Misplaced Pages

Subtropical front

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

A subtropical front is a surface water mass boundary or front, which is a narrow zone of transition between air masses of contrasting density, air masses of different temperatures or different water vapour concentrates. It is also characterized by an unforeseen change in wind direction, and speed across its surface between water systems, which are based on temperature and salinity . The subtropical separates the more saline subtropical waters from the fresher sub-Antarctic waters.

#578421

106-469: A subtropical frontal zone (STFZ) is a large seasonal cycle located on the eastern side of basins. It is made up of fronts of multiple weak sea surface temperature (SST), aligned northwest–southeast, spread over a large latitudinal span. On the far eastern side of basins, the subtropical frontal zone becomes narrower and temperature gradients stronger, but still much weaker than across the dynamical subtropical frontal zone. A dynamical frontal zone sits at

212-549: A broader sense also includes previous long-term changes to Earth's climate. The current rise in global temperatures is driven by human activities , especially fossil fuel burning since the Industrial Revolution . Fossil fuel use, deforestation , and some agricultural and industrial practices release greenhouse gases . These gases absorb some of the heat that the Earth radiates after it warms from sunlight , warming

318-587: A decadal timescale. Other changes are caused by an imbalance of energy from external forcings . Examples of these include changes in the concentrations of greenhouse gases , solar luminosity , volcanic eruptions, and variations in the Earth's orbit around the Sun. To determine the human contribution to climate change, unique "fingerprints" for all potential causes are developed and compared with both observed patterns and known internal climate variability . For example, solar forcing—whose fingerprint involves warming

424-530: A fraction of a millimetre thick) in the infrared or the top centimetre or so in the microwave are also used, but must be adjusted to be compatible with the bulk temperature." The temperature further below that is called ocean temperature or deeper ocean temperature . Ocean temperatures (more than 20 metres below the surface) also vary by region and time, and they contribute to variations in ocean heat content and ocean stratification . The increase of both ocean surface temperature and deeper ocean temperature

530-405: A higher altitude (e.g., at the 500  hPa level, or 5.9 km) can lead to tropical cyclogenesis at lower water temperatures, as a certain lapse rate is required to force the atmosphere to be unstable enough for convection. In a moist atmosphere, this lapse rate is 6.5 °C/km, while in an atmosphere with less than 100% relative humidity , the required lapse rate is 9.8 °C/km. At

636-580: A lesser degree due to its greater thermal inertia . On calm days, the temperature can vary by 6 °C (10 °F). The temperature of the ocean at depth lags the Earth's atmosphere temperature by 15 days per 10 metres (33 ft), which means for locations like the Aral Sea , temperatures near its bottom reach a maximum in December and a minimum in May and June. Near the coastline, some offshore and longshore winds move

742-532: A lot of light to being dark after the ice has melted, they start absorbing more heat . Local black carbon deposits on snow and ice also contribute to Arctic warming. Arctic surface temperatures are increasing between three and four times faster than in the rest of the world. Melting of ice sheets near the poles weakens both the Atlantic and the Antarctic limb of thermohaline circulation , which further changes

848-412: A marked increase in temperature. Ongoing changes in climate have had no precedent for several thousand years. Multiple independent datasets all show worldwide increases in surface temperature, at a rate of around 0.2 °C per decade. The 2014–2023 decade warmed to an average 1.19 °C [1.06–1.30 °C] compared to the pre-industrial baseline (1850–1900). Not every single year was warmer than

954-461: A one-day lag. NOAA's GOES (Geostationary Orbiting Earth Satellites) satellites are geo-stationary above the Western Hemisphere which enables them to deliver SST data on an hourly basis with only a few hours of lag time. There are several difficulties with satellite-based absolute SST measurements. First, in infrared remote sensing methodology the radiation emanates from the top "skin" of

1060-408: A physical climate model. These models simulate how population, economic growth , and energy use affect—and interact with—the physical climate. With this information, these models can produce scenarios of future greenhouse gas emissions. This is then used as input for physical climate models and carbon cycle models to predict how atmospheric concentrations of greenhouse gases might change. Depending on

1166-457: A result of climate change. Global sea level is rising as a consequence of thermal expansion and the melting of glaciers and ice sheets . Sea level rise has increased over time, reaching 4.8 cm per decade between 2014 and 2023. Over the 21st century, the IPCC projects 32–62 cm of sea level rise under a low emission scenario, 44–76 cm under an intermediate one and 65–101 cm under

SECTION 10

#1732844297579

1272-474: A result. The World Health Organization calls climate change one of the biggest threats to global health in the 21st century. Societies and ecosystems will experience more severe risks without action to limit warming . Adapting to climate change through efforts like flood control measures or drought-resistant crops partially reduces climate change risks, although some limits to adaptation have already been reached. Poorer communities are responsible for

1378-417: A small share of global emissions , yet have the least ability to adapt and are most vulnerable to climate change . Many climate change impacts have been observed in the first decades of the 21st century, with 2023 the warmest on record at +1.48 °C (2.66 °F) since regular tracking began in 1850. Additional warming will increase these impacts and can trigger tipping points , such as melting all of

1484-538: A very high emission scenario. Marine ice sheet instability processes in Antarctica may add substantially to these values, including the possibility of a 2-meter sea level rise by 2100 under high emissions. Climate change has led to decades of shrinking and thinning of the Arctic sea ice . While ice-free summers are expected to be rare at 1.5 °C degrees of warming, they are set to occur once every three to ten years at

1590-519: A warming level of 2 °C. Higher atmospheric CO 2 concentrations cause more CO 2 to dissolve in the oceans, which is making them more acidic . Because oxygen is less soluble in warmer water, its concentrations in the ocean are decreasing , and dead zones are expanding. Greater degrees of global warming increase the risk of passing through ' tipping points '—thresholds beyond which certain major impacts can no longer be avoided even if temperatures return to their previous state. For instance,

1696-486: Is 5 years. When this warming or cooling occurs for only seven to nine months, it is classified as El Niño/La Niña "conditions"; when it occurs for more than that period, it is classified as El Niño/La Niña "episodes". The sign of an El Niño in the sea surface temperature pattern is when warm water spreads from the west Pacific and the Indian Ocean to the east Pacific. It takes the rain with it, causing extensive drought in

1802-557: Is an estimated total sea level rise of 2.3 metres per degree Celsius (4.2 ft/°F) after 2000 years. Oceanic CO 2 uptake is slow enough that ocean acidification will also continue for hundreds to thousands of years. Deep oceans (below 2,000 metres (6,600 ft)) are also already committed to losing over 10% of their dissolved oxygen by the warming which occurred to date. Further, the West Antarctic ice sheet appears committed to practically irreversible melting, which would increase

1908-411: Is an important effect of climate change on oceans . The extent of the ocean surface down into the ocean is influenced by the amount of mixing that takes place between the surface water and the deeper water. This depends on the temperature: in the tropics the warm surface layer of about 100 m is quite stable and does not mix much with deeper water, while near the poles winter cooling and storms makes

2014-492: Is an important driver of North Atlantic SST and Northern Hemisphere climate, but the mechanisms controlling AMO variability remain poorly understood. Atmospheric internal variability, changes in ocean circulation, or anthropogenic drivers may control the multidecadal temperature variability associated with AMO. These changes in North Atlantic SST may influence winds in the subtropical North Pacific and produce warmer SSTs in

2120-408: Is because the ocean absorbs about 90% of excess heat generated by climate change . Sea surface temperature (SST), or ocean surface temperature, is the water temperature close to the ocean 's surface. The exact meaning of surface varies according to the measurement method used, but it is between 1 millimetre (0.04 in) and 20 metres (70 ft) below the sea surface. For comparison,

2226-545: Is caused by warm, salty subtropical waters and Antarctic waters, found in all three ocean basins . A commonly used criterion found is that the salinity at a depth of 100m drops below 34.9 practical salinity units. A characteristic of the South Atlantic subtropical frontal zone, between 15°W and 5°E, is the conversion from subtropical to sub-polar waters. As a result, this coerces the South Atlantic Current flow and

SECTION 20

#1732844297579

2332-711: Is determined by modelling the carbon cycle and climate sensitivity to greenhouse gases. According to UNEP , global warming can be kept below 1.5 °C with a 50% chance if emissions after 2023 do not exceed 200 gigatonnes of CO 2 . This corresponds to around 4 years of current emissions. To stay under 2.0 °C, the carbon budget is 900 gigatonnes of CO 2 , or 16 years of current emissions. The climate system experiences various cycles on its own which can last for years, decades or even centuries. For example, El Niño events cause short-term spikes in surface temperature while La Niña events cause short term cooling. Their relative frequency can affect global temperature trends on

2438-537: Is fairly constant, such as the northwest coast of South America . Its values are important within numerical weather prediction as the sea surface temperature influences the atmosphere above, such as in the formation of sea breezes and sea fog . It is very likely that global mean sea surface temperature increased by 0.88°C between 1850–1900 and 2011–2020 due to global warming , with most of that warming (0.60°C) occurring between 1980 and 2020. The temperatures over land are rising faster than ocean temperatures . This

2544-467: Is found in the Pacific Ocean between 25° and 30° north latitude. The North Atlantic subtropical fronts possess the characteristics of seasonal variability. Highest front occurrences are during early spring in the western region. Less front probability occurs in late spring to early summer in the eastern region. The strengths of the fronts differ with seasons, building strength when moving southward during

2650-399: Is independent of where greenhouse gases are emitted, because the gases persist long enough to diffuse across the planet. Since the pre-industrial period, the average surface temperature over land regions has increased almost twice as fast as the global average surface temperature. This is because oceans lose more heat by evaporation and oceans can store a lot of heat . The thermal energy in

2756-656: Is made by sensing the ocean radiation in two or more wavelengths within the infrared part of the electromagnetic spectrum or other parts of the spectrum which can then be empirically related to SST. These wavelengths are chosen because they are: The satellite-measured SST provides both a synoptic view of the ocean and a high frequency of repeat views, allowing the examination of basin-wide upper ocean dynamics not possible with ships or buoys. NASA's (National Aeronautic and Space Administration) Moderate Resolution Imaging Spectroradiometer (MODIS) SST satellites have been providing global SST data since 2000, available with

2862-797: Is maintained by the National Data Buoy Center (NDBC). Between 1985 and 1994, an extensive array of moored and drifting buoys was deployed across the equatorial Pacific Ocean designed to help monitor and predict the El Niño phenomenon. Weather satellites have been available to determine sea surface temperature information since 1967, with the first global composites created during 1970. Since 1982, satellites have been increasingly utilized to measure SST and have allowed its spatial and temporal variation to be viewed more fully. Satellite measurements of SST are in reasonable agreement with in situ temperature measurements. The satellite measurement

2968-407: Is medium confidence that the tropical Pacific will transition to a mean pattern resembling that of El Niño on centennial time scale, but there is still high uncertainty in tropical Pacific SST projections because it is difficult to capture El Niño variability in climate models. Overall, scientists project that all regions of the oceans will warm by 2050, but models disagree for SST changes expected in

3074-450: Is primarily attributed to sulfate aerosols produced by the combustion of fossil fuels with heavy sulfur concentrations like coal and bunker fuel . Smaller contributions come from black carbon (from combustion of fossil fuels and biomass), and from dust. Globally, aerosols have been declining since 1990 due to pollution controls, meaning that they no longer mask greenhouse gas warming as much. Aerosols also have indirect effects on

3180-444: Is radiating into space. Warming reduces average snow cover and forces the retreat of glaciers . At the same time, warming also causes greater evaporation from the oceans , leading to more atmospheric humidity , more and heavier precipitation . Plants are flowering earlier in spring, and thousands of animal species have been permanently moving to cooler areas. Different regions of the world warm at different rates . The pattern

3286-516: Is shaped by feedbacks, which either amplify or dampen the change. Self-reinforcing or positive feedbacks increase the response, while balancing or negative feedbacks reduce it. The main reinforcing feedbacks are the water-vapour feedback , the ice–albedo feedback , and the net effect of clouds. The primary balancing mechanism is radiative cooling , as Earth's surface gives off more heat to space in response to rising temperature. In addition to temperature feedbacks, there are feedbacks in

Subtropical front - Misplaced Pages Continue

3392-421: Is surrounded by a distinct front. Sea surface temperature Sea surface temperature (or ocean surface temperature ) is the temperature of ocean water close to the surface. The exact meaning of surface varies in the literature and in practice. It is usually between 1 millimetre (0.04 in) and 20 metres (70 ft) below the sea surface. Sea surface temperatures greatly modify air masses in

3498-407: Is the major reason why different climate models project different magnitudes of warming for a given amount of emissions. A climate model is a representation of the physical, chemical and biological processes that affect the climate system. Models include natural processes like changes in the Earth's orbit, historical changes in the Sun's activity, and volcanic forcing. Models are used to estimate

3604-417: Is unclear. A related phenomenon driven by climate change is woody plant encroachment , affecting up to 500 million hectares globally. Climate change has contributed to the expansion of drier climate zones, such as the expansion of deserts in the subtropics . The size and speed of global warming is making abrupt changes in ecosystems more likely. Overall, it is expected that climate change will result in

3710-507: The Atlantic meridional overturning circulation (AMOC), and irreversible damage to key ecosystems like the Amazon rainforest and coral reefs can unfold in a matter of decades. The long-term effects of climate change on oceans include further ice melt, ocean warming , sea level rise, ocean acidification and ocean deoxygenation. The timescale of long-term impacts are centuries to millennia due to CO 2 's long atmospheric lifetime. The result

3816-489: The Earth's atmosphere within a short distance of the shore. The thermohaline circulation has a major impact on average sea surface temperature throughout most of the world's oceans. Warm sea surface temperatures can develop and strengthen cyclones over the ocean . Tropical cyclones can also cause a cool wake. This is due to turbulent mixing of the upper 30 metres (100 ft) of the ocean. Sea surface temperature changes during

3922-610: The Earth's energy budget . Sulfate aerosols act as cloud condensation nuclei and lead to clouds that have more and smaller cloud droplets. These clouds reflect solar radiation more efficiently than clouds with fewer and larger droplets. They also reduce the growth of raindrops , which makes clouds more reflective to incoming sunlight. Indirect effects of aerosols are the largest uncertainty in radiative forcing . While aerosols typically limit global warming by reflecting sunlight, black carbon in soot that falls on snow or ice can contribute to global warming. Not only does this increase

4028-568: The Greenland ice sheet is already melting, but if global warming reaches levels between 1.7 °C and 2.3 °C, its melting will continue until it fully disappears. If the warming is later reduced to 1.5 °C or less, it will still lose a lot more ice than if the warming was never allowed to reach the threshold in the first place. While the ice sheets would melt over millennia, other tipping points would occur faster and give societies less time to respond. The collapse of major ocean currents like

4134-835: The Greenland ice sheet . Under the 2015 Paris Agreement , nations collectively agreed to keep warming "well under 2 °C". However, with pledges made under the Agreement, global warming would still reach about 2.8 °C (5.0 °F) by the end of the century. Limiting warming to 1.5 °C would require halving emissions by 2030 and achieving net-zero emissions by 2050. Fossil fuel use can be phased out by conserving energy and switching to energy sources that do not produce significant carbon pollution. These energy sources include wind , solar , hydro , and nuclear power . Cleanly generated electricity can replace fossil fuels for powering transportation , heating buildings , and running industrial processes. Carbon can also be removed from

4240-626: The Industrial Revolution , naturally-occurring amounts of greenhouse gases caused the air near the surface to be about 33 °C warmer than it would have been in their absence. Human activity since the Industrial Revolution, mainly extracting and burning fossil fuels ( coal , oil , and natural gas ), has increased the amount of greenhouse gases in the atmosphere. In 2022, the concentrations of CO 2 and methane had increased by about 50% and 164%, respectively, since 1750. These CO 2 levels are higher than they have been at any time during

4346-509: The World Economic Forum , 14.5 million more deaths are expected due to climate change by 2050. 30% of the global population currently live in areas where extreme heat and humidity are already associated with excess deaths. By 2100, 50% to 75% of the global population would live in such areas. While total crop yields have been increasing in the past 50 years due to agricultural improvements, climate change has already decreased

Subtropical front - Misplaced Pages Continue

4452-414: The carbon cycle . While plants on land and in the ocean absorb most excess emissions of CO 2 every year, that CO 2 is returned to the atmosphere when biological matter is digested, burns, or decays. Land-surface carbon sink processes, such as carbon fixation in the soil and photosynthesis, remove about 29% of annual global CO 2 emissions. The ocean has absorbed 20 to 30% of emitted CO 2 over

4558-402: The climate system . Solar irradiance has been measured directly by satellites , and indirect measurements are available from the early 1600s onwards. Since 1880, there has been no upward trend in the amount of the Sun's energy reaching the Earth, in contrast to the warming of the lower atmosphere (the troposphere ). The upper atmosphere (the stratosphere ) would also be warming if the Sun

4664-971: The extinction of many species. The oceans have heated more slowly than the land, but plants and animals in the ocean have migrated towards the colder poles faster than species on land. Just as on land, heat waves in the ocean occur more frequently due to climate change, harming a wide range of organisms such as corals, kelp , and seabirds . Ocean acidification makes it harder for marine calcifying organisms such as mussels , barnacles and corals to produce shells and skeletons ; and heatwaves have bleached coral reefs . Harmful algal blooms enhanced by climate change and eutrophication lower oxygen levels, disrupt food webs and cause great loss of marine life. Coastal ecosystems are under particular stress. Almost half of global wetlands have disappeared due to climate change and other human impacts. Plants have come under increased stress from damage by insects. The effects of climate change are impacting humans everywhere in

4770-444: The sea surface skin temperature relates to the top 20 or so microns of the ocean's surface. The definition proposed by IPCC for sea surface temperature does not specify the number of metres but focuses more on measurement techniques: Sea surface temperature is "the subsurface bulk temperature in the top few metres of the ocean, measured by ships, buoys and drifters. [...] Satellite measurements of skin temperature (uppermost layer;

4876-432: The socioeconomic scenario and the mitigation scenario, models produce atmospheric CO 2 concentrations that range widely between 380 and 1400 ppm. The environmental effects of climate change are broad and far-reaching, affecting oceans , ice, and weather. Changes may occur gradually or rapidly. Evidence for these effects comes from studying climate change in the past, from modelling, and from modern observations. Since

4982-572: The warm core that fuels tropical systems. This value is well above 16.1 °C (60.9 °F), the long term global average surface temperature of the oceans. However, this requirement can be considered only a general baseline because it assumes that the ambient atmospheric environment surrounding an area of disturbed weather presents average conditions. Tropical cyclones have intensified when SSTs were slightly below this standard temperature. Tropical cyclones are known to form even when normal conditions are not met. For example, cooler air temperatures at

5088-405: The 18th century and 1970 there was little net warming, as the warming impact of greenhouse gas emissions was offset by cooling from sulfur dioxide emissions. Sulfur dioxide causes acid rain , but it also produces sulfate aerosols in the atmosphere, which reflect sunlight and cause global dimming . After 1970, the increasing accumulation of greenhouse gases and controls on sulfur pollution led to

5194-599: The 1950s, droughts and heat waves have appeared simultaneously with increasing frequency. Extremely wet or dry events within the monsoon period have increased in India and East Asia. Monsoonal precipitation over the Northern Hemisphere has increased since 1980. The rainfall rate and intensity of hurricanes and typhoons is likely increasing , and the geographic range likely expanding poleward in response to climate warming. Frequency of tropical cyclones has not increased as

5300-500: The 1980s, the terms global warming and climate change became more common, often being used interchangeably. Scientifically, global warming refers only to increased surface warming, while climate change describes both global warming and its effects on Earth's climate system , such as precipitation changes. Climate change can also be used more broadly to include changes to the climate that have happened throughout Earth's history. Global warming —used as early as 1975 —became

5406-411: The 500 hPa level, the air temperature averages −7 °C (18 °F) within the tropics, but air in the tropics is normally dry at this height, giving the air room to wet-bulb , or cool as it moistens, to a more favorable temperature that can then support convection. A wet-bulb temperature at 500 hPa in a tropical atmosphere of −13.2 °C (8.2 °F) is required to initiate convection if

SECTION 50

#1732844297579

5512-440: The Arctic is forcing many species to relocate or become extinct . Even if efforts to minimize future warming are successful, some effects will continue for centuries. These include ocean heating , ocean acidification and sea level rise . Climate change threatens people with increased flooding , extreme heat, increased food and water scarcity, more disease, and economic loss . Human migration and conflict can also be

5618-435: The Arctic is another major feedback, this reduces the reflectivity of the Earth's surface in the region and accelerates Arctic warming . This additional warming also contributes to permafrost thawing, which releases methane and CO 2 into the atmosphere. Around half of human-caused CO 2 emissions have been absorbed by land plants and by the oceans. This fraction is not static and if future CO 2 emissions decrease,

5724-542: The CO 2 released by the chemical reactions for making cement , steel , aluminum , and fertilizer . Methane emissions come from livestock , manure, rice cultivation , landfills, wastewater, and coal mining , as well as oil and gas extraction . Nitrous oxide emissions largely come from the microbial decomposition of fertilizer . While methane only lasts in the atmosphere for an average of 12 years, CO 2 lasts much longer. The Earth's surface absorbs CO 2 as part of

5830-604: The Earth will be able to absorb up to around 70%. If they increase substantially, it'll still absorb more carbon than now, but the overall fraction will decrease to below 40%. This is because climate change increases droughts and heat waves that eventually inhibit plant growth on land, and soils will release more carbon from dead plants when they are warmer . The rate at which oceans absorb atmospheric carbon will be lowered as they become more acidic and experience changes in thermohaline circulation and phytoplankton distribution. Uncertainty over feedbacks, particularly cloud cover,

5936-441: The absorption of sunlight, it also increases melting and sea-level rise. Limiting new black carbon deposits in the Arctic could reduce global warming by 0.2 °C by 2050. The effect of decreasing sulfur content of fuel oil for ships since 2020 is estimated to cause an additional 0.05 °C increase in global mean temperature by 2050. As the Sun is the Earth's primary energy source, changes in incoming sunlight directly affect

6042-411: The atmosphere , for instance by increasing forest cover and farming with methods that capture carbon in soil . Before the 1980s it was unclear whether the warming effect of increased greenhouse gases was stronger than the cooling effect of airborne particulates in air pollution . Scientists used the term inadvertent climate modification to refer to human impacts on the climate at this time. In

6148-452: The atmosphere. volcanic CO 2 emissions are more persistent, but they are equivalent to less than 1% of current human-caused CO 2 emissions. Volcanic activity still represents the single largest natural impact (forcing) on temperature in the industrial era. Yet, like the other natural forcings, it has had negligible impacts on global temperature trends since the Industrial Revolution. The climate system's response to an initial forcing

6254-690: The behavior of the Earth's atmosphere above, so their initialization into atmospheric models is important. While sea surface temperature is important for tropical cyclogenesis , it is also important in determining the formation of sea fog and sea breezes. Heat from underlying warmer waters can significantly modify an air mass over distances as short as 35 kilometres (22 mi) to 40 kilometres (25 mi). For example, southwest of Northern Hemisphere extratropical cyclones , curved cyclonic flow bringing cold air across relatively warm water bodies can lead to narrow lake-effect snow (or sea effect) bands. Those bands bring strong localized precipitation , often in

6360-454: The biggest threats to global health in the 21st century. Scientists have warned about the irreversible harms it poses. Extreme weather events affect public health, and food and water security . Temperature extremes lead to increased illness and death. Climate change increases the intensity and frequency of extreme weather events. It can affect transmission of infectious diseases , such as dengue fever and malaria . According to

6466-540: The carbon cycle, such as the fertilizing effect of CO 2 on plant growth. Feedbacks are expected to trend in a positive direction as greenhouse gas emissions continue, raising climate sensitivity. These feedback processes alter the pace of global warming. For instance, warmer air can hold more moisture in the form of water vapour , which is itself a potent greenhouse gas. Warmer air can also make clouds higher and thinner, and therefore more insulating, increasing climate warming. The reduction of snow cover and sea ice in

SECTION 60

#1732844297579

6572-543: The climate cycled through ice ages . One of the hotter periods was the Last Interglacial , around 125,000 years ago, where temperatures were between 0.5 °C and 1.5 °C warmer than before the start of global warming. This period saw sea levels 5 to 10 metres higher than today. The most recent glacial maximum 20,000 years ago was some 5–7 °C colder. This period has sea levels that were over 125 metres (410 ft) lower than today. Temperatures stabilized in

6678-668: The current interglacial period beginning 11,700 years ago . This period also saw the start of agriculture. Historical patterns of warming and cooling, like the Medieval Warm Period and the Little Ice Age , did not occur at the same time across different regions. Temperatures may have reached as high as those of the late 20th century in a limited set of regions. Climate information for that period comes from climate proxies , such as trees and ice cores . Around 1850 thermometer records began to provide global coverage. Between

6784-433: The day. This is like the air above it, but to a lesser degree. There is less variation in sea surface temperature on breezy days than on calm days. Coastal sea surface temperatures can cause offshore winds to generate upwelling , which can significantly cool or warm nearby landmasses, but shallower waters over a continental shelf are often warmer. Onshore winds can cause a considerable warm-up even in areas where upwelling

6890-403: The degree of warming future emissions will cause when accounting for the strength of climate feedbacks . Models also predict the circulation of the oceans, the annual cycle of the seasons, and the flows of carbon between the land surface and the atmosphere. The physical realism of models is tested by examining their ability to simulate current or past climates. Past models have underestimated

6996-427: The destroyed trees release CO 2 , and are not replaced by new trees, removing that carbon sink . Between 2001 and 2018, 27% of deforestation was from permanent clearing to enable agricultural expansion for crops and livestock. Another 24% has been lost to temporary clearing under the shifting cultivation agricultural systems. 26% was due to logging for wood and derived products, and wildfires have accounted for

7102-401: The distribution of heat and precipitation around the globe. The World Meteorological Organization estimates there is an 80% chance that global temperatures will exceed 1.5 °C warming for at least one year between 2024 and 2028. The chance of the 5-year average being above 1.5 °C is almost half. The IPCC expects the 20-year average global temperature to exceed +1.5 °C in

7208-444: The dominant direct influence on temperature from land use change. Thus, land use change to date is estimated to have a slight cooling effect. Air pollution, in the form of aerosols, affects the climate on a large scale. Aerosols scatter and absorb solar radiation. From 1961 to 1990, a gradual reduction in the amount of sunlight reaching the Earth's surface was observed. This phenomenon is popularly known as global dimming , and

7314-610: The early 2030s. The IPCC Sixth Assessment Report (2021) included projections that by 2100 global warming is very likely to reach 1.0–1.8 °C under a scenario with very low emissions of greenhouse gases , 2.1–3.5 °C under an intermediate emissions scenario , or 3.3–5.7 °C under a very high emissions scenario . The warming will continue past 2100 in the intermediate and high emission scenarios, with future projections of global surface temperatures by year 2300 being similar to millions of years ago. The remaining carbon budget for staying beneath certain temperature increases

7420-430: The entire atmosphere—is ruled out because only the lower atmosphere has warmed. Atmospheric aerosols produce a smaller, cooling effect. Other drivers, such as changes in albedo , are less impactful. Greenhouse gases are transparent to sunlight , and thus allow it to pass through the atmosphere to heat the Earth's surface. The Earth radiates it as heat , and greenhouse gases absorb a portion of it. This absorption slows

7526-453: The form of snow , since large water bodies such as lakes efficiently store heat that results in significant temperature differences—larger than 13 °C (23 °F)—between the water surface and the air above. Because of this temperature difference, warmth and moisture are transported upward, condensing into vertically oriented clouds which produce snow showers. The temperature decrease with height and cloud depth are directly affected by both

7632-592: The global climate system has grown with only brief pauses since at least 1970, and over 90% of this extra energy has been stored in the ocean . The rest has heated the atmosphere , melted ice, and warmed the continents. The Northern Hemisphere and the North Pole have warmed much faster than the South Pole and Southern Hemisphere . The Northern Hemisphere not only has much more land, but also more seasonal snow cover and sea ice . As these surfaces flip from reflecting

7738-571: The greatest rates of warming in the tropical Indian Ocean, western Pacific Ocean, and western boundary currents of the subtropical gyres . However, the eastern Pacific Ocean, subtropical North Atlantic Ocean, and Southern Ocean have warmed more slowly than the global average or have experienced cooling since the 1950s. Ocean currents , such as the Atlantic Multidecadal Oscillation , can affect sea surface temperatures over several decades. The Atlantic Multidecadal Oscillation (AMO)

7844-497: The immediate sea surface, general temperature measurements are accompanied by a reference to the specific depth of measurement. This is because of significant differences encountered between measurements made at different depths, especially during the daytime when low wind speed and high sunshine conditions may lead to the formation of a warm layer at the ocean's surface and strong vertical temperature gradients (a diurnal thermocline ). Sea surface temperature measurements are confined to

7950-404: The last 130 years due to the way they were taken. In the nineteenth century, measurements were taken in a bucket off a ship. However, there was a slight variation in temperature because of the differences in buckets. Samples were collected in either a wood or an uninsulated canvas bucket, but the canvas bucket cooled quicker than the wood bucket. The sudden change in temperature between 1940 and 1941

8056-572: The last 14 million years. Concentrations of methane are far higher than they were over the last 800,000 years. Global human-caused greenhouse gas emissions in 2019 were equivalent to 59 billion tonnes of CO 2 . Of these emissions, 75% was CO 2 , 18% was methane , 4% was nitrous oxide, and 2% was fluorinated gases . CO 2 emissions primarily come from burning fossil fuels to provide energy for transport , manufacturing, heating , and electricity. Additional CO 2 emissions come from deforestation and industrial processes , which include

8162-436: The last two decades. CO 2 is only removed from the atmosphere for the long term when it is stored in the Earth's crust, which is a process that can take millions of years to complete. Around 30% of Earth's land area is largely unusable for humans ( glaciers , deserts , etc.), 26% is forests , 10% is shrubland and 34% is agricultural land . Deforestation is the main land use change contributor to global warming, as

8268-441: The last: internal climate variability processes can make any year 0.2 °C warmer or colder than the average. From 1998 to 2013, negative phases of two such processes, Pacific Decadal Oscillation (PDO) and Atlantic Multidecadal Oscillation (AMO) caused a short slower period of warming called the " global warming hiatus ". After the "hiatus", the opposite occurred, with years like 2023 exhibiting temperatures well above even

8374-608: The lower atmosphere. Carbon dioxide , the primary greenhouse gas driving global warming, has grown by about 50% and is at levels not seen for millions of years. Climate change has an increasingly large impact on the environment . Deserts are expanding , while heat waves and wildfires are becoming more common. Amplified warming in the Arctic has contributed to thawing permafrost , retreat of glaciers and sea ice decline . Higher temperatures are also causing more intense storms , droughts, and other weather extremes . Rapid environmental change in mountains , coral reefs , and

8480-432: The mid-levels of the troposphere , roughly at the 500 hPa level, is normally a requirement for development. However, when dry air is found at the same height, temperatures at 500 hPa need to be even colder as dry atmospheres require a greater lapse rate for instability than moist atmospheres. At heights near the tropopause , the 30-year average temperature (as measured in the period encompassing 1961 through 1990)

8586-413: The more popular term after NASA climate scientist James Hansen used it in his 1988 testimony in the U.S. Senate . Since the 2000s, climate change has increased usage. Various scientists, politicians and media may use the terms climate crisis or climate emergency to talk about climate change, and may use the term global heating instead of global warming . Over the last few million years

8692-440: The ocean , approximately the top 0.01 mm or less, which may not represent the bulk temperature of the upper meter of ocean due primarily to effects of solar surface heating during the daytime, reflected radiation, as well as sensible heat loss and surface evaporation. All these factors make it somewhat difficult to compare satellite data to measurements from buoys or shipboard methods, complicating ground truth efforts. Secondly,

8798-619: The rate at which heat escapes into space, trapping heat near the Earth's surface and warming it over time. While water vapour (≈50%) and clouds (≈25%) are the biggest contributors to the greenhouse effect, they primarily change as a function of temperature and are therefore mostly considered to be feedbacks that change climate sensitivity . On the other hand, concentrations of gases such as CO 2 (≈20%), tropospheric ozone , CFCs and nitrous oxide are added or removed independently from temperature, and are therefore considered to be external forcings that change global temperatures. Before

8904-522: The rate of Arctic shrinkage and underestimated the rate of precipitation increase. Sea level rise since 1990 was underestimated in older models, but more recent models agree well with observations. The 2017 United States-published National Climate Assessment notes that "climate models may still be underestimating or missing relevant feedback processes". Additionally, climate models may be unable to adequately predict short-term regional climatic shifts. A subset of climate models add societal factors to

9010-613: The rate of yield growth . Fisheries have been negatively affected in multiple regions. While agricultural productivity has been positively affected in some high latitude areas, mid- and low-latitude areas have been negatively affected. According to the World Economic Forum, an increase in drought in certain regions could cause 3.2 million deaths from malnutrition by 2050 and stunting in children. With 2 °C warming, global livestock headcounts could decline by 7–10% by 2050, as less animal feed will be available. If

9116-405: The recent average. This is why the temperature change is defined in terms of a 20-year average, which reduces the noise of hot and cold years and decadal climate patterns, and detects the long-term signal. A wide range of other observations reinforce the evidence of warming. The upper atmosphere is cooling, because greenhouse gases are trapping heat near the Earth's surface, and so less heat

9222-411: The release of chemical compounds that influence clouds, and by changing wind patterns. In tropic and temperate areas the net effect is to produce significant warming, and forest restoration can make local temperatures cooler. At latitudes closer to the poles, there is a cooling effect as forest is replaced by snow-covered (and more reflective) plains. Globally, these increases in surface albedo have been

9328-476: The remaining 23%. Some forests have not been fully cleared, but were already degraded by these impacts. Restoring these forests also recovers their potential as a carbon sink. Local vegetation cover impacts how much of the sunlight gets reflected back into space ( albedo ), and how much heat is lost by evaporation . For instance, the change from a dark forest to grassland makes the surface lighter, causing it to reflect more sunlight. Deforestation can also modify

9434-420: The satellite cannot look through clouds, creating a cool bias in satellite-derived SSTs within cloudy areas. However, passive microwave techniques can accurately measure SST and penetrate cloud cover. Within atmospheric sounder channels on weather satellites , which peak just above the ocean's surface, knowledge of the sea surface temperature is important to their calibration. Sea surface temperature affects

9540-583: The sea levels by at least 3.3 m (10 ft 10 in) over approximately 2000 years. Recent warming has driven many terrestrial and freshwater species poleward and towards higher altitudes . For instance, the range of hundreds of North American birds has shifted northward at an average rate of 1.5 km/year over the past 55 years. Higher atmospheric CO 2 levels and an extended growing season have resulted in global greening. However, heatwaves and drought have reduced ecosystem productivity in some regions. The future balance of these opposing effects

9646-608: The southern limit of the saline subtropical waters on the western sides of basins. There are no water mass boundaries or fronts in correlation with the sea surface temperature at the subtropical frontal zone at the surface or beneath. The structure of a subtropical frontal zone results in the formation of a positive wind stress curl, which is the shear stress exerted by wind on the surface of water. The areas of most positive wind stress curl are characterized by very weak sea surface temperature incline, and are likely consistent to regions of mode water . The Northern subtropical front

9752-511: The subpolar North Atlantic, the equatorial Pacific, and the Southern Ocean. The future global mean SST increase for the period 1995-2014 to 2081-2100 is 0.86°C under the most modest greenhouse gas emissions scenarios, and up to 2.89°C under the most severe emissions scenarios. There are a variety of techniques for measuring this parameter that can potentially yield different results because different things are actually being measured. Away from

9858-424: The surface layer denser and it mixes to great depth and then stratifies again in summer. This is why there is no simple single depth for ocean surface . The photic depth of the ocean is typically about 100 m and is related to this heated surface layer. It can be up to around 200 m deep in the open ocean . The sea surface temperature (SST) has a diurnal range , just like the Earth's atmosphere above, though to

9964-681: The surface temperature signature due to tropical cyclones . In general, an SST cooling is observed after the passing of a hurricane, primarily as the result of mixed layer deepening and surface heat losses. In the wake of several day long Saharan dust outbreaks across the adjacent northern Atlantic Ocean, sea surface temperatures are reduced 0.2 C to 0.4 C (0.3 to 0.7 F). Other sources of short-term SST fluctuation include extratropical cyclones , rapid influxes of glacial fresh water and concentrated phytoplankton blooms due to seasonal cycles or agricultural run-off. The tropical ocean has been warming faster than other regions since 1950, with

10070-579: The top portion of the ocean, known as the near-surface layer. The sea surface temperature was one of the first oceanographic variables to be measured. Benjamin Franklin suspended a mercury thermometer from a ship while travelling between the United States and Europe in his survey of the Gulf Stream in the late eighteenth century. SST was later measured by dipping a thermometer into a bucket of water that

10176-498: The warm waters near the surface offshore, and replace them with cooler water from below in the process known as Ekman transport . This pattern generally increases nutrients for marine life in the region, and can have a profound effect in some regions where the bottom waters are particularly nutrient-rich. Offshore of river deltas , freshwater flows over the top of the denser seawater, which allows it to heat faster due to limited vertical mixing. Remotely sensed SST can be used to detect

10282-416: The water temperature and the large-scale environment. The stronger the temperature decrease with height, the taller the clouds get, and the greater the precipitation rate becomes. Ocean temperature of at least 26.5 °C (79.7 °F ) spanning through at minimum a 50- metre depth is one of the precursors needed to maintain a tropical cyclone (a type of mesocyclone ). These warm waters are needed to maintain

10388-405: The water temperature is 26.5 °C (79.7 °F), and this temperature requirement increases or decreases proportionally by 1 °C in the sea surface temperature for each 1 °C change at 500 hpa. Inside a cold cyclone , 500 hPa temperatures can fall as low as −30 °C (−22 °F), which can initiate convection even in the driest atmospheres. This also explains why moisture in

10494-420: The western Pacific Ocean. El Niño is defined by prolonged differences in Pacific Ocean surface temperatures when compared with the average value. The accepted definition is a warming or cooling of at least 0.5 °C (0.9 °F) averaged over the east-central tropical Pacific Ocean. Typically, this anomaly happens at irregular intervals of 2–7 years and lasts nine months to two years. The average period length

10600-707: The western Pacific and rainfall in the normally dry eastern Pacific. El Niño's warm rush of nutrient-poor tropical water, heated by its eastward passage in the Equatorial Current, replaces the cold, nutrient-rich surface water of the Humboldt Current . When El Niño conditions last for many months, extensive ocean warming and the reduction in Easterly Trade winds limits upwelling of cold nutrient-rich deep water and its economic impact to local fishing for an international market can be serious. Among scientists, there

10706-452: The winter and spring, and weakening when moving northward during the summer. The North Pacific subtropical fronts are occupied by wind driven submesoscale subduction. Due to the constant thermohaline circulation fronts, cold air flows near the surface and bottom of the ocean. There are alternating fluxes throughout the year, that is influenced by jet streams which causes temperatures in these areas to differ. The Southern subtropical front

10812-438: The world. Impacts can be observed on all continents and ocean regions, with low-latitude, less developed areas facing the greatest risk. Continued warming has potentially "severe, pervasive and irreversible impacts" for people and ecosystems. The risks are unevenly distributed, but are generally greater for disadvantaged people in developing and developed countries. The World Health Organization calls climate change one of

10918-459: Was manually drawn from the sea surface. The first automated technique for determining SST was accomplished by measuring the temperature of water in the intake port of large ships, which was underway by 1963. These observations have a warm bias of around 0.6 °C (1 °F) due to the heat of the engine room. Fixed weather buoys measure the water temperature at a depth of 3 metres (9.8 ft). Measurements of SST have had inconsistencies over

11024-524: Was sending more energy to Earth, but instead, it has been cooling. This is consistent with greenhouse gases preventing heat from leaving the Earth's atmosphere. Explosive volcanic eruptions can release gases, dust and ash that partially block sunlight and reduce temperatures, or they can send water vapour into the atmosphere, which adds to greenhouse gases and increases temperatures. These impacts on temperature only last for several years, because both water vapour and volcanic material have low persistence in

11130-475: Was the result of an undocumented change in procedure. The samples were taken near the engine intake because it was too dangerous to use lights to take measurements over the side of the ship at night. Many different drifting buoys exist around the world that vary in design, and the location of reliable temperature sensors varies. These measurements are beamed to satellites for automated and immediate data distribution. A large network of coastal buoys in U.S. waters

11236-594: Was −77 °C (−132 °F). One example of a tropical cyclone maintaining itself over cooler waters was Epsilon late in the 2005 Atlantic hurricane season . [REDACTED]  This article incorporates public domain material from websites or documents of the National Oceanic and Atmospheric Administration . Climate change Present-day climate change includes both global warming —the ongoing increase in global average temperature —and its wider effects on Earth's climate . Climate change in

#578421