design of dynamic systems. Project Typhoon was an analog computer developed by RCA in 1952. It consisted of over 4,000 electron tubes and used 100 dials and 6,000 plug-in connectors to program. The MONIAC Computer was a hydraulic analogy of a national economy first unveiled in 1949. Computer Engineering Associates was spun out of Caltech in 1950 to provide commercial services using

8910-430: Was chosen so that the data could also be transmitted to the TR 86 front-end process computer and over longer distance telex lines with c. 50  baud . Weighing 465 grams (16.4 oz), the device with a total height of about 7 cm (2.8 in) came in a c. 12 cm (4.7 in) diameter hemispherical injection-molded thermoplastic casing featuring one central push button. As noted above,

9009-580: Was invented in 1946 by Ralph Benjamin as part of a post- World War II -era fire-control radar plotting system called the Comprehensive Display System (CDS). Benjamin was then working for the British Royal Navy Scientific Service. Benjamin's project used analog computers to calculate the future position of target aircraft based on several initial input points provided by a user with a joystick . Benjamin felt that

9108-414: Was known as offering general commercial computing services on its hybrid computers, CISI of France, in the 1970s. The best reference in this field is the 100,000 simulation runs for each certification of the automatic landing systems of Airbus and Concorde aircraft. After 1980, purely digital computers progressed more and more rapidly and were fast enough to compete with analog computers. One key to

9207-409: Was of great utility to navigation in shallow waters. It used a system of pulleys and wires to automatically calculate predicted tide levels for a set period at a particular location. The differential analyser , a mechanical analog computer designed to solve differential equations by integration , used wheel-and-disc mechanisms to perform the integration. In 1876 James Thomson had already discussed

9306-475: Was one of the first computers designed for individual use in 1973 and is regarded as the first modern computer to use a mouse. Alan Kay designed the 16-by-16 mouse cursor icon with its left edge vertical and right edge 45-degrees so it displays well on the bitmap. Inspired by PARC 's Alto, the Lilith , a computer which had been developed by a team around Niklaus Wirth at ETH Zürich between 1978 and 1980, provided

9405-559: Was part of the original Ferranti Canada , working on the Royal Canadian Navy 's DATAR (Digital Automated Tracking and Resolving) system in 1952. DATAR was similar in concept to Benjamin's display. The trackball used four disks to pick up motion, two each for the X and Y directions. Several rollers provided mechanical support. When the ball was rolled, the pickup discs spun and contacts on their outer rim made periodic contact with wires, producing pulses of output with each movement of

9504-441: Was programmed using patch cords that connected nine operational amplifiers and other components. General Electric also marketed an "educational" analog computer kit of a simple design in the early 1960s consisting of two transistor tone generators and three potentiometers wired such that the frequency of the oscillator was nulled when the potentiometer dials were positioned by hand to satisfy an equation. The relative resistance of

9603-540: Was rejected by the German Patent Office due to lack of inventiveness. For the air traffic control system, the Mallebrein team had already developed a precursor to touch screens in form of an ultrasonic-curtain-based pointing device in front of the display. In 1970, they developed a device named " Touchinput - Einrichtung " ("touch input device") based on a conductively coated glass screen. The Xerox Alto

9702-487: Was sold as optional equipment for their computer systems. Bill English , builder of Engelbart's original mouse, created a ball mouse in 1972 while working for Xerox PARC . The ball mouse replaced the external wheels with a single ball that could rotate in any direction. It came as part of the hardware package of the Xerox Alto computer. Perpendicular chopper wheels housed inside the mouse's body chopped beams of light on

9801-536: Was the principal computer in the Mk. 56 Gun Fire Control System. Online, there is a remarkably clear illustrated reference (OP 1140) that describes the fire control computer mechanisms. For adding and subtracting, precision miter-gear differentials were in common use in some computers; the Ford Instrument Mark I Fire Control Computer contained about 160 of them. Integration with respect to another variable

#284715