The observable universe is a spherical region of the universe consisting of all matter that can be observed from Earth or its space-based telescopes and exploratory probes at the present time; the electromagnetic radiation from these objects has had time to reach the Solar System and Earth since the beginning of the cosmological expansion . Assuming the universe is isotropic , the distance to the edge of the observable universe is roughly the same in every direction. That is, the observable universe is a spherical region centered on the observer. Every location in the universe has its own observable universe, which may or may not overlap with the one centered on Earth.
119-510: The Sloan Great Wall ( SGW ) is a cosmic structure formed by a giant wall of galaxies (a galaxy filament ). Its discovery was announced from Princeton University on October 20, 2003, by J. Richard Gott III , Mario Jurić , and their colleagues, based on data from the Sloan Digital Sky Survey . The wall measures 1.37 billion light-years (1.30 × 10 m) in length, located approximately one billion light-years away. In
238-441: A Belgian physicist and Roman Catholic priest , proposed that the recession of the nebulae was due to the expansion of the universe. He inferred the relation that Hubble would later observe, given the cosmological principle. In 1931, Lemaître went further and suggested that the evident expansion of the universe, if projected back in time, meant that the further in the past the smaller the universe was, until at some finite time in
357-624: A Russian cosmologist and mathematician , derived the Friedmann equations from the Einstein field equations, showing that the universe might be expanding in contrast to the static universe model advocated by Albert Einstein at that time. In 1924, American astronomer Edwin Hubble 's measurement of the great distance to the nearest spiral nebulae showed that these systems were indeed other galaxies. Starting that same year, Hubble painstakingly developed
476-484: A future horizon , which limits the events in the future that we will be able to influence. The presence of either type of horizon depends on the details of the Friedmann–Lemaître–Robertson–Walker (FLRW) metric that describes the expansion of the universe. Our understanding of the universe back to very early times suggests that there is a past horizon, though in practice our view is also limited by
595-496: A concentration of mass equivalent to tens of thousands of galaxies. The Great Attractor, discovered in 1986, lies at a distance of between 150 million and 250 million light-years in the direction of the Hydra and Centaurus constellations . In its vicinity there is a preponderance of large old galaxies, many of which are colliding with their neighbours, or radiating large amounts of radio waves. In 1987, astronomer R. Brent Tully of
714-400: A higher-dimensional analogue of the 2D surface of a sphere that is finite in area but has no edge. It is plausible that the galaxies within the observable universe represent only a minuscule fraction of the galaxies in the universe. According to the theory of cosmic inflation initially introduced by Alan Guth and D. Kazanas , if it is assumed that inflation began about 10 seconds after
833-538: A more generic early hot, dense phase of the universe. In either case, "the Big Bang" as an event is also colloquially referred to as the "birth" of our universe since it represents the point in history where the universe can be verified to have entered into a regime where the laws of physics as we understand them (specifically general relativity and the Standard Model of particle physics ) work. Based on measurements of
952-487: A phenomenon that has been referred to as the End of Greatness . The organization of structure arguably begins at the stellar level, though most cosmologists rarely address astrophysics on that scale. Stars are organized into galaxies , which in turn form galaxy groups , galaxy clusters , superclusters , sheets, walls and filaments , which are separated by immense voids , creating a vast foam-like structure sometimes called
1071-500: A process in the very early universe has reached thermal equilibrium is the ratio between the rate of the process (usually rate of collisions between particles) and the Hubble parameter . The larger the ratio, the more time particles had to thermalize before they were too far away from each other. According to the Big Bang models, the universe at the beginning was very hot and very compact, and since then it has been expanding and cooling. In
1190-467: A series of distance indicators, the forerunner of the cosmic distance ladder , using the 100-inch (2.5 m) Hooker telescope at Mount Wilson Observatory . This allowed him to estimate distances to galaxies whose redshifts had already been measured, mostly by Slipher. In 1929, Hubble discovered a correlation between distance and recessional velocity —now known as Hubble's law. Independently deriving Friedmann's equations in 1927, Georges Lemaître ,
1309-420: A structure in itself. Observable universe#Large-scale structure The word observable in this sense does not refer to the capability of modern technology to detect light or other information from an object, or whether there is anything to be detected. It refers to the physical limit created by the speed of light itself. No signal can travel faster than light, hence there is a maximum distance, called
SECTION 10
#17328447727691428-452: A surrounding space, the Big Bang only describes the intrinsic expansion of the contents of the universe. Another issue pointed out by Santhosh Mathew is that bang implies sound, which is not an important feature of the model. An attempt to find a more suitable alternative was not successful. The Big Bang models developed from observations of the structure of the universe and from theoretical considerations. In 1912, Vesto Slipher measured
1547-430: A temperature of approximately 10 degrees Celsius. Even the very concept of a particle breaks down in these conditions. A proper understanding of this period awaits the development of a theory of quantum gravity . The Planck epoch was succeeded by the grand unification epoch beginning at 10 seconds, where gravitation separated from the other forces as the universe's temperature fell. At approximately 10 seconds into
1666-470: A widely accepted theory of quantum gravity that can model the earliest conditions of the Big Bang. In 1964 the CMB was discovered, which convinced many cosmologists that the competing steady-state model of cosmic evolution was falsified , since the Big Bang models predict a uniform background radiation caused by high temperatures and densities in the distant past. A wide range of empirical evidence strongly favors
1785-559: Is 4.8% of the total critical density or 4.08 × 10 kg/m . To convert this density to mass we must multiply by volume, a value based on the radius of the "observable universe". Since the universe has been expanding for 13.8 billion years, the comoving distance (radius) is now about 46.6 billion light-years. Thus, volume ( 4 / 3 πr ) equals 3.58 × 10 m and the mass of ordinary matter equals density ( 4.08 × 10 kg/m ) times volume ( 3.58 × 10 m ) or 1.46 × 10 kg . Sky surveys and mappings of
1904-492: Is accelerating , an observation attributed to an unexplained phenomenon known as dark energy . The Big Bang models offer a comprehensive explanation for a broad range of observed phenomena, including the abundances of the light elements , the CMB , large-scale structure , and Hubble's law . The models depend on two major assumptions: the universality of physical laws and the cosmological principle . The universality of physical laws
2023-413: Is also the density for which the expansion of the universe is poised between continued expansion and collapse. From the Friedmann equations , the value for ρ c {\displaystyle \rho _{\text{c}}} critical density, is: where G is the gravitational constant and H = H 0 is the present value of the Hubble constant . The value for H 0 , as given by
2142-422: Is apparent. The superclusters and filaments seen in smaller surveys are randomized to the extent that the smooth distribution of the universe is visually apparent. It was not until the redshift surveys of the 1990s were completed that this scale could accurately be observed. Another indicator of large-scale structure is the ' Lyman-alpha forest '. This is a collection of absorption lines that appear in
2261-422: Is assumed to be cold. (Warm dark matter is ruled out by early reionization .) This CDM is estimated to make up about 23% of the matter/energy of the universe, while baryonic matter makes up about 4.6%. In an "extended model" which includes hot dark matter in the form of neutrinos, then the "physical baryon density" Ω b h 2 {\displaystyle \Omega _{\text{b}}h^{2}}
2380-516: Is between 1.8–2.7 times longer than the CfA2 Great Wall of galaxies (discovered by Margaret Geller and John Huchra of Harvard University in 1989). It also contains several galactic superclusters , the largest and richest of which is named SCl 126. This is located in the highest density region of the structure. In 2011, it was suggested that the SGW is a chance alignment of three structures, and not
2499-413: Is decreasing with time, there can be cases where a galaxy that is receding from Earth only slightly faster than light emits a signal that eventually reaches Earth. This future visibility limit is calculated at a comoving distance of 19 billion parsecs (62 billion light-years), assuming the universe will keep expanding forever, which implies the number of galaxies that can ever be theoretically observed in
SECTION 20
#17328447727692618-464: Is defined to lie within the "observable universe" if we can receive signals emitted by the galaxy at any age in its history, say, a signal sent from the galaxy only 500 million years after the Big Bang. Because of the universe's expansion, there may be some later age at which a signal sent from the same galaxy can never reach the Earth at any point in the infinite future, so, for example, we might never see what
2737-403: Is estimated at 0.023. (This is different from the 'baryon density' Ω b {\displaystyle \Omega _{\text{b}}} expressed as a fraction of the total matter/energy density, which is about 0.046.) The corresponding cold dark matter density Ω c h 2 {\displaystyle \Omega _{\text{c}}h^{2}} is about 0.11, and
2856-414: Is exactly equal to the reachable limit (16 billion light-years) added to the current visibility limit (46 billion light-years). Both popular and professional research articles in cosmology often use the term "universe" to mean "observable universe". This can be justified on the grounds that we can never know anything by direct observation about any part of the universe that is causally disconnected from
2975-425: Is interpreted as a Doppler shift, the recessional velocity of the object can be calculated. For some galaxies, it is possible to estimate distances via the cosmic distance ladder . When the recessional velocities are plotted against these distances, a linear relationship known as Hubble's law is observed: v = H 0 D {\displaystyle v=H_{0}D} where Hubble's law implies that
3094-536: Is modeled by a cosmological constant term in Einstein field equations of general relativity, but its composition and mechanism are unknown. More generally, the details of its equation of state and relationship with the Standard Model of particle physics continue to be investigated both through observation and theory. All of this cosmic evolution after the inflationary epoch can be rigorously described and modeled by
3213-427: Is no preferred (or special) observer or vantage point. To this end, the cosmological principle has been confirmed to a level of 10 via observations of the temperature of the CMB. At the scale of the CMB horizon, the universe has been measured to be homogeneous with an upper bound on the order of 10% inhomogeneity, as of 1995. An important feature of the Big Bang spacetime is the presence of particle horizons . Since
3332-410: Is one of the underlying principles of the theory of relativity . The cosmological principle states that on large scales the universe is homogeneous and isotropic —appearing the same in all directions regardless of location. These ideas were initially taken as postulates, but later efforts were made to test each of them. For example, the first assumption has been tested by observations showing that
3451-475: Is required in describing structures on a cosmic scale because they are often different from how they appear. Gravitational lensing can make an image appear to originate in a different direction from its real source, when foreground objects curve surrounding spacetime (as predicted by general relativity ) and deflect passing light rays. Rather usefully, strong gravitational lensing can sometimes magnify distant galaxies, making them easier to detect. Weak lensing by
3570-432: Is the proper distance, v {\displaystyle v} is the recessional velocity, and v {\displaystyle v} , H {\displaystyle H} , and D {\displaystyle D} vary as the universe expands (hence we write H 0 {\displaystyle H_{0}} to denote the present-day Hubble "constant"). For distances much smaller than
3689-530: The Big Bang to have had enough time to reach Earth or space-based instruments, and therefore lie outside the observable universe. In the future, light from distant galaxies will have had more time to travel, so one might expect that additional regions will become observable. Regions distant from observers (such as us) are expanding away faster than the speed of light, at rates estimated by Hubble's law . The expansion rate appears to be accelerating , which dark energy
Sloan Great Wall - Misplaced Pages Continue
3808-523: The Hubble Space Telescope and WMAP. Cosmologists now have fairly precise and accurate measurements of many of the parameters of the Big Bang model, and have made the unexpected discovery that the expansion of the universe appears to be accelerating. "[The] big bang picture is too firmly grounded in data from every area to be proved invalid in its general features." — Lawrence Krauss The earliest and most direct observational evidence of
3927-487: The Milne model , the oscillatory universe (originally suggested by Friedmann, but advocated by Albert Einstein and Richard C. Tolman ) and Fritz Zwicky 's tired light hypothesis. After World War II , two distinct possibilities emerged. One was Fred Hoyle's steady-state model, whereby new matter would be created as the universe seemed to expand. In this model the universe is roughly the same at any point in time. The other
4046-607: The University of Hawaii 's Institute of Astronomy identified what he called the Pisces–Cetus Supercluster Complex , a structure one billion light-years long and 150 million light-years across in which, he claimed, the Local Supercluster is embedded. The most distant astronomical object identified (as of August of 2024) is a galaxy classified as JADES-GS-z14-0 . In 2009, a gamma ray burst , GRB 090423 ,
4165-434: The cosmic microwave background radiation (CMBR) was emitted, which represents the radius of the visible universe, is about 14.0 billion parsecs (about 45.7 billion light-years). The comoving distance to the edge of the observable universe is about 14.3 billion parsecs (about 46.6 billion light-years), about 2% larger. The radius of the observable universe is therefore estimated to be about 46.5 billion light-years. Using
4284-524: The critical density and the diameter of the observable universe, the total mass of ordinary matter in the universe can be calculated to be about 1.5 × 10 kg . In November 2018, astronomers reported that extragalactic background light (EBL) amounted to 4 × 10 photons. As the universe's expansion is accelerating, all currently observable objects, outside the local supercluster , will eventually appear to freeze in time, while emitting progressively redder and fainter light. For instance, objects with
4403-488: The dwarf galaxy problem of cold dark matter. Dark energy is also an area of intense interest for scientists, but it is not clear whether direct detection of dark energy will be possible. Inflation and baryogenesis remain more speculative features of current Big Bang models. Viable, quantitative explanations for such phenomena are still being sought. These are unsolved problems in physics. Observations of distant galaxies and quasars show that these objects are redshifted:
4522-469: The grains of beach sand on planet Earth . Other estimates are in the hundreds of billions rather than trillions. The estimated total number of stars in an inflationary universe (observed and unobserved) is 10 . Assuming the mass of ordinary matter is about 1.45 × 10 kg as discussed above, and assuming all atoms are hydrogen atoms (which are about 74% of all atoms in the Milky Way by mass),
4641-415: The intergalactic medium (IGM). However, it excludes dark matter and dark energy . This quoted value for the mass of ordinary matter in the universe can be estimated based on critical density. The calculations are for the observable universe only as the volume of the whole is unknown and may be infinite. Critical density is the energy density for which the universe is flat. If there is no dark energy, it
4760-432: The particle horizon , beyond which nothing can be detected, as the signals could not have reached us yet. Sometimes astrophysicists distinguish between the observable universe and the visible universe. The former includes signals since the end of the inflationary epoch , while the latter includes only signals emitted since recombination . According to calculations, the current comoving distance to particles from which
4879-466: The " proper distance " used in both Hubble's law and in defining the size of the observable universe. Cosmologist Ned Wright argues against using this measure. The proper distance for a redshift of 8.2 would be about 9.2 Gpc , or about 30 billion light-years. The limit of observability in the universe is set by cosmological horizons which limit—based on various physical constraints—the extent to which information can be obtained about various events in
Sloan Great Wall - Misplaced Pages Continue
4998-478: The "cosmic web". Prior to 1989, it was commonly assumed that virialized galaxy clusters were the largest structures in existence, and that they were distributed more or less uniformly throughout the universe in every direction. However, since the early 1980s, more and more structures have been discovered. In 1983, Adrian Webster identified the Webster LQG , a large quasar group consisting of 5 quasars. The discovery
5117-410: The "four pillars" of the Big Bang models. Precise modern models of the Big Bang appeal to various exotic physical phenomena that have not been observed in terrestrial laboratory experiments or incorporated into the Standard Model of particle physics. Of these features, dark matter is currently the subject of most active laboratory investigations. Remaining issues include the cuspy halo problem and
5236-557: The Big Bang and that the pre-inflation size of the universe was approximately equal to the speed of light times its age, that would suggest that at present the entire universe's size is at least 1.5 × 10 light-years—at least 3 × 10 times the radius of the observable universe. If the universe is finite but unbounded, it is also possible that the universe is smaller than the observable universe. In this case, what we take to be very distant galaxies may actually be duplicate images of nearby galaxies, formed by light that has circumnavigated
5355-407: The Big Bang event, which is now essentially universally accepted. Detailed measurements of the expansion rate of the universe place the Big Bang singularity at an estimated 13.787 ± 0.020 billion years ago, which is considered the age of the universe . There remain aspects of the observed universe that are not yet adequately explained by the Big Bang models. After its initial expansion,
5474-533: The Big Bang. Then, from the 1970s to the 1990s, cosmologists worked on characterizing the features of the Big Bang universe and resolving outstanding problems. In 1981, Alan Guth made a breakthrough in theoretical work on resolving certain outstanding theoretical problems in the Big Bang models with the introduction of an epoch of rapid expansion in the early universe he called "inflation". Meanwhile, during these decades, two questions in observational cosmology that generated much discussion and disagreement were over
5593-462: The Big Bang. Since the early universe did not immediately collapse into a multitude of black holes, matter at that time must have been very evenly distributed with a negligible density gradient . The earliest phases of the Big Bang are subject to much speculation, given the lack of available data. In the most common models the universe was filled homogeneously and isotropically with a very high energy density and huge temperatures and pressures , and
5712-449: The Earth if the event is less than 16 billion light-years away, but the signal will never reach the Earth if the event is further away. The space before this cosmic event horizon can be called "reachable universe", that is all galaxies closer than that could be reached if we left for them today, at the speed of light; all galaxies beyond that are unreachable. Simple observation will show the future visibility limit (62 billion light-years)
5831-426: The Earth, although many credible theories require a total universe much larger than the observable universe. No evidence exists to suggest that the boundary of the observable universe constitutes a boundary on the universe as a whole, nor do any of the mainstream cosmological models propose that the universe has any physical boundary in the first place. However, some models propose it could be finite but unbounded, like
5950-660: The European Space Agency's Planck Telescope, is H 0 = 67.15 kilometres per second per megaparsec. This gives a critical density of 0.85 × 10 kg/m , or about 5 hydrogen atoms per cubic metre. This density includes four significant types of energy/mass: ordinary matter (4.8%), neutrinos (0.1%), cold dark matter (26.8%), and dark energy (68.3%). Although neutrinos are Standard Model particles, they are listed separately because they are ultra-relativistic and hence behave like radiation rather than like matter. The density of ordinary matter, as measured by Planck,
6069-601: The Giant Void mentioned above. Another large-scale structure is the SSA22 Protocluster , a collection of galaxies and enormous gas bubbles that measures about 200 million light-years across. In 2011, a large quasar group was discovered, U1.11 , measuring about 2.5 billion light-years across. On January 11, 2013, another large quasar group, the Huge-LQG , was discovered, which was measured to be four billion light-years across,
SECTION 50
#17328447727696188-675: The U.K., of light from the brightest part of this web, surrounding and illuminated by a cluster of forming galaxies, acting as cosmic flashlights for intercluster medium hydrogen fluorescence via Lyman-alpha emissions. In 2021, an international team, headed by Roland Bacon from the Centre de Recherche Astrophysique de Lyon (France), reported the first observation of diffuse extended Lyman-alpha emission from redshift 3.1 to 4.5 that traced several cosmic web filaments on scales of 2.5−4 cMpc (comoving mega-parsecs), in filamentary environments outside massive structures typical of web nodes. Some caution
6307-464: The absence of a perfect cosmological principle , extrapolation of the expansion of the universe backwards in time using general relativity yields an infinite density and temperature at a finite time in the past. This irregular behavior, known as the gravitational singularity , indicates that general relativity is not an adequate description of the laws of physics in this regime. Models based on general relativity alone cannot fully extrapolate toward
6426-497: The age measured today). This issue was later resolved when new computer simulations, which included the effects of mass loss due to stellar winds , indicated a much younger age for globular clusters. Significant progress in Big Bang cosmology has been made since the late 1990s as a result of advances in telescope technology as well as the analysis of data from satellites such as the Cosmic Background Explorer (COBE),
6545-411: The big-bang predictions by Alpher, Herman and Gamow around 1950. Through the 1970s, the radiation was found to be approximately consistent with a blackbody spectrum in all directions; this spectrum has been redshifted by the expansion of the universe, and today corresponds to approximately 2.725 K. This tipped the balance of evidence in favor of the Big Bang model, and Penzias and Wilson were awarded
6664-536: The centre of the Hydra–Centaurus Supercluster , a gravitational anomaly called the Great Attractor affects the motion of galaxies over a region hundreds of millions of light-years across. These galaxies are all redshifted , in accordance with Hubble's law . This indicates that they are receding from us and from each other, but the variations in their redshift are sufficient to reveal the existence of
6783-413: The constellation Boötes from observations captured by the Sloan Digital Sky Survey . The End of Greatness is an observational scale discovered at roughly 100 Mpc (roughly 300 million light-years) where the lumpiness seen in the large-scale structure of the universe is homogenized and isotropized in accordance with the cosmological principle . At this scale, no pseudo-random fractalness
6902-432: The corresponding neutrino density Ω v h 2 {\displaystyle \Omega _{\text{v}}h^{2}} is estimated to be less than 0.0062. Independent lines of evidence from Type Ia supernovae and the CMB imply that the universe today is dominated by a mysterious form of energy known as dark energy , which appears to homogeneously permeate all of space. Observations suggest that 73% of
7021-405: The current redshift z from 5 to 10 will only be observable up to an age of 4–6 billion years. In addition, light emitted by objects currently situated beyond a certain comoving distance (currently about 19 gigaparsecs (62 Gly)) will never reach Earth. The universe's size is unknown, and it may be infinite in extent. Some parts of the universe are too far away for the light emitted since
7140-452: The determination of the Hubble constant is known as Hubble tension . Techniques based on observation of the CMB suggest a lower value of this constant compared to the quantity derived from measurements based on the cosmic distance ladder. In 1964, Arno Penzias and Robert Wilson serendipitously discovered the cosmic background radiation, an omnidirectional signal in the microwave band. Their discovery provided substantial confirmation of
7259-509: The distance to that matter at the time the light was emitted, we may first note that according to the Friedmann–Lemaître–Robertson–Walker metric , which is used to model the expanding universe, if we receive light with a redshift of z , then the scale factor at the time the light was originally emitted is given by a ( t ) = 1 1 + z {\displaystyle a(t)={\frac {1}{1+z}}} . WMAP nine-year results combined with other measurements give
SECTION 60
#17328447727697378-545: The edge of the observable universe is about 14.26 giga parsecs (46.5 billion light-years or 4.40 × 10 m) in any direction. The observable universe is thus a sphere with a diameter of about 28.5 gigaparsecs (93 billion light-years or 8.8 × 10 m). Assuming that space is roughly flat (in the sense of being a Euclidean space ), this size corresponds to a comoving volume of about 1.22 × 10 Gpc ( 4.22 × 10 Gly or 3.57 × 10 m ). These are distances now (in cosmological time ), not distances at
7497-635: The edge of the observable universe is the age of the universe times the speed of light , 13.8 billion light years. This is the distance that a photon emitted shortly after the Big Bang, such as one from the cosmic microwave background , has traveled to reach observers on Earth. Because spacetime is curved, corresponding to the expansion of space , this distance does not correspond to the true distance at any moment in time. The observable universe contains as many as an estimated 2 trillion galaxies and, overall, as many as an estimated 10 stars – more stars (and, potentially, Earth-like planets) than all
7616-415: The environment of the cluster looks somewhat pinched if using redshifts to measure distance. The opposite effect is observed on galaxies already within a cluster: the galaxies have some random motion around the cluster center, and when these random motions are converted to redshifts, the cluster appears elongated. This creates a " finger of God "—the illusion of a long chain of galaxies pointed at Earth. At
7735-462: The estimated total number of atoms in the observable universe is obtained by dividing the mass of ordinary matter by the mass of a hydrogen atom. The result is approximately 10 hydrogen atoms, also known as the Eddington number . The mass of the observable universe is often quoted as 10 kg. In this context, mass refers to ordinary (baryonic) matter and includes the interstellar medium (ISM) and
7854-591: The expansion using Type Ia supernovae and measurements of temperature fluctuations in the cosmic microwave background, the time that has passed since that event—known as the " age of the universe "—is 13.8 billion years. Despite being extremely dense at this time—far denser than is usually required to form a black hole —the universe did not re-collapse into a singularity. Commonly used calculations and limits for explaining gravitational collapse are usually based upon objects of relatively constant size, such as stars, and do not apply to rapidly expanding space such as
7973-400: The expansion, a phase transition caused a cosmic inflation , during which the universe grew exponentially , unconstrained by the light speed invariance , and temperatures dropped by a factor of 100,000. This concept is motivated by the flatness problem , where the density of matter and energy is very close to the critical density needed to produce a flat universe . That is, the shape of
8092-415: The first Doppler shift of a " spiral nebula " (spiral nebula is the obsolete term for spiral galaxies), and soon discovered that almost all such nebulae were receding from Earth. He did not grasp the cosmological implications of this fact, and indeed at the time it was highly controversial whether or not these nebulae were "island universes" outside our Milky Way . Ten years later, Alexander Friedmann ,
8211-429: The galaxy looked like 10 billion years after the Big Bang, even though it remains at the same comoving distance less than that of the observable universe. This can be used to define a type of cosmic event horizon whose distance from the Earth changes over time. For example, the current distance to this horizon is about 16 billion light-years, meaning that a signal from an event happening at present can eventually reach
8330-404: The gravitational effects of an unknown dark matter surrounding galaxies. Most of the gravitational potential in the universe seems to be in this form, and the Big Bang models and various observations indicate that this excess gravitational potential is not created by baryonic matter , such as normal atoms. Measurements of the redshifts of supernovae indicate that the expansion of the universe
8449-413: The infinite future is only larger than the number currently observable by a factor of 2.36 (ignoring redshift effects). In principle, more galaxies will become observable in the future; in practice, an increasing number of galaxies will become extremely redshifted due to ongoing expansion, so much so that they will seem to disappear from view and become invisible. A galaxy at a given comoving distance
8568-433: The intervening universe in general also subtly changes the observed large-scale structure. The large-scale structure of the universe also looks different if only redshift is used to measure distances to galaxies. For example, galaxies behind a galaxy cluster are attracted to it and fall towards it, and so are blueshifted (compared to how they would be if there were no cluster). On the near side, objects are redshifted. Thus,
8687-411: The lambda-CDM model of cosmology, which uses the independent frameworks of quantum mechanics and general relativity. There are no easily testable models that would describe the situation prior to approximately 10 seconds. Understanding this earliest of eras in the history of the universe is one of the greatest unsolved problems in physics . English astronomer Fred Hoyle is credited with coining
8806-672: The largest known structure in the universe at that time. In November 2013, astronomers discovered the Hercules–Corona Borealis Great Wall , an even bigger structure twice as large as the former. It was defined by the mapping of gamma-ray bursts . In 2021, the American Astronomical Society announced the detection of the Giant Arc ; a crescent-shaped string of galaxies that span 3.3 billion light years in length, located 9.2 billion light years from Earth in
8925-487: The largest possible deviation of the fine-structure constant over much of the age of the universe is of order 10 . Also, general relativity has passed stringent tests on the scale of the Solar System and binary stars . The large-scale universe appears isotropic as viewed from Earth. If it is indeed isotropic, the cosmological principle can be derived from the simpler Copernican principle , which states that there
9044-405: The light emitted from them has been shifted to longer wavelengths. This can be seen by taking a frequency spectrum of an object and matching the spectroscopic pattern of emission or absorption lines corresponding to atoms of the chemical elements interacting with the light. These redshifts are uniformly isotropic, distributed evenly among the observed objects in all directions. If the redshift
9163-444: The modern notion of the Big Bang. Various cosmological models of the Big Bang explain the evolution of the observable universe from the earliest known periods through its subsequent large-scale form. These models offer a comprehensive explanation for a broad range of observed phenomena, including the abundance of light elements , the cosmic microwave background (CMB) radiation , and large-scale structure . The uniformity of
9282-419: The notion of an expanding universe is known as Hubble's Law , published in work by physicist Edwin Hubble in 1929, which discerned that galaxies are moving away from Earth at a rate that accelerates proportionally with distance. Independent of Friedmann's work, and independent of Hubble's observations, physicist Georges Lemaître proposed that the universe emerged from a "primeval atom " in 1931, introducing
9401-453: The notions of space and time would altogether fail to have any meaning at the beginning; they would only begin to have a sensible meaning when the original quantum had been divided into a sufficient number of quanta. If this suggestion is correct, the beginning of the world happened a little before the beginning of space and time. During the 1930s, other ideas were proposed as non-standard cosmologies to explain Hubble's observations, including
9520-460: The observational evidence, most notably from radio source counts , began to favor Big Bang over steady state. The discovery and confirmation of the CMB in 1964 secured the Big Bang as the best theory of the origin and evolution of the universe. In 1968 and 1970, Roger Penrose , Stephen Hawking , and George F. R. Ellis published papers where they showed that mathematical singularities were an inevitable initial condition of relativistic models of
9639-482: The opacity of the universe at early times. So our view cannot extend further backward in time, though the horizon recedes in space. If the expansion of the universe continues to accelerate, there is a future horizon as well. Some processes in the early universe occurred too slowly, compared to the expansion rate of the universe, to reach approximate thermodynamic equilibrium . Others were fast enough to reach thermalization . The parameter usually used to find out whether
9758-404: The original matter particles and none of their antiparticles . A similar process happened at about 1 second for electrons and positrons. After these annihilations, the remaining protons, neutrons and electrons were no longer moving relativistically and the energy density of the universe was dominated by photons (with a minor contribution from neutrinos ). A few minutes into the expansion, when
9877-515: The other astronomical structures observable today. The details of this process depend on the amount and type of matter in the universe. The four possible types of matter are known as cold dark matter (CDM), warm dark matter , hot dark matter , and baryonic matter . The best measurements available, from the Wilkinson Microwave Anisotropy Probe (WMAP), show that the data is well-fit by a Lambda-CDM model in which dark matter
9996-469: The other forces, with only the electromagnetic force and weak nuclear force remaining unified. Inflation stopped locally at around 10 to 10 seconds, with the observable universe's volume having increased by a factor of at least 10 . Reheating followed as the inflaton field decayed, until the universe obtained the temperatures required for the production of a quark–gluon plasma as well as all other elementary particles . Temperatures were so high that
10115-427: The past all the mass of the universe was concentrated into a single point, a "primeval atom" where and when the fabric of time and space came into existence. In the 1920s and 1930s, almost every major cosmologist preferred an eternal steady-state universe, and several complained that the beginning of time implied by the Big Bang imported religious concepts into physics; this objection was later repeated by supporters of
10234-512: The photon radiation . The recombination epoch began after about 379,000 years, when the electrons and nuclei combined into atoms (mostly hydrogen ), which were able to emit radiation. This relic radiation, which continued through space largely unimpeded, is known as the cosmic microwave background. After the recombination epoch, the slightly denser regions of the uniformly distributed matter gravitationally attracted nearby matter and thus grew even denser, forming gas clouds, stars, galaxies, and
10353-506: The picture becomes less speculative, since particle energies drop to values that can be attained in particle accelerators . At about 10 seconds, quarks and gluons combined to form baryons such as protons and neutrons . The small excess of quarks over antiquarks led to a small excess of baryons over antibaryons. The temperature was no longer high enough to create either new proton–antiproton or neutron–antineutron pairs. A mass annihilation immediately followed, leaving just one in 10 of
10472-534: The position of galaxies in three dimensions, which involves combining location information about the galaxies with distance information from redshifts . Two years later, astronomers Roger G. Clowes and Luis E. Campusano discovered the Clowes–Campusano LQG , a large quasar group measuring two billion light-years at its widest point, which was the largest known structure in the universe at the time of its announcement. In April 2003, another large-scale structure
10591-481: The precise values of the Hubble Constant and the matter-density of the universe (before the discovery of dark energy, thought to be the key predictor for the eventual fate of the universe ). In the mid-1990s, observations of certain globular clusters appeared to indicate that they were about 15 billion years old, which conflicted with most then-current estimates of the age of the universe (and indeed with
10710-461: The predominance of matter over antimatter in the present universe. The universe continued to decrease in density and fall in temperature, hence the typical energy of each particle was decreasing. Symmetry-breaking phase transitions put the fundamental forces of physics and the parameters of elementary particles into their present form, with the electromagnetic force and weak nuclear force separating at about 10 seconds. After about 10 seconds,
10829-427: The random motions of particles were at relativistic speeds , and particle–antiparticle pairs of all kinds were being continuously created and destroyed in collisions. At some point, an unknown reaction called baryogenesis violated the conservation of baryon number , leading to a very small excess of quarks and leptons over antiquarks and antileptons—of the order of one part in 30 million. This resulted in
10948-421: The redshift of photon decoupling as z = 1 091 .64 ± 0.47 , which implies that the scale factor at the time of photon decoupling would be 1 ⁄ 1092.64 . So if the matter that originally emitted the oldest CMBR photons has a present distance of 46 billion light-years, then the distance would have been only about 42 million light-years at the time of decoupling. The light-travel distance to
11067-410: The singularity. In some proposals, such as the emergent Universe models, the singularity is replaced by another cosmological epoch. A different approach identifies the initial singularity as a singularity predicted by some models of the Big Bang theory to have existed before the Big Bang event. This primordial singularity is itself sometimes called "the Big Bang", but the term can also refer to
11186-490: The size of the observable universe , the Hubble redshift can be thought of as the Doppler shift corresponding to the recession velocity v {\displaystyle v} . For distances comparable to the size of the observable universe, the attribution of the cosmological redshift becomes more ambiguous, although its interpretation as a kinematic Doppler shift remains the most natural one. An unexplained discrepancy with
11305-478: The sky, it is located within the region of the constellations Corvus , Hydra and Centaurus . It is approximately 1/60 of the diameter of the observable universe , making it the sixth largest known object after the large quasar groups Clowes-Campusano LQG , U1.11 , Huge-LQG , the Giant GRB Ring and the galaxy filament Hercules–Corona Borealis Great Wall (Her-CrB GW), respectively. The Sloan Great Wall
11424-552: The spectra of light from quasars , which are interpreted as indicating the existence of huge thin sheets of intergalactic (mostly hydrogen ) gas. These sheets appear to collapse into filaments, which can feed galaxies as they grow where filaments either cross or are dense. An early direct evidence for this cosmic web of gas was the 2019 detection, by astronomers from the RIKEN Cluster for Pioneering Research in Japan and Durham University in
11543-406: The steady-state theory. This perception was enhanced by the fact that the originator of the Big Bang concept, Lemaître, was a Roman Catholic priest. Arthur Eddington agreed with Aristotle that the universe did not have a beginning in time, viz ., that matter is eternal . A beginning in time was "repugnant" to him. Lemaître, however, disagreed: If the world has begun with a single quantum ,
11662-459: The surface of last scattering for neutrinos and gravitational waves . Big Bang The Big Bang is a physical theory that describes how the universe expanded from an initial state of high density and temperature . The notion of an expanding universe was first scientifically originated by physicist Alexander Friedmann in 1922 with the mathematical derivation of the Friedmann equations . The earliest empirical observation of
11781-447: The temperature was about a billion kelvin and the density of matter in the universe was comparable to the current density of Earth's atmosphere, neutrons combined with protons to form the universe's deuterium and helium nuclei in a process called Big Bang nucleosynthesis (BBN). Most protons remained uncombined as hydrogen nuclei. As the universe cooled, the rest energy density of matter came to gravitationally dominate that of
11900-465: The term "Big Bang" during a talk for a March 1949 BBC Radio broadcast, saying: "These theories were based on the hypothesis that all the matter in the universe was created in one big bang at a particular time in the remote past." However, it did not catch on until the 1970s. It is popularly reported that Hoyle, who favored an alternative " steady-state " cosmological model, intended this to be pejorative, but Hoyle explicitly denied this and said it
12019-476: The time the light was emitted. For example, the cosmic microwave background radiation that we see right now was emitted at the time of photon decoupling , estimated to have occurred about 380,000 years after the Big Bang, which occurred around 13.8 billion years ago. This radiation was emitted by matter that has, in the intervening time, mostly condensed into galaxies, and those galaxies are now calculated to be about 46 billion light-years from Earth. To estimate
12138-452: The total energy density of the present day universe is in this form. When the universe was very young it was likely infused with dark energy, but with everything closer together, gravity predominated, braking the expansion. Eventually, after billions of years of expansion, the declining density of matter relative to the density of dark energy allowed the expansion of the universe to begin to accelerate. Dark energy in its simplest formulation
12257-416: The universe has no overall geometric curvature due to gravitational influence. Microscopic quantum fluctuations that occurred because of Heisenberg's uncertainty principle were "frozen in" by inflation, becoming amplified into the seeds that would later form the large-scale structure of the universe. At a time around 10 seconds, the electroweak epoch begins when the strong nuclear force separates from
12376-400: The universe cooled sufficiently to allow the formation of subatomic particles , and later atoms . The unequal abundances of matter and antimatter that allowed this to occur is an unexplained effect known as baryon asymmetry . These primordial elements—mostly hydrogen , with some helium and lithium —later coalesced through gravity , forming early stars and galaxies. Astronomers observe
12495-422: The universe has a finite age, and light travels at a finite speed, there may be events in the past whose light has not yet had time to reach earth. This places a limit or a past horizon on the most distant objects that can be observed. Conversely, because space is expanding, and more distant objects are receding ever more quickly, light emitted by us today may never "catch up" to very distant objects. This defines
12614-490: The universe is uniformly expanding everywhere. This cosmic expansion was predicted from general relativity by Friedmann in 1922 and Lemaître in 1927, well before Hubble made his 1929 analysis and observations, and it remains the cornerstone of the Big Bang model as developed by Friedmann, Lemaître, Robertson, and Walker. The theory requires the relation v = H D {\displaystyle v=HD} to hold at all times, where D {\displaystyle D}
12733-433: The universe, known as the flatness problem , is explained through cosmic inflation : a sudden and very rapid expansion of space during the earliest moments. Extrapolating this cosmic expansion backward in time using the known laws of physics , the models describe an increasingly concentrated cosmos preceded by a singularity in which space and time lose meaning (typically named "the Big Bang singularity"). Physics lacks
12852-533: The universe. It is difficult to test this hypothesis experimentally because different images of a galaxy would show different eras in its history, and consequently might appear quite different. Bielewicz et al. claim to establish a lower bound of 27.9 gigaparsecs (91 billion light-years) on the diameter of the last scattering surface. This value is based on matching-circle analysis of the WMAP 7-year data. This approach has been disputed. The comoving distance from Earth to
12971-403: The universe. The most famous horizon is the particle horizon which sets a limit on the precise distance that can be seen due to the finite age of the universe . Additional horizons are associated with the possible future extent of observations, larger than the particle horizon owing to the expansion of space , an "optical horizon" at the surface of last scattering , and associated horizons with
13090-449: The validity of the theory are the expansion of the universe according to Hubble's law (as indicated by the redshifts of galaxies), discovery and measurement of the cosmic microwave background and the relative abundances of light elements produced by Big Bang nucleosynthesis (BBN). More recent evidence includes observations of galaxy formation and evolution , and the distribution of large-scale cosmic structures . These are sometimes called
13209-431: The various wavelength bands of electromagnetic radiation (in particular 21-cm emission ) have yielded much information on the content and character of the universe 's structure. The organization of structure appears to follow a hierarchical model with organization up to the scale of superclusters and filaments . Larger than this (at scales between 30 and 200 megaparsecs), there seems to be no continued structure,
13328-473: Was Lemaître's Big Bang theory, advocated and developed by George Gamow , who introduced BBN and whose associates, Ralph Alpher and Robert Herman , predicted the CMB. Ironically, it was Hoyle who coined the phrase that came to be applied to Lemaître's theory, referring to it as "this big bang idea" during a BBC Radio broadcast in March 1949. For a while, support was split between these two theories. Eventually,
13447-463: Was discovered, the Giant Void , which measures 1.3 billion light-years across. Based on redshift survey data, in 1989 Margaret Geller and John Huchra discovered the " Great Wall ", a sheet of galaxies more than 500 million light-years long and 200 million light-years wide, but only 15 million light-years thick. The existence of this structure escaped notice for so long because it requires locating
13566-478: Was discovered, the Sloan Great Wall . In August 2007, a possible supervoid was detected in the constellation Eridanus . It coincides with the ' CMB cold spot ', a cold region in the microwave sky that is highly improbable under the currently favored cosmological model. This supervoid could cause the cold spot, but to do so it would have to be improbably big, possibly a billion light-years across, almost as big as
13685-450: Was found to have a redshift of 8.2, which indicates that the collapsing star that caused it exploded when the universe was only 630 million years old. The burst happened approximately 13 billion years ago, so a distance of about 13 billion light-years was widely quoted in the media, or sometimes a more precise figure of 13.035 billion light-years. This would be the "light travel distance" (see Distance measures (cosmology) ) rather than
13804-411: Was just a striking image meant to highlight the difference between the two models. Helge Kragh writes that the evidence for the claim that it was meant as a pejorative is "unconvincing", and mentions a number of indications that it was not a pejorative. The term itself has been argued to be a misnomer because it evokes an explosion. The argument is that whereas an explosion suggests expansion into
13923-419: Was proposed to explain. Assuming dark energy remains constant (an unchanging cosmological constant ) so that the expansion rate of the universe continues to accelerate, there is a "future visibility limit" beyond which objects will never enter the observable universe at any time in the future because light emitted by objects outside that limit could never reach the Earth. Note that, because the Hubble parameter
14042-417: Was the first identification of a large-scale structure, and has expanded the information about the known grouping of matter in the universe. In 1987, Robert Brent Tully identified the Pisces–Cetus Supercluster Complex , the galaxy filament in which the Milky Way resides. It is about 1 billion light-years across. That same year, an unusually large region with a much lower than average distribution of galaxies
14161-474: Was very rapidly expanding and cooling. The period up to 10 seconds into the expansion, the Planck epoch , was a phase in which the four fundamental forces —the electromagnetic force , the strong nuclear force , the weak nuclear force , and the gravitational force , were unified as one. In this stage, the characteristic scale length of the universe was the Planck length , 1.6 × 10 m , and consequently had
#768231