Structural engineering is a sub-discipline of civil engineering in which structural engineers are trained to design the 'bones and joints' that create the form and shape of human-made structures . Structural engineers also must understand and calculate the stability , strength, rigidity and earthquake-susceptibility of built structures for buildings and nonbuilding structures . The structural designs are integrated with those of other designers such as architects and building services engineer and often supervise the construction of projects by contractors on site. They can also be involved in the design of machinery, medical equipment, and vehicles where structural integrity affects functioning and safety. See glossary of structural engineering .
162-483: Structural engineering theory is based upon applied physical laws and empirical knowledge of the structural performance of different materials and geometries. Structural engineering design uses a number of relatively simple structural concepts to build complex structural systems . Structural engineers are responsible for making creative and efficient use of funds, structural elements and materials to achieve these goals. Structural engineering dates back to 2700 B.C. when
324-494: A 2 c 0 {\displaystyle B={\frac {9kT}{MG^{2}b^{4}\ln {\frac {r2}{r1}}}}\cdot {\frac {D_{\rm {sol}}}{\varepsilon _{\rm {a}}^{2}c_{0}}}} where k is the Boltzmann constant, and r 1 and r 2 are the internal and external cut-off radii of dislocation stress field. c 0 and D sol are the atomic concentration of the solute and solute diffusivity respectively. D sol also has
486-499: A Platonist by Stephen Hawking , a view Penrose discusses in his book, The Road to Reality . Hawking referred to himself as an "unashamed reductionist" and took issue with Penrose's views. Mathematics provides a compact and exact language used to describe the order in nature. This was noted and advocated by Pythagoras , Plato , Galileo, and Newton. Some theorists, like Hilary Putnam and Penelope Maddy , hold that logical truths, and therefore mathematical reasoning, depend on
648-443: A chartered engineer ). Civil engineering structures are often subjected to very extreme forces, such as large variations in temperature, dynamic loads such as waves or traffic, or high pressures from water or compressed gases. They are also often constructed in corrosive environments, such as at sea, in industrial facilities, or below ground. The forces which parts of a machine are subjected to can vary significantly and can do so at
810-488: A frame of reference that is in motion with respect to an observer; the special theory of relativity is concerned with motion in the absence of gravitational fields and the general theory of relativity with motion and its connection with gravitation . Both quantum theory and the theory of relativity find applications in many areas of modern physics. While physics itself aims to discover universal laws, its theories lie in explicit domains of applicability. Loosely speaking,
972-770: A polymeric material is subjected to an abrupt force, the response can be modeled using the Kelvin–Voigt model . In this model, the material is represented by a Hookean spring and a Newtonian dashpot in parallel. The creep strain is given by the following convolution integral: ε ( t ) = σ C 0 + σ C ∫ 0 ∞ f ( τ ) ( 1 − e − t / τ ) d τ {\displaystyle \varepsilon (t)=\sigma C_{0}+\sigma C\int _{0}^{\infty }f(\tau )\left(1-e^{-t/\tau }\right)\,\mathrm {d} \tau } where σ
1134-452: A basic awareness of the motions of the Sun, Moon, and stars. The stars and planets, believed to represent gods, were often worshipped. While the explanations for the observed positions of the stars were often unscientific and lacking in evidence, these early observations laid the foundation for later astronomy, as the stars were found to traverse great circles across the sky, which could not explain
1296-741: A beam (divided along its length) to go into compression and the other part into tension. The compression part must be designed to resist buckling and crushing, while the tension part must be able to adequately resist the tension. A truss is a structure comprising members and connection points or nodes. When members are connected at nodes and forces are applied at nodes members can act in tension or compression. Members acting in compression are referred to as compression members or struts while members acting in tension are referred to as tension members or ties . Most trusses use gusset plates to connect intersecting elements. Gusset plates are relatively flexible and unable to transfer bending moments . The connection
1458-504: A catenary in two directions. Structural engineering depends on the knowledge of materials and their properties, in order to understand how different materials support and resist loads. It also involves a knowledge of Corrosion engineering to avoid for example galvanic coupling of dissimilar materials. Common structural materials are: Physics Physics is the scientific study of matter , its fundamental constituents , its motion and behavior through space and time , and
1620-430: A constant stress that is maintained for a sufficiently long time period. The material responds to the stress with a strain that increases until the material ultimately fails. When the stress is maintained for a shorter time period, the material undergoes an initial strain until a time t 1 at which the stress is relieved, at which time the strain immediately decreases (discontinuity) then continues decreasing gradually to
1782-409: A dependence on both the attempted jump frequency and the number of nearest neighbor sites and the probability of the sites being vacant. Thus there is a double dependence upon temperature. At higher temperatures the diffusivity increases due to the direct temperature dependence of the equation, the increase in vacancies through Schottky defect formation, and an increase in the average energy of atoms in
SECTION 10
#17328580812971944-470: A distance, r , from a dislocation is given by the Cottrell atmosphere defined as C r = C 0 exp ( − β sin θ r K T ) {\displaystyle C_{r}=C_{0}\exp \left(-{\frac {\beta \sin \theta }{rKT}}\right)} where C 0 is the concentration at r = ∞ and β
2106-699: A four or five-year undergraduate degree, followed by a minimum of three years of professional practice before being considered fully qualified. Structural engineers are licensed or accredited by different learned societies and regulatory bodies around the world (for example, the Institution of Structural Engineers in the UK). Depending on the degree course they have studied and/or the jurisdiction they are seeking licensure in, they may be accredited (or licensed) as just structural engineers, or as civil engineers, or as both civil and structural engineers. Another international organisation
2268-423: A function of homologous temperature , shear modulus-normalized stress, and strain rate. Generally, two of these three properties (most commonly temperature and stress) are the axes of the map, while the third is drawn as contours on the map. To populate the map, constitutive equations are found for each deformation mechanism. These are used to solve for the boundaries between each deformation mechanism, as well as
2430-634: A great rate. The forces which a boat or aircraft are subjected to vary enormously and will do so thousands of times over the structure's lifetime. The structural design must ensure that such structures can endure such loading for their entire design life without failing. These works can require mechanical structural engineering: Aerospace structure types include launch vehicles, ( Atlas , Delta , Titan), missiles (ALCM, Harpoon), Hypersonic vehicles (Space Shuttle), military aircraft (F-16, F-18) and commercial aircraft ( Boeing 777, MD-11). Aerospace structures typically consist of thin plates with stiffeners for
2592-420: A hard-to-find physical meaning. The final mathematical solution has an easier-to-find meaning, because it is what the solver is looking for. Physics is a branch of fundamental science (also called basic science). Physics is also called " the fundamental science" because all branches of natural science including chemistry, astronomy, geology, and biology are constrained by laws of physics. Similarly, chemistry
2754-428: A material is by plotting the creep modulus (constant applied stress divided by total strain at a particular time) as a function of time. Below its critical stress, the viscoelastic creep modulus is independent of the stress applied. A family of curves describing strain versus time response to various applied stress may be represented by a single viscoelastic creep modulus versus time curve if the applied stresses are below
2916-519: A material is stressed at a temperature near its melting point. While tungsten requires a temperature in the thousands of degrees before the onset of creep deformation, lead may creep at room temperature, and ice will creep at temperatures below 0 °C (32 °F). Plastics and low-melting-temperature metals, including many solders, can begin to creep at room temperature. Glacier flow is an example of creep processes in ice. The effects of creep deformation generally become noticeable at approximately 35% of
3078-482: A material, neighboring lattice sites or interstitial sites in the crystal structure must be free. A given atom must also overcome the energy barrier to move from its current site (it lies in an energetically favorable potential well ) to the nearby vacant site (another potential well). The general form of the diffusion equation is D = D 0 e E K T {\displaystyle D=D_{0}e^{\frac {E}{KT}}} where D 0 has
3240-409: A material. The application of tensile stress opposes the reduction in energy gained by void shrinkage. Thus, a certain magnitude of applied tensile stress is required to offset these shrinkage effects and cause void growth and creep fracture in materials at high temperature. This stress occurs at the sintering limit of the system. The stress tending to shrink voids that must be overcome is related to
3402-421: A more defined and formalized profession with the emergence of architecture as a distinct profession from engineering during the industrial revolution in the late 19th century. Until then, the architect and the structural engineer were usually one and the same thing – the master builder. Only with the development of specialized knowledge of structural theories that emerged during the 19th and early 20th centuries, did
SECTION 20
#17328580812973564-416: A partial collapse of the three-story schoolhouse that sent neighbors fleeing. The final collapse killed 94 people, mostly children. In other cases structural failures require careful study, and the results of these inquiries have resulted in improved practices and a greater understanding of the science of structural engineering. Some such studies are the result of forensic engineering investigations where
3726-427: A patient's medical state. Monitors may measure patient vital signs and other parameters including ECG , EEG , blood pressure, and dissolved gases in the blood; diagnostic medical equipment may also be used in the home for certain purposes, e.g. for the control of diabetes mellitus. A biomedical equipment technician (BMET) is a vital component of the healthcare delivery system. Employed primarily by hospitals, BMETs are
3888-408: A plastic deformation process and thus sintering can be described as a high temperature creep process. The applied compressive stress during pressing accelerates void shrinkage rates and allows a relation between the steady-state creep power law and densification rate of the material. This phenomenon is observed to be one of the main densification mechanisms in the final stages of sintering, during which
4050-400: A residual strain. Viscoelastic creep data can be presented in one of two ways. Total strain can be plotted as a function of time for a given temperature or temperatures. Below a critical value of applied stress, a material may exhibit linear viscoelasticity. Above this critical stress, the creep rate grows disproportionately faster. The second way of graphically presenting viscoelastic creep in
4212-465: A specific practical application as a goal, other than the deeper insight into the phenomema themselves. Applied physics is a general term for physics research and development that is intended for a particular use. An applied physics curriculum usually contains a few classes in an applied discipline, like geology or electrical engineering. It usually differs from engineering in that an applied physicist may not be designing something in particular, but rather
4374-426: A speed much less than the speed of light. These theories continue to be areas of active research today. Chaos theory , an aspect of classical mechanics, was discovered in the 20th century, three centuries after the original formulation of classical mechanics by Newton (1642–1727). These central theories are important tools for research into more specialized topics, and any physicist, regardless of their specialization,
4536-476: A structure to move freely with the ground. Civil structural engineering includes all structural engineering related to the built environment. It includes: The structural engineer is the lead designer on these structures, and often the sole designer. In the design of structures such as these, structural safety is of paramount importance (in the UK, designs for dams, nuclear power stations and bridges must be signed off by
4698-399: A subfield of mechanics , is used in the building of bridges and other static structures. The understanding and use of acoustics results in sound control and better concert halls; similarly, the use of optics creates better optical devices. An understanding of physics makes for more realistic flight simulators , video games, and movies, and is often critical in forensic investigations. With
4860-461: A substantial treatise on " Physics " – in the 4th century BC. Aristotelian physics was influential for about two millennia. His approach mixed some limited observation with logical deductive arguments, but did not rely on experimental verification of deduced statements. Aristotle's foundational work in Physics, though very imperfect, formed a framework against which later thinkers further developed
5022-434: A temperature dependence that makes a determining contribution to Q g . If the cloud of solutes does not form or the dislocations are able to break away from their clouds, glide occurs in a jerky manner where fixed obstacles, formed by dislocations in combination with solutes, are overcome after a certain waiting time with support by thermal activation. The exponent m is greater than 1 in this case. The equations show that
Structural engineering - Misplaced Pages Continue
5184-498: A thinning of solute drag atoms as dislocations move. In the secondary, or steady-state, creep, dislocation structure and grain size have reached equilibrium, and therefore strain rate is constant. Equations that yield a strain rate refer to the steady-state strain rate. Stress dependence of this rate depends on the creep mechanism. In tertiary creep, the strain rate exponentially increases with stress. This can be due to necking phenomena, internal cracks, or voids, which all decrease
5346-435: A time-logarithmic creep. Wood is considered as an orthotropic material , exhibiting different mechanical properties in three mutually perpendicular directions. Experiments show that the tangential direction in solid wood tend display a slightly higher creep compliance than in the radial direction. In the longitudinal direction, the creep compliance is relatively low and usually do not show any time-dependency in comparison to
5508-460: Is IABSE(International Association for Bridge and Structural Engineering). The aim of that association is to exchange knowledge and to advance the practice of structural engineering worldwide in the service of the profession and society. Structural building engineering is primarily driven by the creative manipulation of materials and forms and the underlying mathematical and scientific ideas to achieve an end that fulfills its functional requirements and
5670-409: Is a complex non-linear relationship. A beam may be defined as an element in which one dimension is much greater than the other two and the applied loads are usually normal to the main axis of the element. Beams and columns are called line elements and are often represented by simple lines in structural modeling. Beams are elements that carry pure bending only. Bending causes one part of the section of
5832-402: Is a constant which defines the extent of segregation of the solute. When surrounded by a solute atmosphere, dislocations that attempt to glide under an applied stress are subjected to a back stress exerted on them by the cloud of solute atoms. If the applied stress is sufficiently high, the dislocation may eventually break away from the atmosphere, allowing the dislocation to continue gliding under
5994-400: Is a function of the material's properties, exposure time, exposure temperature and the applied structural load . Depending on the magnitude of the applied stress and its duration, the deformation may become so large that a component can no longer perform its function – for example creep of a turbine blade could cause the blade to contact the casing, resulting in the failure of the blade. Creep
6156-416: Is achieved with stress exponent n = 1, and only when the internal dislocation density prior to testing is exceptionally low. By contrast, Harper–Dorn creep was not observed in polycrystalline Al and single crystal Al when the initial dislocation density was high. However, various conflicting reports demonstrate the uncertainties at very low stress levels. One report by Blum and Maier, claimed that
6318-470: Is activated at higher temperatures, the solute atoms which are "bound" to the dislocations by the misfit can move along with edge dislocations as a "drag" on their motion if the dislocation motion or the creep rate is not too high. The amount of "drag" exerted by the solute atoms on the dislocation is related to the diffusivity of the solute atoms in the metal at that temperature, with a higher diffusivity leading to lower drag and vice versa. The velocity at which
6480-430: Is altered by applied stress: it increases in regions under tension and decreases in regions under compression. So the activation energy for vacancy formation is changed by ± σΩ , where Ω is the atomic volume, the positive value is for compressive regions and negative value is for tensile regions. Since the fractional vacancy concentration is proportional to exp(− Q f ± σΩ / RT ) , where Q f
6642-508: Is an additional condition for strong hardening. Solute drag creep sometimes shows a special phenomenon, over a limited strain rate, which is called the Portevin–Le Chatelier effect . When the applied stress becomes sufficiently large, the dislocations will break away from the solute atoms since dislocation velocity increases with the stress. After breakaway, the stress decreases and the dislocation velocity also decreases, which allows
Structural engineering - Misplaced Pages Continue
6804-403: Is applied stress, C 0 is instantaneous creep compliance, C is creep compliance coefficient, τ is retardation time, and f ( τ ) is the distribution of retardation times. When subjected to a step constant stress, viscoelastic materials experience a time-dependent increase in strain. This phenomenon is known as viscoelastic creep. At a time t 0 , a viscoelastic material is loaded with
6966-413: Is clear-cut, but not always obvious. For example, mathematical physics is the application of mathematics in physics. Its methods are mathematical, but its subject is physical. The problems in this field start with a " mathematical model of a physical situation " (system) and a "mathematical description of a physical law" that will be applied to that system. Every mathematical statement used for solving has
7128-419: Is concerned with bodies acted on by forces and bodies in motion and may be divided into statics (study of the forces on a body or bodies not subject to an acceleration), kinematics (study of motion without regard to its causes), and dynamics (study of motion and the forces that affect it); mechanics may also be divided into solid mechanics and fluid mechanics (known together as continuum mechanics ),
7290-400: Is concerned with the most basic units of matter; this branch of physics is also known as high-energy physics because of the extremely high energies necessary to produce many types of particles in particle accelerators . On this scale, ordinary, commonsensical notions of space, time, matter, and energy are no longer valid. The two chief theories of modern physics present a different picture of
7452-408: Is controlled by dislocation movement; namely, since creep can occur by vacancy diffusion (Nabarro–Herring creep, Coble creep), grain boundary sliding, and/or dislocation movement, and since the first two mechanisms are grain-size dependent, Harper–Dorn creep must therefore be dislocation-motion dependent. The same was also confirmed in 1972 by Barrett and co-workers where FeAl 3 precipitates lowered
7614-402: Is controlled by the movement of dislocations . For dislocation creep, Q = Q (self diffusion), 4 ≤ m ≤ 6, and b < 1. Therefore, dislocation creep has a strong dependence on the applied stress and the intrinsic activation energy and a weaker dependence on grain size. As grain size gets smaller, grain boundary area gets larger, so dislocation motion
7776-583: Is dislocation density (constant for Harper–Dorn creep), D v is the diffusivity through the volume of the material, G is the shear modulus and b is the Burgers vector, σ s , and n is the stress exponent which varies between 1 and 3. Twenty-five years after Harper and Dorn published their work, Mohamed and Ginter made an important contribution in 1982 by evaluating the potential for achieving Harper–Dorn creep in samples of Al using different processing procedures. The experiments showed that Harper–Dorn creep
7938-413: Is essentially nonexistent and all strain is elastic. At low temperatures and high stress, materials experience plastic deformation rather than creep. At high temperatures and low stress, diffusional creep tends to be dominant, while at high temperatures and high stress, dislocation creep tends to be dominant. Deformation mechanism maps provide a visual tool categorizing the dominant deformation mechanism as
8100-425: Is expected to be literate in them. These include classical mechanics, quantum mechanics, thermodynamics and statistical mechanics , electromagnetism , and special relativity. Classical physics includes the traditional branches and topics that were recognized and well-developed before the beginning of the 20th century—classical mechanics, acoustics , optics , thermodynamics, and electromagnetism. Classical mechanics
8262-429: Is generally concerned with matter and energy on the normal scale of observation, while much of modern physics is concerned with the behavior of matter and energy under extreme conditions or on a very large or very small scale. For example, atomic and nuclear physics study matter on the smallest scale at which chemical elements can be identified. The physics of elementary particles is on an even smaller scale since it
SECTION 50
#17328580812978424-765: Is impeded. Some alloys exhibit a very large stress exponent ( m > 10), and this has typically been explained by introducing a "threshold stress," σ th , below which creep can't be measured. The modified power law equation then becomes: d ε d t = A ( σ − σ t h ) m e − Q R ¯ T {\displaystyle {\frac {\mathrm {d} \varepsilon }{\mathrm {d} t}}=A\left(\sigma -\sigma _{\rm {th}}\right)^{m}e^{\frac {-Q}{{\bar {R}}T}}} where A , Q and m can all be explained by conventional mechanisms (so 3 ≤ m ≤ 10), and R
8586-417: Is needed to ensure that the assumed collapse mechanism is realistic. Shells derive their strength from their form and carry forces in compression in two directions. A dome is an example of a shell. They can be designed by making a hanging-chain model, which will act as a catenary in pure tension and inverting the form to achieve pure compression. Arches carry forces in compression in one direction only, which
8748-405: Is observed in certain metallic alloys . In these alloys, the creep rate increases during the first stage of creep (Transient creep) before reaching a steady-state value. This phenomenon can be explained by a model associated with solid–solution strengthening. At low temperatures, the solute atoms are immobile and increase the flow stress required to move dislocations. However, at higher temperatures,
8910-593: Is often called the central science because of its role in linking the physical sciences. For example, chemistry studies properties, structures, and reactions of matter (chemistry's focus on the molecular and atomic scale distinguishes it from physics ). Structures are formed because particles exert electrical forces on each other, properties include physical characteristics of given substances, and reactions are bound by laws of physics, like conservation of energy , mass , and charge . Fundamental physics seeks to better explain and understand phenomena in all spheres, without
9072-500: Is possible only in discrete steps proportional to their frequency. This, along with the photoelectric effect and a complete theory predicting discrete energy levels of electron orbitals , led to the theory of quantum mechanics improving on classical physics at very small scales. Quantum mechanics would come to be pioneered by Werner Heisenberg , Erwin Schrödinger and Paul Dirac . From this early work, and work in related fields,
9234-430: Is related to the diffusion coefficient of atoms along the grain boundary, Q = Q (grain boundary diffusion), m = 1, and b = 3. Because Q (grain boundary diffusion) is less than Q (self diffusion), Coble creep occurs at lower temperatures than Nabarro–Herring creep. Coble creep is still temperature dependent, as the temperature increases so does the grain boundary diffusion. However, since
9396-413: Is related to the diffusion coefficient of atoms through the lattice, Q = Q (self diffusion), m = 1, and b = 2. Therefore, Nabarro–Herring creep has a weak stress dependence and a moderate grain size dependence, with the creep rate decreasing as the grain size is increased. Nabarro–Herring creep is strongly temperature dependent. For lattice diffusion of atoms to occur in
9558-471: Is resistant to elevated temperatures and has other desirable properties, but is notoriously vulnerable to cold-flow cut-through failures caused by creep. In steam turbine power plants, pipes carry steam at high temperatures (566 °C, 1,051 °F) and pressures (above 24.1 MPa, 3,500 psi). In jet engines, temperatures can reach up to 1,400 °C (2,550 °F) and initiate creep deformation in even advanced-design coated turbine blades. Hence, it
9720-738: Is structurally safe when subjected to all the loads it could reasonably be expected to experience. This is subtly different from architectural design, which is driven by the creative manipulation of materials and forms, mass, space, volume, texture, and light to achieve an end which is aesthetic, functional, and often artistic. The structural design for a building must ensure that the building can stand up safely, able to function without excessive deflections or movements which may cause fatigue of structural elements, cracking or failure of fixtures, fittings or partitions, or discomfort for occupants. It must account for movements and forces due to temperature, creep , cracking, and imposed loads. It must also ensure that
9882-416: Is technically called a beam-column but practically, just a column). The design of a column must check the axial capacity of the element and the buckling capacity. The buckling capacity is the capacity of the element to withstand the propensity to buckle. Its capacity depends upon its geometry, material, and the effective length of the column, which depends upon the restraint conditions at the top and bottom of
SECTION 60
#173285808129710044-411: Is the gas constant . The creep increases with increasing applied stress, since the applied stress tends to drive the dislocation past the barrier, and make the dislocation get into a lower energy state after bypassing the obstacle, which means that the dislocation is inclined to pass the obstacle. In other words, part of the work required to overcome the energy barrier of passing an obstacle is provided by
10206-484: Is the apparent activation energy for glide and B 0 is a constant. The parameter B in the above equation was derived by Cottrell and Jaswon for interaction between solute atoms and dislocations on the basis of the relative atomic size misfit ε a of solutes to be B = 9 k T M G 2 b 4 ln r 2 r 1 ⋅ D s o l ε
10368-465: Is the creep strain, C is a constant dependent on the material and the particular creep mechanism, m and b are exponents dependent on the creep mechanism, Q is the activation energy of the creep mechanism, σ is the applied stress, d is the grain size of the material, k is the Boltzmann constant , and T is the absolute temperature . At high stresses (relative to the shear modulus ), creep
10530-422: Is the densification rate, ρ is the density, P e is the pressure applied, n describes the exponent of strain rate behavior, and A is a mechanism-dependent constant. A and n are from the following form of the general steady-state creep equation, ε ˙ = A σ n {\displaystyle {\dot {\varepsilon }}=A\sigma ^{n}} where ε̇
10692-758: Is the strain rate, and σ is the tensile stress. For the purposes of this mechanism, the constant A comes from the following expression, where A ′ is a dimensionless, experimental constant, μ is the shear modulus, b is the Burgers vector, k is the Boltzmann constant, T is absolute temperature, D 0 is the diffusion coefficient, and Q is the diffusion activation energy: A = A ′ D 0 μ b k T exp ( − Q k T ) {\displaystyle A=A'{\frac {D_{0}\mu b}{kT}}\exp \left(-{\frac {Q}{kT}}\right)} Creep can occur in polymers and metals which are considered viscoelastic materials. When
10854-409: Is the tendency of a solid material to undergo slow deformation while subject to persistent mechanical stresses . It can occur as a result of long-term exposure to high levels of stress that are still below the yield strength of the material. Creep is more severe in materials that are subjected to heat for long periods and generally increases as they near their melting point. The rate of deformation
11016-450: Is the vacancy-formation energy, the vacancy concentration is higher in tensile regions than in compressive regions, leading to a net flow of vacancies from the regions under tension to the regions under compression, and this is equivalent to a net atom diffusion in the opposite direction, which causes the creep deformation: the grain elongates in the tensile stress axis and contracts in the compressive stress axis. In Nabarro–Herring creep, k
11178-431: Is using physics or conducting physics research with the aim of developing new technologies or solving a problem. The approach is similar to that of applied mathematics . Applied physicists use physics in scientific research. For instance, people working on accelerator physics might seek to build better particle detectors for research in theoretical physics. Physics is used heavily in engineering. For example, statics,
11340-418: Is usually arranged so that the lines of force in the members are coincident at the joint thus allowing the truss members to act in pure tension or compression. Trusses are usually used in large-span structures, where it would be uneconomical to use solid beams. Plates carry bending in two directions. A concrete flat slab is an example of a plate. Plates are understood by using continuum mechanics , but due to
11502-432: Is usually of concern to engineers and metallurgists when evaluating components that operate under high stresses or high temperatures. Creep is a deformation mechanism that may or may not constitute a failure mode . For example, moderate creep in concrete is sometimes welcomed because it relieves tensile stresses that might otherwise lead to cracking. Unlike brittle fracture , creep deformation does not occur suddenly upon
11664-473: Is why it is appropriate to build arches out of masonry. They are designed by ensuring that the line of thrust of the force remains within the depth of the arch. It is mainly used to increase the bountifulness of any structure. Catenaries derive their strength from their form and carry transverse forces in pure tension by deflecting (just as a tightrope will sag when someone walks on it). They are almost always cable or fabric structures. A fabric structure acts as
11826-527: The Industrial Revolution as energy needs increased. The laws comprising classical physics remain widely used for objects on everyday scales travelling at non-relativistic speeds, since they provide a close approximation in such situations, and theories such as quantum mechanics and the theory of relativity simplify to their classical equivalents at such scales. Inaccuracies in classical mechanics for very small objects and very high velocities led to
11988-1017: The Kelvin–Voigt model with a Hookean spring dashpot but with metals, the creep can be represented by plastic deformation mechanisms such as dislocation glide, climb and grain boundary sliding. Understanding the mechanisms behind creep in metals is becoming increasingly more important for reliability and material lifetime as the operating temperatures for applications involving metals rise. Unlike polymers, in which creep deformation can occur at very low temperatures, creep for metals typically occur at high temperatures. Key examples would be scenarios in which these metal components like intermetallic or refractory metals are subject to high temperatures and mechanical loads like turbine blades, engine components and other structural elements. Refractory metals , such as tungsten, molybdenum, and niobium, are known for their exceptional mechanical properties at high temperatures, proving to be useful materials in aerospace, defense and electronics industries. Although mostly due to
12150-636: The Latin physica ('study of nature'), which itself is a borrowing of the Greek φυσική ( phusikḗ 'natural science'), a term derived from φύσις ( phúsis 'origin, nature, property'). Astronomy is one of the oldest natural sciences . Early civilizations dating before 3000 BCE, such as the Sumerians , ancient Egyptians , and the Indus Valley Civilisation , had a predictive knowledge and
12312-590: The Northern Hemisphere . Natural philosophy has its origins in Greece during the Archaic period (650 BCE – 480 BCE), when pre-Socratic philosophers like Thales rejected non-naturalistic explanations for natural phenomena and proclaimed that every event had a natural cause. They proposed ideas verified by reason and observation, and many of their hypotheses proved successful in experiment; for example, atomism
12474-628: The Scientific Revolution in the 17th century, these natural sciences branched into separate research endeavors. Physics intersects with many interdisciplinary areas of research, such as biophysics and quantum chemistry , and the boundaries of physics are not rigidly defined. New ideas in physics often explain the fundamental mechanisms studied by other sciences and suggest new avenues of research in these and other academic disciplines such as mathematics and philosophy. Advances in physics often enable new technologies . For example, advances in
12636-601: The Standard Model of particle physics was derived. Following the discovery of a particle with properties consistent with the Higgs boson at CERN in 2012, all fundamental particles predicted by the standard model, and no others, appear to exist; however, physics beyond the Standard Model , with theories such as supersymmetry , is an active area of research. Areas of mathematics in general are important to this field, such as
12798-511: The calcium silicate hydrates (C-S-H) in the hardened Portland cement paste (which is the binder of mineral aggregates ), is fundamentally different from the creep of metals as well as polymers . Unlike the creep of metals, it occurs at all stress levels and, within the service stress range, is linearly dependent on the stress if the pore water content is constant. Unlike the creep of polymers and metals, it exhibits multi-months aging, caused by chemical hardening due to hydration which stiffens
12960-439: The camera obscura (his thousand-year-old version of the pinhole camera ) and delved further into the way the eye itself works. Using the knowledge of previous scholars, he began to explain how light enters the eye. He asserted that the light ray is focused, but the actual explanation of how light projected to the back of the eye had to wait until 1604. His Treatise on Light explained the camera obscura , hundreds of years before
13122-439: The crystallite grain boundaries is used to slow the rate of Coble creep . Creep can cause gradual cut-through of wire insulation, especially when stress is concentrated by pressing insulated wire against a sharp edge or corner. Special creep-resistant insulations such as Kynar ( polyvinylidene fluoride ) are used in wire wrap applications to resist cut-through due to the sharp corners of wire wrap terminals. Teflon insulation
13284-579: The empirical world. This is usually combined with the claim that the laws of logic express universal regularities found in the structural features of the world, which may explain the peculiar relation between these fields. Physics uses mathematics to organise and formulate experimental results. From those results, precise or estimated solutions are obtained, or quantitative results, from which new predictions can be made and experimentally confirmed or negated. The results from physics experiments are numerical data, with their units of measure and estimates of
13446-539: The standard consensus that the laws of physics are universal and do not change with time, physics can be used to study things that would ordinarily be mired in uncertainty . For example, in the study of the origin of the Earth, a physicist can reasonably model Earth's mass, temperature, and rate of rotation, as a function of time allowing the extrapolation forward or backward in time and so predict future or prior events. It also allows for simulations in engineering that speed up
13608-435: The 16th and 17th centuries, and Isaac Newton 's discovery and unification of the laws of motion and universal gravitation (that would come to bear his name). Newton also developed calculus , the mathematical study of continuous change, which provided new mathematical methods for solving physical problems. The discovery of laws in thermodynamics , chemistry , and electromagnetics resulted from research efforts during
13770-595: The Renaissance and have since developed into computer-based applications pioneered in the 1970s. The history of structural engineering contains many collapses and failures. Sometimes this is due to obvious negligence, as in the case of the Pétion-Ville school collapse , in which Rev. Fortin Augustin " constructed the building all by himself, saying he didn't need an engineer as he had good knowledge of construction" following
13932-425: The action of the applied stress. The maximum force (per unit length) that the atmosphere of solute atoms can exert on the dislocation is given by Cottrell and Jaswon F m a x L = C 0 β 2 b k T {\displaystyle {\frac {F_{\rm {max}}}{L}}={\frac {C_{0}\beta ^{2}}{bkT}}} When the diffusion of solute atoms
14094-434: The application of a compressive stress. For typical descriptions of creep, it is assumed that the applied tensile stress exceeds the sintering limit. Creep also explains one of several contributions to densification during metal powder sintering by hot pressing. A main aspect of densification is the shape change of the powder particles. Since this change involves permanent deformation of crystalline solids, it can be considered
14256-442: The application of stress. Instead, strain accumulates as a result of long-term stress. Therefore, creep is a "time-dependent" deformation. Creep or cold flow is of great concern in plastics. Blocking agents are chemicals used to prevent or inhibit cold flow. Otherwise rolled or stacked sheets stick together. The temperature range in which creep deformation occurs depends on the material. Creep deformation generally occurs when
14418-420: The applied stress and the remainder by thermal energy. Nabarro–Herring (NH) creep is a form of diffusion creep , while dislocation glide creep does not involve atomic diffusion. Nabarro–Herring creep dominates at high temperatures and low stresses. As shown in the figure on the right, the lateral sides of the crystal are subjected to tensile stress and the horizontal sides to compressive stress. The atomic volume
14580-792: The applied stress is not enough for a moving dislocation to overcome the obstacle on its way via dislocation glide alone, the dislocation could climb to a parallel slip plane by diffusional processes, and the dislocation can glide on the new plane. This process repeats itself each time when the dislocation encounters an obstacle. The creep rate could be written as: d ε d t = A C G D L M ( σ Ω k T ) 4.5 {\displaystyle {\frac {\mathrm {d} \varepsilon }{\mathrm {d} t}}={\frac {A_{\rm {CG}}D_{\rm {L}}}{\sqrt {M}}}\left({\frac {\sigma \Omega }{kT}}\right)^{4.5}} where A CG includes details of
14742-502: The attacks from invaders and continued to advance various fields of learning, including physics. In the sixth century, Isidore of Miletus created an important compilation of Archimedes ' works that are copied in the Archimedes Palimpsest . In sixth-century Europe John Philoponus , a Byzantine scholar, questioned Aristotle 's teaching of physics and noted its flaws. He introduced the theory of impetus . Aristotle's physics
14904-409: The column. The effective length is K ∗ l {\displaystyle K*l} where l {\displaystyle l} is the real length of the column and K is the factor dependent on the restraint conditions. The capacity of a column to carry axial load depends on the degree of bending it is subjected to, and vice versa. This is represented on an interaction chart and
15066-440: The complexity involved they are most often designed using a codified empirical approach, or computer analysis. They can also be designed with yield line theory, where an assumed collapse mechanism is analyzed to give an upper bound on the collapse load. This technique is used in practice but because the method provides an upper-bound (i.e. an unsafe prediction of the collapse load) for poorly conceived collapse mechanisms, great care
15228-434: The concepts of space, time, and matter from that presented by classical physics. Classical mechanics approximates nature as continuous, while quantum theory is concerned with the discrete nature of many phenomena at the atomic and subatomic level and with the complementary aspects of particles and waves in the description of such phenomena. The theory of relativity is concerned with the description of phenomena that take place in
15390-409: The constant speed predicted by Maxwell's equations of electromagnetism. This discrepancy was corrected by Einstein's theory of special relativity , which replaced classical mechanics for fast-moving bodies and allowed for a constant speed of light. Black-body radiation provided another problem for classical physics, which was corrected when Planck proposed that the excitation of material oscillators
15552-416: The creep curves obtained in the very high purity material exhibited regular and periodic accelerations. They also found that the creep behavior no longer follows a stress exponent of n = 1 when the tests are extended to very high strains of >0.1 but instead there is evidence for a stress exponent of n > 2. At high temperatures, it is energetically favorable for voids to shrink in
15714-755: The creep rates by 2 orders of magnitude compared to highly pure Al, thus, indicating Harper–Dorn creep to be a dislocation based mechanism. Harper–Dorn creep is typically overwhelmed by other creep mechanisms in most situations, and is therefore not observed in most systems. The phenomenological equation which describes Harper–Dorn creep is d ε d t = ρ 0 D v G b 3 k T ( σ s n G ) {\displaystyle {\frac {\mathrm {d} \varepsilon }{\mathrm {d} t}}=\rho _{0}{\frac {D_{\rm {v}}Gb^{3}}{kT}}\left({\frac {\sigma _{\rm {s}}^{n}}{G}}\right)} where ρ 0
15876-614: The creep resistance of a polymer. Both polymers and metals can creep. Polymers experience significant creep at temperatures above around −200 °C (−330 °F); however, there are three main differences between polymeric and metallic creep. In metals, creep is not linearly viscoelastic, it is not recoverable, and it is only present at high temperatures. Polymers show creep basically in two different ways. At typical work loads (5% up to 50%) ultra-high-molecular-weight polyethylene (Spectra, Dyneema ) will show time-linear creep, whereas polyester or aramids ( Twaron , Kevlar ) will show
16038-438: The cross-sectional area and increase the true stress on the region, further accelerating deformation and leading to fracture. Depending on the temperature and stress, different deformation mechanisms are activated. Though there are generally many deformation mechanisms active at all times, usually one mechanism is dominant, accounting for almost all deformation. Various mechanisms are: At low temperatures and low stress, creep
16200-615: The densification rate (assuming gas-free pores) can be explained by: ρ ˙ = 3 A 2 ρ ( 1 − ρ ) ( 1 − ( 1 − ρ ) 1 n ) n ( 3 2 P e n ) n {\displaystyle {\dot {\rho }}={\frac {3A}{2}}{\frac {\rho (1-\rho )}{\left(1-(1-\rho )^{\frac {1}{n}}\right)^{n}}}\left({\frac {3}{2}}{\frac {P_{\rm {e}}}{n}}\right)^{n}} in which ρ̇
16362-602: The design is practically buildable within acceptable manufacturing tolerances of the materials. It must allow the architecture to work, and the building services to fit within the building and function (air conditioning, ventilation, smoke extract, electrics, lighting, etc.). The structural design of a modern building can be extremely complex and often requires a large team to complete. Structural engineering specialties for buildings include: Earthquake engineering structures are those engineered to withstand earthquakes . The main objectives of earthquake engineering are to understand
16524-456: The design of structures, with the functionality to assist in the drawing, analyzing and designing of structures with maximum precision; examples include AutoCAD , StaadPro, ETABS , Prokon, Revit Structure, Inducta RCB, etc. Such software may also take into consideration environmental loads, such as earthquakes and winds. Structural engineers are responsible for engineering design and structural analysis. Entry-level structural engineers may design
16686-466: The development of a new technology. There is also considerable interdisciplinarity , so many other important fields are influenced by physics (e.g., the fields of econophysics and sociophysics ). Physicists use the scientific method to test the validity of a physical theory . By using a methodical approach to compare the implications of a theory with the conclusions drawn from its related experiments and observations, physicists are better able to test
16848-429: The development of modern physics in the 20th century. Modern physics began in the early 20th century with the work of Max Planck in quantum theory and Albert Einstein 's theory of relativity. Both of these theories came about due to inaccuracies in classical mechanics in certain situations. Classical mechanics predicted that the speed of light depends on the motion of the observer, which could not be resolved with
17010-407: The development of new experiments (and often related equipment). Physicists who work at the interplay of theory and experiment are called phenomenologists , who study complex phenomena observed in experiment and work to relate them to a fundamental theory . Theoretical physics has historically taken inspiration from philosophy; electromagnetism was unified this way. Beyond the known universe,
17172-561: The dislocation loop geometry, D L is the lattice diffusivity, M is the number of dislocation sources per unit volume, σ is the applied stress, and Ω is the atomic volume. The exponent m for dislocation climb-glide creep is 4.5 if M is independent of stress and this value of m is consistent with results from considerable experimental studies. Harper–Dorn creep is a climb-controlled dislocation mechanism at low stresses that has been observed in aluminum, lead, and tin systems, in addition to nonmetal systems such as ceramics and ice. It
17334-415: The dislocations glide can be approximated by a power law of the form v = B σ ∗ m B = B 0 exp ( − Q g R T ) {\displaystyle v=B{\sigma ^{*}}^{m}B=B_{0}\exp \left({\frac {-Q_{\rm {g}}}{RT}}\right)} where m is the effective stress exponent, Q
17496-682: The errors in the measurements. Technologies based on mathematics, like computation have made computational physics an active area of research. Ontology is a prerequisite for physics, but not for mathematics. It means physics is ultimately concerned with descriptions of the real world, while mathematics is concerned with abstract patterns, even beyond the real world. Thus physics statements are synthetic, while mathematical statements are analytic. Mathematics contains hypotheses, while physics contains theories. Mathematics statements have to be only logically true, while predictions of physics statements must match observed and experimental data. The distinction
17658-485: The experimental evidence for Harper–Dorn creep is not fully convincing. They argued that the necessary condition for Harper–Dorn creep is not fulfilled in Al with 99.99% purity and the steady-state stress exponent n of the creep rate is always much larger than 1. The subsequent work conducted by Ginter et al. confirmed that Harper–Dorn creep was attained in Al with 99.9995% purity but not in Al with 99.99% purity and, in addition,
17820-429: The external surfaces, bulkheads, and frames to support the shape and fasteners such as welds, rivets, screws, and bolts to hold the components together. A nanostructure is an object of intermediate size between molecular and microscopic (micrometer-sized) structures. In describing nanostructures it is necessary to differentiate between the number of dimensions on the nanoscale. Nanotextured surfaces have one dimension on
17982-914: The field of theoretical physics also deals with hypothetical issues, such as parallel universes , a multiverse , and higher dimensions . Theorists invoke these ideas in hopes of solving particular problems with existing theories; they then explore the consequences of these ideas and work toward making testable predictions. Experimental physics expands, and is expanded by, engineering and technology. Experimental physicists who are involved in basic research design and perform experiments with equipment such as particle accelerators and lasers , whereas those involved in applied research often work in industry, developing technologies such as magnetic resonance imaging (MRI) and transistors . Feynman has noted that experimentalists may seek areas that have not been explored well by theorists. Creep (deformation) In materials science , creep (sometimes called cold flow )
18144-415: The field. His approach is entirely superseded today. He explained ideas such as motion (and gravity ) with the theory of four elements . Aristotle believed that each of the four classical elements (air, fire, water, earth) had its own natural place. Because of their differing densities, each element will revert to its own specific place in the atmosphere. So, because of their weights, fire would be at
18306-440: The filament coil between its supports increases with time due to the weight of the filament itself. If too much deformation occurs, the adjacent turns of the coil touch one another, causing local overheating, which quickly leads to failure of the filament. The coil geometry and supports are therefore designed to limit the stresses caused by the weight of the filament, and a special tungsten alloy with small amounts of oxygen trapped in
18468-477: The grains. To heal this, grain-boundary sliding occurs. The diffusional creep rate and the grain boundary sliding rate must be balanced if there are no voids or cracks remaining. When grain-boundary sliding can not accommodate the incompatibility, grain-boundary voids are generated, which is related to the initiation of creep fracture. Solute drag creep is one of the mechanisms for power-law creep (PLC), involving both dislocation and diffusional flow. Solute drag creep
18630-487: The hardening effect of solutes is strong if the factor B in the power-law equation is low so that the dislocations move slowly and the diffusivity D sol is low. Also, solute atoms with both high concentration in the matrix and strong interaction with dislocations are strong gardeners. Since misfit strain of solute atoms is one of the ways they interact with dislocations, it follows that solute atoms with large atomic misfit are strong gardeners. A low diffusivity D sol
18792-670: The individual structural elements of a structure, such as the beams and columns of a building. More experienced engineers may be responsible for the structural design and integrity of an entire system, such as a building. Structural engineers often specialize in particular types of structures, such as buildings, bridges, pipelines, industrial, tunnels, vehicles, ships, aircraft, and spacecraft. Structural engineers who specialize in buildings may specialize in particular construction materials such as concrete, steel, wood, masonry, alloys and composites. Structural engineering has existed since humans first started to construct their structures. It became
18954-455: The interaction of structures with the shaking ground, foresee the consequences of possible earthquakes, and design and construct the structures to perform during an earthquake. Earthquake-proof structures are not necessarily extremely strong like the El Castillo pyramid at Chichen Itza shown above. One important tool of earthquake engineering is base isolation , which allows the base of
19116-412: The knowledge successfully a structural engineer generally requires detailed knowledge of relevant empirical and theoretical design codes , the techniques of structural analysis , as well as some knowledge of the corrosion resistance of the materials and structures, especially when those structures are exposed to the external environment. Since the 1990s, specialist software has become available to aid in
19278-400: The latter include such branches as hydrostatics , hydrodynamics and pneumatics . Acoustics is the study of how sound is produced, controlled, transmitted and received. Important modern branches of acoustics include ultrasonics , the study of sound waves of very high frequency beyond the range of human hearing; bioacoustics , the physics of animal calls and hearing, and electroacoustics ,
19440-490: The laws of classical physics accurately describe systems whose important length scales are greater than the atomic scale and whose motions are much slower than the speed of light. Outside of this domain, observations do not match predictions provided by classical mechanics. Einstein contributed the framework of special relativity, which replaced notions of absolute time and space with spacetime and allowed an accurate description of systems whose components have speeds approaching
19602-412: The manipulation of audible sound waves using electronics. Optics, the study of light, is concerned not only with visible light but also with infrared and ultraviolet radiation , which exhibit all of the phenomena of visible light except visibility, e.g., reflection, refraction, interference, diffraction, dispersion, and polarization of light. Heat is a form of energy, the internal energy possessed by
19764-478: The material's critical stress value. Additionally, the molecular weight of the polymer of interest is known to affect its creep behavior. The effect of increasing molecular weight tends to promote secondary bonding between polymer chains and thus make the polymer more creep resistant. Similarly, aromatic polymers are even more creep resistant due to the added stiffness from the rings. Both molecular weight and aromatic rings add to polymers' thermal stability, increasing
19926-479: The material. Nabarro–Herring creep dominates at very high temperatures relative to a material's melting temperature. Coble creep is the second form of diffusion-controlled creep. In Coble creep the atoms diffuse along grain boundaries to elongate the grains along the stress axis. This causes Coble creep to have a stronger grain size dependence than Nabarro–Herring creep, thus, Coble creep will be more important in materials composed of very fine grains. For Coble creep k
20088-569: The melting point (in Kelvin) for metals and at 45% of melting point for ceramics. Creep behavior can be split into three main stages. In primary, or transient, creep, the strain rate is a function of time. In Class M materials, which include most pure materials, primary strain rate decreases over time. This can be due to increasing dislocation density , or it can be due to evolving grain size . In class A materials, which have large amounts of solid solution hardening, strain rate increases over time due to
20250-478: The micrometer range. The term 'nanostructure' is often used when referring to magnetic technology. Medical equipment (also known as armamentarium) is designed to aid in the diagnosis, monitoring or treatment of medical conditions. There are several basic types: diagnostic equipment includes medical imaging machines, used to aid in diagnosis; equipment includes infusion pumps, medical lasers, and LASIK surgical machines ; medical monitors allow medical staff to measure
20412-555: The microstructure, and multi-year aging, caused by long-term relaxation of self-equilibrated microstresses in the nanoporous microstructure of the C-S-H. If concrete is fully cured, creep effectively ceases. Creep in metals primarily manifests as movement in their microstructures. While polymers and metals share some similarities in creep, the behavior of creep in metals displays a different mechanical response and must be modeled differently. For example, with polymers, creep can be modeled using
20574-696: The modern development of photography. The seven-volume Book of Optics ( Kitab al-Manathir ) influenced thinking across disciplines from the theory of visual perception to the nature of perspective in medieval art, in both the East and the West, for more than 600 years. This included later European scholars and fellow polymaths, from Robert Grosseteste and Leonardo da Vinci to Johannes Kepler . The translation of The Book of Optics had an impact on Europe. From it, later European scholars were able to build devices that replicated those Ibn al-Haytham had built and understand
20736-508: The nanoscale, i.e., only the thickness of the surface of an object is between 0.1 and 100 nm. Nanotubes have two dimensions on the nanoscale, i.e., the diameter of the tube is between 0.1 and 100 nm; its length could be much greater. Finally, spherical nanoparticles have three dimensions on the nanoscale, i.e., the particle is between 0.1 and 100 nm in each spatial dimension. The terms nanoparticles and ultrafine particles (UFP) often are used synonymously although UFP can reach into
20898-576: The number of nearest neighbors is effectively limited along the interface of the grains, and thermal generation of vacancies along the boundaries is less prevalent, the temperature dependence is not as strong as in Nabarro–Herring creep. It also exhibits the same linear dependence on stress as Nabarro–Herring creep. Generally, the diffusional creep rate should be the sum of Nabarro–Herring creep rate and Coble creep rate. Diffusional creep leads to grain-boundary separation, that is, voids or cracks form between
21060-626: The original engineer seems to have done everything in accordance with the state of the profession and acceptable practice yet a failure still eventuated. A famous case of structural knowledge and practice being advanced in this manner can be found in a series of failures involving box girders which collapsed in Australia during the 1970s. Structural engineering depends upon a detailed knowledge of applied mechanics , materials science , and applied mathematics to understand and predict how structures support and resist self-weight and imposed loads. To apply
21222-462: The other Philoponus' criticism of Aristotelian principles of physics served as an inspiration for Galileo Galilei ten centuries later, during the Scientific Revolution . Galileo cited Philoponus substantially in his works when arguing that Aristotelian physics was flawed. In the 1300s Jean Buridan , a teacher in the faculty of arts at the University of Paris , developed the concept of impetus. It
21384-463: The other directions. It has also been shown that there is a substantial difference in viscoelastic properties of wood depending on loading modality (creep in compression or tension). Studies have shown that certain Poisson's ratios gradually go from positive to negative values during the duration of the compression creep test, which does not occur in tension. The creep of concrete, which originates from
21546-459: The other, you will see that the ratio of the times required for the motion does not depend on the ratio of the weights, but that the difference in time is a very small one. And so, if the difference in the weights is not considerable, that is, of one is, let us say, double the other, there will be no difference, or else an imperceptible difference, in time, though the difference in weight is by no means negligible, with one body weighing twice as much as
21708-572: The particles of which a substance is composed; thermodynamics deals with the relationships between heat and other forms of energy. Electricity and magnetism have been studied as a single branch of physics since the intimate connection between them was discovered in the early 19th century; an electric current gives rise to a magnetic field , and a changing magnetic field induces an electric current. Electrostatics deals with electric charges at rest, electrodynamics with moving charges, and magnetostatics with magnetic poles at rest. Classical physics
21870-411: The people responsible for maintaining a facility's medical equipment. Any structure is essentially made up of only a small number of different types of elements: Many of these elements can be classified according to form (straight, plane / curve) and dimensionality (one-dimensional / two-dimensional): Columns are elements that carry only axial force (compression) or both axial force and bending (which
22032-596: The positions of the planets . According to Asger Aaboe , the origins of Western astronomy can be found in Mesopotamia , and all Western efforts in the exact sciences are descended from late Babylonian astronomy . Egyptian astronomers left monuments showing knowledge of the constellations and the motions of the celestial bodies, while Greek poet Homer wrote of various celestial objects in his Iliad and Odyssey ; later Greek astronomers provided names, which are still used today, for most constellations visible from
22194-450: The professional structural engineers come into existence. The role of a structural engineer today involves a significant understanding of both static and dynamic loading and the structures that are available to resist them. The complexity of modern structures often requires a great deal of creativity from the engineer in order to ensure the structures support and resist the loads they are subjected to. A structural engineer will typically have
22356-415: The pyramid, whilst primarily gained from its shape, relies also on the strength of the stone from which it is constructed, and its ability to support the weight of the stone above it. The limestone blocks were often taken from a quarry near the building site and have a compressive strength from 30 to 250 MPa (MPa = Pa × 10). Therefore, the structural strength of the pyramid stems from the material properties of
22518-779: The reduced yield strength at higher temperatures, the collapse of the World Trade Center was due in part to creep from increased temperature. The creep rate of hot pressure-loaded components in a nuclear reactor at power can be a significant design constraint, since the creep rate is enhanced by the flux of energetic particles. Creep in epoxy anchor adhesive was blamed for the Big Dig tunnel ceiling collapse in Boston , Massachusetts that occurred in July 2006. The design of tungsten light bulb filaments attempts to reduce creep deformation. Sagging of
22680-399: The related entities of energy and force . Physics is one of the most fundamental scientific disciplines. A scientist who specializes in the field of physics is called a physicist . Physics is one of the oldest academic disciplines . Over much of the past two millennia, physics, chemistry , biology , and certain branches of mathematics were a part of natural philosophy , but during
22842-400: The solute atoms are more mobile and may form atmospheres and clouds surrounding the dislocations. This is especially likely if the solute atom has a large misfit in the matrix. The solutes are attracted by the dislocation stress fields and are able to relieve the elastic stress fields of existing dislocations. Thus the solutes become bound to the dislocations. The concentration of solute, C , at
23004-477: The solute atoms to approach and reach the previously departed dislocations again, leading to a stress increase. The process repeats itself when the next local stress maximum is obtained. So repetitive local stress maxima and minima could be detected during solute drag creep. Dislocation climb-glide creep is observed in materials at high temperature. The initial creep rate is larger than the steady-state creep rate. Climb-glide creep could be illustrated as follows: when
23166-440: The speed being proportional to the weight and the speed of the object that is falling depends inversely on the density object it is falling through (e.g. density of air). He also stated that, when it comes to violent motion (motion of an object when a force is applied to it by a second object) that the speed that object moves, will only be as fast or strong as the measure of force applied to it. The problem of motion and its causes
23328-412: The speed of light. Planck, Schrödinger, and others introduced quantum mechanics, a probabilistic notion of particles and interactions that allowed an accurate description of atomic and subatomic scales. Later, quantum field theory unified quantum mechanics and special relativity. General relativity allowed for a dynamical, curved spacetime, with which highly massive systems and the large-scale structure of
23490-434: The step pyramid for Pharaoh Djoser was built by Imhotep , the first engineer in history known by name. Pyramids were the most common major structures built by ancient civilizations because the structural form of a pyramid is inherently stable and can be almost infinitely scaled (as opposed to most other structural forms, which cannot be linearly increased in size in proportion to increased loads). The structural stability of
23652-463: The stones from which it was built rather than the pyramid's geometry. Throughout ancient and medieval history most architectural design and construction were carried out by artisans, such as stonemasons and carpenters, rising to the role of master builder. No theory of structures existed, and understanding of how structures stood up was extremely limited, and based almost entirely on empirical evidence of 'what had worked before' and intuition . Knowledge
23814-478: The strain rate contours. Deformation mechanism maps can be used to compare different strengthening mechanisms, as well as compare different types of materials. d ε d t = C σ m d b e − Q k T {\displaystyle {\frac {\mathrm {d} \varepsilon }{\mathrm {d} t}}={\frac {C\sigma ^{m}}{d^{b}}}e^{\frac {-Q}{kT}}} where ε
23976-412: The study of probabilities and groups . Physics deals with a wide variety of systems, although certain theories are used by all physicists. Each of these theories was experimentally tested numerous times and found to be an adequate approximation of nature. For instance, the theory of classical mechanics accurately describes the motion of objects, provided they are much larger than atoms and moving at
24138-567: The surface energy and surface area-volume ratio of the voids. For a general void with surface energy γ and principle radii of curvature of r 1 and r 2 , the sintering limit stress is σ s i n t = γ r 1 + γ r 2 {\displaystyle \sigma _{\rm {sint}}={\frac {\gamma }{r_{1}}}+{\frac {\gamma }{r_{2}}}} Below this critical stress, voids will tend to shrink rather than grow. Additional void shrinkage effects will also result from
24300-444: The top, air underneath fire, then water, then lastly earth. He also stated that when a small amount of one element enters the natural place of another, the less abundant element will automatically go towards its own natural place. For example, if there is a fire on the ground, the flames go up into the air in an attempt to go back into its natural place where it belongs. His laws of motion included: that heavier objects will fall faster,
24462-423: The understanding of electromagnetism , solid-state physics , and nuclear physics led directly to the development of technologies that have transformed modern society, such as television, computers, domestic appliances , and nuclear weapons ; advances in thermodynamics led to the development of industrialization; and advances in mechanics inspired the development of calculus . The word physics comes from
24624-423: The universe can be well-described. General relativity has not yet been unified with the other fundamental descriptions; several candidate theories of quantum gravity are being developed. Physics, as with the rest of science, relies on the philosophy of science and its " scientific method " to advance knowledge of the physical world. The scientific method employs a priori and a posteriori reasoning as well as
24786-573: The use of Bayesian inference to measure the validity of a given theory. Study of the philosophical issues surrounding physics, the philosophy of physics , involves issues such as the nature of space and time , determinism , and metaphysical outlooks such as empiricism , naturalism , and realism . Many physicists have written about the philosophical implications of their work, for instance Laplace , who championed causal determinism , and Erwin Schrödinger , who wrote on quantum mechanics. The mathematical physicist Roger Penrose has been called
24948-988: The validity of a theory in a logical, unbiased, and repeatable way. To that end, experiments are performed and observations are made in order to determine the validity or invalidity of a theory. A scientific law is a concise verbal or mathematical statement of a relation that expresses a fundamental principle of some theory, such as Newton's law of universal gravitation. Theorists seek to develop mathematical models that both agree with existing experiments and successfully predict future experimental results, while experimentalists devise and perform experiments to test theoretical predictions and explore new phenomena. Although theory and experiment are developed separately, they strongly affect and depend upon each other. Progress in physics frequently comes about when experimental results defy explanation by existing theories, prompting intense focus on applicable modelling, and when new theories generate experimentally testable predictions , which inspire
25110-573: The way vision works. Physics became a separate science when early modern Europeans used experimental and quantitative methods to discover what are now considered to be the laws of physics . Major developments in this period include the replacement of the geocentric model of the Solar System with the heliocentric Copernican model , the laws governing the motion of planetary bodies (determined by Kepler between 1609 and 1619), Galileo's pioneering work on telescopes and observational astronomy in
25272-399: The works of many scientists like Ibn Sahl , Al-Kindi , Ibn al-Haytham , Al-Farisi and Avicenna . The most notable work was The Book of Optics (also known as Kitāb al-Manāẓir), written by Ibn al-Haytham, in which he presented the alternative to the ancient Greek idea about vision. In his Treatise on Light as well as in his Kitāb al-Manāẓir , he presented a study of the phenomenon of
25434-538: Was a step toward the modern ideas of inertia and momentum. Islamic scholarship inherited Aristotelian physics from the Greeks and during the Islamic Golden Age developed it further, especially placing emphasis on observation and a priori reasoning, developing early forms of the scientific method . The most notable innovations under Islamic scholarship were in the field of optics and vision, which came from
25596-440: Was first observed by Harper and Dorn in 1957. It is characterized by two principal phenomena: a power-law relationship between the steady-state strain rate and applied stress at a constant temperature which is weaker than the natural power-law of creep, and an independent relationship between the steady-state strain rate and grain size for a provided temperature and applied stress. The latter observation implies that Harper–Dorn creep
25758-503: Was found to be correct approximately 2000 years after it was proposed by Leucippus and his pupil Democritus . During the classical period in Greece (6th, 5th and 4th centuries BCE) and in Hellenistic times , natural philosophy developed along many lines of inquiry. Aristotle ( Greek : Ἀριστοτέλης , Aristotélēs ) (384–322 BCE), a student of Plato , wrote on many subjects, including
25920-417: Was not scrutinized until Philoponus appeared; unlike Aristotle, who based his physics on verbal argument, Philoponus relied on observation. On Aristotle's physics Philoponus wrote: But this is completely erroneous, and our view may be corroborated by actual observation more effectively than by any sort of verbal argument. For if you let fall from the same height two weights of which one is many times as heavy as
26082-555: Was retained by guilds and seldom supplanted by advances. Structures were repetitive, and increases in scale were incremental. No record exists of the first calculations of the strength of structural members or the behavior of structural material, but the profession of a structural engineer only really took shape with the Industrial Revolution and the re-invention of concrete (see History of Concrete ). The physical sciences underlying structural engineering began to be understood in
26244-531: Was studied carefully, leading to the philosophical notion of a " prime mover " as the ultimate source of all motion in the world (Book 8 of his treatise Physics ). The Western Roman Empire fell to invaders and internal decay in the fifth century, resulting in a decline in intellectual pursuits in western Europe. By contrast, the Eastern Roman Empire (usually known as the Byzantine Empire ) resisted
#296703