Misplaced Pages

Skif

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

The Skif , also known as the Stugna-P or Stuhna-P , is a Ukrainian anti-tank guided missile (ATGM) system developed in the early 2010s by the Luch Design Bureau , a unit of UkrOboronProm . The initial guidance device PN-S (ПН-С) of the Skif was developed and manufactured by Belarusian design bureau Peleng based in Minsk .

#554445

77-571: Skif or SKIF may refer to: Skif (ATGM) , a Ukrainian anti-tank guided missile system SKIF Nizhny Novgorod , a professional ice hockey team in Nizhny Novgorod, Russia Skif Paragliding , a Ukrainian paraglider manufacturer Sotsyalistishe Kinder Farband (S.K.I.F.), a Jewish Socialist political party and the youth organization of the Jewish Labour Bund Skif, an alternative name for

154-519: A gain medium , a mechanism to energize it, and something to provide optical feedback . The gain medium is a material with properties that allow it to amplify light by way of stimulated emission. Light of a specific wavelength that passes through the gain medium is amplified (power increases). Feedback enables stimulated emission to amplify predominantly the optical frequency at the peak of the gain-frequency curve. As stimulated emission grows, eventually one frequency dominates over all others, meaning that

231-471: A lens system, as is always included, for instance, in a laser pointer whose light originates from a laser diode . That is possible due to the light being of a single spatial mode. This unique property of laser light, spatial coherence , cannot be replicated using standard light sources (except by discarding most of the light) as can be appreciated by comparing the beam from a flashlight (torch) or spotlight to that of almost any laser. A laser beam profiler

308-464: A 2014 article, SLX-Hawk thermal imaging camera produced by Selex ES can be installed for use at night and in poor visibility conditions. The Ukrainian military only uses the 130 mm caliber missiles, as the 152 mm versions were made to compete against the Russian Kornet-EM on the export market. The upgraded Skif-M was unveiled in 2022, which has improvements such as a lighter tripod,

385-405: A Russian tank at 5,300 meters (300 m beyond the nominal maximum range of 5 km). Laser A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation . The word laser is an anacronym that originated as an acronym for light amplification by stimulated emission of radiation . The first laser

462-464: A broad spectrum of light or emit different wavelengths of light simultaneously. Certain lasers are not single spatial mode and have light beams that diverge more than is required by the diffraction limit . All such devices are classified as "lasers" based on the method of producing light by stimulated emission. Lasers are employed where light of the required spatial or temporal coherence can not be produced using simpler technologies. A laser consists of

539-504: A chain reaction. The materials chosen for lasers are the ones that have metastable states , which stay excited for a relatively long time. In laser physics , such a material is called an active laser medium . Combined with an energy source that continues to "pump" energy into the material, it is possible to have enough atoms or molecules in an excited state for a chain reaction to develop. Lasers are distinguished from other light sources by their coherence . Spatial (or transverse) coherence

616-436: A coherent beam has been formed. The process of stimulated emission is analogous to that of an audio oscillator with positive feedback which can occur, for example, when the speaker in a public-address system is placed in proximity to the microphone. The screech one hears is audio oscillation at the peak of the gain-frequency curve for the amplifier. For the gain medium to amplify light, it needs to be supplied with energy in

693-419: A device lacks the spatial and temporal coherence achievable with lasers. Such a device cannot be described as an oscillator but rather as a high-gain optical amplifier that amplifies its spontaneous emission. The same mechanism describes so-called astrophysical masers /lasers. The optical resonator is sometimes referred to as an "optical cavity", but this is a misnomer: lasers use open resonators as opposed to

770-485: A few unique advantages over those weapons. It possesses a longer range overall, flies significantly faster, and is harder to jam due to its SACLOS laser guidance. However, it weighs significantly more than those weapons and cannot be operated by a lone operator. As the war has moved to the Donbas and fighting has changed from wooded areas to open plains, the missile has been fitted to light vehicles to make it mobile. The Skif

847-508: A gain medium must have a gain bandwidth sufficiently broad to amplify those frequencies. An example of a suitable material is titanium -doped, artificially grown sapphire ( Ti:sapphire ), which has a very wide gain bandwidth and can thus produce pulses of only a few femtoseconds duration. Such mode-locked lasers are a most versatile tool for researching processes occurring on extremely short time scales (known as femtosecond physics, femtosecond chemistry and ultrafast science ), for maximizing

SECTION 10

#1732855841555

924-480: A given pulse energy, this requires creating pulses of the shortest possible duration utilizing techniques such as Q-switching . The optical bandwidth of a pulse cannot be narrower than the reciprocal of the pulse width. In the case of extremely short pulses, that implies lasing over a considerable bandwidth, quite contrary to the very narrow bandwidths typical of CW lasers. The lasing medium in some dye lasers and vibronic solid-state lasers produces optical gain over

1001-399: A higher energy level with energy difference ΔE, it will not stay that way forever. Eventually, a photon will be spontaneously created from the vacuum having energy ΔE. Conserving energy, the electron transitions to a lower energy level that is not occupied, with transitions to different levels having different time constants. This process is called spontaneous emission . Spontaneous emission is

1078-904: A laser beam to stay narrow over great distances ( collimation ), a feature used in applications such as laser pointers , lidar , and free-space optical communication . Lasers can also have high temporal coherence , which permits them to emit light with a very narrow frequency spectrum . Temporal coherence can also be used to produce ultrashort pulses of light with a broad spectrum but durations as short as an attosecond . Lasers are used in optical disc drives , laser printers , barcode scanners , DNA sequencing instruments , fiber-optic and free-space optical communications, semiconductor chip manufacturing ( photolithography , etching ), laser surgery and skin treatments, cutting and welding materials, military and law enforcement devices for marking targets and measuring range and speed, and in laser lighting displays for entertainment. Semiconductor lasers in

1155-471: A laser beam, it is highly collimated : the wavefronts are planar, normal to the direction of propagation, with no beam divergence at that point. However, due to diffraction , that can only remain true well within the Rayleigh range . The beam of a single transverse mode (gaussian beam) laser eventually diverges at an angle that varies inversely with the beam diameter, as required by diffraction theory. Thus,

1232-471: A laser is normally a material of controlled purity, size, concentration, and shape, which amplifies the beam by the process of stimulated emission described above. This material can be of any state : gas, liquid, solid, or plasma . The gain medium absorbs pump energy, which raises some electrons into higher energy (" excited ") quantum states . Particles can interact with light by either absorbing or emitting photons. Emission can be spontaneous or stimulated. In

1309-418: A multi-level system as a method for obtaining the population inversion, later a main method of laser pumping. Townes reports that several eminent physicists—among them Niels Bohr , John von Neumann , and Llewellyn Thomas —argued the maser violated Heisenberg's uncertainty principle and hence could not work. Others such as Isidor Rabi and Polykarp Kusch expected that it would be impractical and not worth

1386-441: A process called pumping . The energy is typically supplied as an electric current or as light at a different wavelength. Pump light may be provided by a flash lamp or by another laser. The most common type of laser uses feedback from an optical cavity —a pair of mirrors on either end of the gain medium. Light bounces back and forth between the mirrors, passing through the gain medium and being amplified each time. Typically one of

1463-462: A quantum-mechanical effect and a direct physical manifestation of the Heisenberg uncertainty principle . The emitted photon has a random direction, but its wavelength matches the absorption wavelength of the transition. This is the mechanism of fluorescence and thermal emission . A photon with the correct wavelength to be absorbed by a transition can also cause an electron to drop from the higher to

1540-735: A revised traverse and elevation housing, a new lightweight remote-control panel, new batteries to power the launcher and panel, and the new PN-U sighting and guidance unit (SGU) which includes a laser rangefinder . The Luch Design Bureau said the Skif-M had been delivered to the Ukrainian armed forces in September 2023. The launcher can fire three types of ammunition, with two different calibers. System configuration with 130 mm missiles using RK-2S and RK-2OF warheads. System configuration with 152 mm missiles using RK-2M-K and RK-2М-OF warheads: SERDAR

1617-432: A seminar on this idea, and Charles H. Townes asked him for a copy of the paper. In 1953, Charles H. Townes and graduate students James P. Gordon and Herbert J. Zeiger produced the first microwave amplifier, a device operating on similar principles to the laser, but amplifying microwave radiation rather than infrared or visible radiation. Townes's maser was incapable of continuous output. Meanwhile, in

SECTION 20

#1732855841555

1694-431: A small volume of material at the surface of a workpiece can be evaporated if it is heated in a very short time, while supplying the energy gradually would allow for the heat to be absorbed into the bulk of the piece, never attaining a sufficiently high temperature at a particular point. Other applications rely on the peak pulse power (rather than the energy in the pulse), especially to obtain nonlinear optical effects. For

1771-430: A wide bandwidth, making a laser possible that can thus generate pulses of light as short as a few femtoseconds (10 s). In a Q-switched laser, the population inversion is allowed to build up by introducing loss inside the resonator which exceeds the gain of the medium; this can also be described as a reduction of the quality factor or 'Q' of the cavity. Then, after the pump energy stored in the laser medium has approached

1848-492: A wide range of technologies addressing many different motivations. Some lasers are pulsed simply because they cannot be run in continuous mode. In other cases, the application requires the production of pulses having as large an energy as possible. Since the pulse energy is equal to the average power divided by the repetition rate, this goal can sometimes be satisfied by lowering the rate of pulses so that more energy can be built up between pulses. In laser ablation , for example,

1925-421: Is a briefcase-like laptop computer with a control panel, holding a small joystick and a flat-panel display , that is connected to the firing unit by a cable, allowing it be used at distances up to 50 metres (160 ft) away. Two firing modes are available: manual, and fire-and-forget. Fire-and-forget provides automatic control of the missile flight using a targeting laser beam. A three to four-person team

2002-517: Is a stabilized remote controlled weapon station (RCWS). The system was developed jointly by the Luch Design Bureau, Turkish company Aselsan , and SpetsTechnoExport, part of Ukraine's Ukroboronprom enterprise. The system carries two (in some versions four) 130 mm or 152 mm missiles with RK-2S or RK-2M-K tandem-charge HEAT warheads. The system is also equipped with 12.7 mm and 7.62 mm caliber machine guns. A joint company for

2079-404: Is a transition between energy levels that match the energy carried by the photon or phonon. For light, this means that any given transition will only absorb one particular wavelength of light. Photons with the correct wavelength can cause an electron to jump from the lower to the higher energy level. The photon is consumed in this process. When an electron is excited from one state to that at

2156-477: Is also required for three-level lasers in which the lower energy level rapidly becomes highly populated, preventing further lasing until those atoms relax to the ground state. These lasers, such as the excimer laser and the copper vapor laser, can never be operated in CW mode. In 1917, Albert Einstein established the theoretical foundations for the laser and the maser in the paper " Zur Quantentheorie der Strahlung " ("On

2233-583: Is being used in the same way US forces used the TOW missile system in the 1980s and the Gulf War Desert Patrol Vehicle . On 25 April, near Izyum, during one engagement four tanks were destroyed or damaged in 4 minutes by the same Skif operator. Many of the missiles were to be exported to Middle Eastern countries. However, upon the outbreak of war these export models were used by Ukrainian soldiers. According to Ukrainian soldiers, one missile has hit

2310-413: Is called an optical amplifier . When an optical amplifier is placed inside a resonant optical cavity, one obtains a laser. For lasing media with extremely high gain, so-called superluminescence , light can be sufficiently amplified in a single pass through the gain medium without requiring a resonator. Although often referred to as a laser (see, for example, nitrogen laser ), the light output from such

2387-403: Is different from Wikidata All article disambiguation pages All disambiguation pages Skif (ATGM) The Skif is designed to destroy modern armored targets with combined carried or monolithic armor, including explosive reactive armor (ERA). The Skif can attack both stationary and moving targets. It can be used to attack from both long range (up to 5 kilometres [3.1 mi] in

Skif - Misplaced Pages Continue

2464-462: Is emitted by stimulated emission is identical to the photon that triggered its emission, and both photons can go on to trigger stimulated emission in other atoms, creating the possibility of a chain reaction . For this to happen, many of the atoms or molecules must be in the proper excited state so that the photons can trigger them. In most materials, atoms or molecules drop out of excited states fairly rapidly, making it difficult or impossible to produce

2541-421: Is formed by single-frequency quantum photon states distributed according to a Poisson distribution . As a result, the arrival rate of photons in a laser beam is described by Poisson statistics. Many lasers produce a beam that can be approximated as a Gaussian beam ; such beams have the minimum divergence possible for a given beam diameter. Some lasers, particularly high-power ones, produce multimode beams, with

2618-443: Is frequently used in the field, meaning "to give off coherent light," especially about the gain medium of a laser; when a laser is operating, it is said to be " lasing ". The terms laser and maser are also used for naturally occurring coherent emissions, as in astrophysical maser and atom laser . A laser that produces light by itself is technically an optical oscillator rather than an optical amplifier as suggested by

2695-421: Is impossible. In some other lasers, it would require pumping the laser at a very high continuous power level, which would be impractical, or destroying the laser by producing excessive heat. Such lasers cannot be run in CW mode. The pulsed operation of lasers refers to any laser not classified as a continuous wave so that the optical power appears in pulses of some duration at some repetition rate. This encompasses

2772-405: Is not the result of random thermal processes. Instead, the release of a photon is triggered by the nearby passage of another photon. This is called stimulated emission . For this process to work, the passing photon must be similar in energy, and thus wavelength, to the one that could be released by the atom or molecule, and the atom or molecule must be in the suitable excited state. The photon that

2849-599: Is optimal for deploying the Skif. Operators require specially-made backpacks. Once the missile is fired, the operator controls the Skif and corrects the aim when needed, by using the joystick on the remote control. The Skif's system has a shelf life of 15 years. The missiles have a 10-year shelf life. The system comes complete with 130 mm and 152 mm caliber missiles in transport and launching containers. Tandem charge high-explosive anti-tank (HEAT) RK-2S warheads might be able to counter medium weight main battle tanks such as

2926-489: Is to heat an object; some of the thermal energy being applied to the object will cause the molecules and electrons within the object to gain energy, which is then lost through thermal radiation , that we see as light. This is the process that causes a candle flame to give off light. Thermal radiation is a random process, and thus the photons emitted have a range of different wavelengths , travel in different directions, and are released at different times. The energy within

3003-504: Is to pump the laser material with a source that is itself pulsed, either through electronic charging in the case of flash lamps, or another laser that is already pulsed. Pulsed pumping was historically used with dye lasers where the inverted population lifetime of a dye molecule was so short that a high-energy, fast pump was needed. The way to overcome this problem was to charge up large capacitors which are then switched to discharge through flashlamps, producing an intense flash. Pulsed pumping

3080-441: Is typically expressed through the output being a narrow beam, which is diffraction-limited . Laser beams can be focused to very tiny spots, achieving a very high irradiance , or they can have a very low divergence to concentrate their power at a great distance. Temporal (or longitudinal) coherence implies a polarized wave at a single frequency, whose phase is correlated over a relatively great distance (the coherence length ) along

3157-430: Is used to measure the intensity profile, width, and divergence of laser beams. Diffuse reflection of a laser beam from a matte surface produces a speckle pattern with interesting properties. The mechanism of producing radiation in a laser relies on stimulated emission , where energy is extracted from a transition in an atom or molecule. This is a quantum phenomenon that was predicted by Albert Einstein , who derived

Skif - Misplaced Pages Continue

3234-578: The 2022 Russian invasion of Ukraine beginning in February alongside anti-tank systems provided by NATO countries such as the FGM-148 Javelin (US), NLAW (UK/Sweden), and Akeron MP (France). On April 5, 2022, Ukrainian forces used the missile system to down a Russian Kamov Ka-52 attack helicopter . Although not as advanced as fire and forget systems such as Javelin, or Akeron MP, the Stugna-P possesses

3311-652: The Stugna 100-mm gun-launched anti-tank missile. Skif ( Ukrainian : скіф ) is the Ukrainian word for Scythian . The name Stugna-P (Russian) or Stuhna-P ( Ukrainian : Стугна-П ) is after the river Stuhna , a right tributary of the Dnipro . The Skif consists of a tripod , PDU-215 remote control panel, guidance device, and thermographic camera (thermal imager). Each round of ammunition comes in its own canister of either 130 or 152 mm diameter. The PDU-215 control panel

3388-578: The T-90 A with penetration of 800 millimetres (31 in) behind ERA . RK-2M-K warheads might be able to counter heavy main battle tanks such as M1A2 Abrams with their penetration of 1,100 millimetres (43 in) behind ERA. The system also includes high explosive (HE) fragmentation RK-2OF and RK-2М-OF warheads to attack infantry positions and light armored vehicles. The system can use all four types of missiles with no modification. The system's thermal imager can be used during night operations . According to

3465-410: The phase of the emitted light is 90 degrees in lead of the stimulating light. This, combined with the filtering effect of the optical resonator gives laser light its characteristic coherence, and may give it uniform polarization and monochromaticity, depending on the resonator's design. The fundamental laser linewidth of light emitted from the lasing resonator can be orders of magnitude narrower than

3542-421: The transverse modes often approximated using Hermite – Gaussian or Laguerre -Gaussian functions. Some high-power lasers use a flat-topped profile known as a " tophat beam ". Unstable laser resonators (not used in most lasers) produce fractal-shaped beams. Specialized optical systems can produce more complex beam geometries, such as Bessel beams and optical vortexes . Near the "waist" (or focal region ) of

3619-497: The "pencil beam" directly generated by a common helium–neon laser would spread out to a size of perhaps 500 kilometers when shone on the Moon (from the distance of the Earth). On the other hand, the light from a semiconductor laser typically exits the tiny crystal with a large divergence: up to 50°. However even such a divergent beam can be transformed into a similarly collimated beam employing

3696-670: The Quantum Theory of Radiation") via a re-derivation of Max Planck 's law of radiation, conceptually based upon probability coefficients ( Einstein coefficients ) for the absorption, spontaneous emission, and stimulated emission of electromagnetic radiation. In 1928, Rudolf W. Ladenburg confirmed the existence of the phenomena of stimulated emission and negative absorption. In 1939, Valentin A. Fabrikant predicted using stimulated emission to amplify "short" waves. In 1947, Willis E. Lamb and R.   C.   Retherford found apparent stimulated emission in hydrogen spectra and effected

3773-503: The Soviet Union, Nikolay Basov and Aleksandr Prokhorov were independently working on the quantum oscillator and solved the problem of continuous-output systems by using more than two energy levels. These gain media could release stimulated emissions between an excited state and a lower excited state, not the ground state, facilitating the maintenance of a population inversion . In 1955, Prokhorov and Basov suggested optical pumping of

3850-772: The Soviet spacecraft Polyus (spacecraft) Skif PLUS (Skif Dnipropetrovsk Oblast Organization of Scouts), a Ukrainian scouting organization in Dnipropetrovsk Oblast Skifterat , a nickname of the professional football club KF Gjilani based in Gjilan, Kosovo Sergey Kuryokhin International Festival (SKIF), a music festival in the Kuryokhin Center of Saint Petersburg, Russia See also [ edit ] Skiff (disambiguation) Topics referred to by

3927-614: The acronym. It has been humorously noted that the acronym LOSER, for "light oscillation by stimulated emission of radiation", would have been more correct. With the widespread use of the original acronym as a common noun, optical amplifiers have come to be referred to as laser amplifiers . Modern physics describes light and other forms of electromagnetic radiation as the group behavior of fundamental particles known as photons . Photons are released and absorbed through electromagnetic interactions with other fundamental particles that carry electric charge . A common way to release photons

SECTION 50

#1732855841555

4004-476: The beam. A beam produced by a thermal or other incoherent light source has an instantaneous amplitude and phase that vary randomly with respect to time and position, thus having a short coherence length. Lasers are characterized according to their wavelength in a vacuum . Most "single wavelength" lasers produce radiation in several modes with slightly different wavelengths. Although temporal coherence implies some degree of monochromaticity , some lasers emit

4081-425: The blue to near-UV have also been used in place of light-emitting diodes (LEDs) to excite fluorescence as a white light source; this permits a much smaller emitting area due to the much greater radiance of a laser and avoids the droop suffered by LEDs; such devices are already used in some car headlamps . The first device using amplification by stimulated emission operated at microwave frequencies, and

4158-431: The daytime) and close range (100 metres; 330 ft). It can attack point targets such as weapon emplacements, lightly armored objects, and hovering helicopters. The Skif has two targeting modes: manually steered, and automated fire-and-forget that uses no manual tracking of a target. In 2018, an upgraded export variant of the Skif was tested by the Ukrainian military . The Skif ATGM system should not be confused with

4235-561: The effect of nonlinearity in optical materials (e.g. in second-harmonic generation , parametric down-conversion , optical parametric oscillators and the like). Unlike the giant pulse of a Q-switched laser, consecutive pulses from a mode-locked laser are phase-coherent; that is, the pulses (and not just their envelopes ) are identical and perfectly periodic. For this reason, and the extremely large peak powers attained by such short pulses, such lasers are invaluable in certain areas of research. Another method of achieving pulsed laser operation

4312-595: The first demonstration of stimulated emission. In 1950, Alfred Kastler (Nobel Prize for Physics 1966) proposed the method of optical pumping , which was experimentally demonstrated two years later by Brossel, Kastler, and Winter. In 1951, Joseph Weber submitted a paper on using stimulated emissions to make a microwave amplifier to the June 1952 Institute of Radio Engineers Vacuum Tube Research Conference in Ottawa , Ontario, Canada. After this presentation, RCA asked Weber to give

4389-422: The laser power inside the cavity; this equilibrium determines the operating point of the laser. If the applied pump power is too small, the gain will never be sufficient to overcome the cavity losses, and laser light will not be produced. The minimum pump power needed to begin laser action is called the lasing threshold . The gain medium will amplify any photons passing through it, regardless of direction; but only

4466-501: The lasing medium or pumping mechanism, then it is still classified as a "modulated" or "pulsed" continuous wave laser. Most laser diodes used in communication systems fall into that category. Some applications of lasers depend on a beam whose output power is constant over time. Such a laser is known as a continuous-wave ( CW ) laser. Many types of lasers can be made to operate in continuous-wave mode to satisfy such an application. Many of these lasers lase in several longitudinal modes at

4543-414: The latter case, the photon is emitted in the same direction as the light that is passing by. When the number of particles in one excited state exceeds the number of particles in some lower-energy state, population inversion is achieved. In this state, the rate of stimulated emission is larger than the rate of absorption of light in the medium, and therefore the light is amplified. A system with this property

4620-503: The linewidth of light emitted from the passive resonator. Some lasers use a separate injection seeder to start the process off with a beam that is already highly coherent. This can produce beams with a narrower spectrum than would otherwise be possible. In 1963, Roy J. Glauber showed that coherent states are formed from combinations of photon number states, for which he was awarded the Nobel Prize in physics . A coherent beam of light

4697-402: The literal cavity that would be employed at microwave frequencies in a maser . The resonator typically consists of two mirrors between which a coherent beam of light travels in both directions, reflecting on itself so that an average photon will pass through the gain medium repeatedly before it is emitted from the output aperture or lost to diffraction or absorption. If the gain (amplification) in

SECTION 60

#1732855841555

4774-522: The lower level, emitting a new photon. The emitted photon exactly matches the original photon in wavelength, phase, and direction. This process is called stimulated emission. The gain medium is put into an excited state by an external source of energy. In most lasers, this medium consists of a population of atoms that have been excited into such a state using an outside light source, or an electrical field that supplies energy for atoms to absorb and be transformed into their excited states. The gain medium of

4851-412: The maximum possible level, the introduced loss mechanism (often an electro- or acousto-optical element) is rapidly removed (or that occurs by itself in a passive device), allowing lasing to begin which rapidly obtains the stored energy in the gain medium. This results in a short pulse incorporating that energy, and thus a high peak power. A mode-locked laser is capable of emitting extremely short pulses on

4928-498: The medium is larger than the resonator losses, then the power of the recirculating light can rise exponentially . But each stimulated emission event returns an atom from its excited state to the ground state, reducing the gain of the medium. With increasing beam power, the net gain (gain minus loss) reduces to unity and the gain medium is said to be saturated. In a continuous wave (CW) laser, the balance of pump power against gain saturation and cavity losses produces an equilibrium value of

5005-404: The object is not random, however: it is stored by atoms and molecules in " excited states ", which release photons with distinct wavelengths. This gives rise to the science of spectroscopy , which allows materials to be determined through the specific wavelengths that they emit. The underlying physical process creating photons in a laser is the same as in thermal radiation, but the actual emission

5082-451: The order of tens of picoseconds down to less than 10  femtoseconds . These pulses repeat at the round-trip time, that is, the time that it takes light to complete one round trip between the mirrors comprising the resonator. Due to the Fourier limit (also known as energy–time uncertainty ), a pulse of such short temporal length has a spectrum spread over a considerable bandwidth. Thus such

5159-418: The photons in a spatial mode supported by the resonator will pass more than once through the medium and receive substantial amplification. In most lasers, lasing begins with spontaneous emission into the lasing mode. This initial light is then amplified by stimulated emission in the gain medium. Stimulated emission produces light that matches the input signal in direction, wavelength, and polarization, whereas

5236-409: The power output is essentially continuous over time or whether its output takes the form of pulses of light on one or another time scale. Of course, even a laser whose output is normally continuous can be intentionally turned on and off at some rate to create pulses of light. When the modulation rate is on time scales much slower than the cavity lifetime and the period over which energy can be stored in

5313-468: The production of Skif missiles was established in Turkey and production began in early 2020. Shershen is a Belarusian ATGM based on Skif. It also has different types of 130 mm and 152 mm missiles. The missile system was used during the pre-2022 Russo-Ukrainian War by Ukrainian forces following first deliveries in 2018. However, it gained wider prominence against Russian Army forces during

5390-662: The properties of the emitted light, such as the polarization, wavelength, and shape of the beam. Electrons and how they interact with electromagnetic fields are important in our understanding of chemistry and physics . In the classical view , the energy of an electron orbiting an atomic nucleus is larger for orbits further from the nucleus of an atom . However, quantum mechanical effects force electrons to take on discrete positions in orbitals . Thus, electrons are found in specific energy levels of an atom, two of which are shown below: An electron in an atom can absorb energy from light ( photons ) or heat ( phonons ) only if there

5467-457: The relationship between the A coefficient , describing spontaneous emission, and the B coefficient which applies to absorption and stimulated emission. In the case of the free electron laser , atomic energy levels are not involved; it appears that the operation of this rather exotic device can be explained without reference to quantum mechanics . A laser can be classified as operating in either continuous or pulsed mode, depending on whether

5544-405: The same term [REDACTED] This disambiguation page lists articles associated with the title Skif . If an internal link led you here, you may wish to change the link to point directly to the intended article. Retrieved from " https://en.wikipedia.org/w/index.php?title=Skif&oldid=1167993844 " Category : Disambiguation pages Hidden categories: Short description

5621-410: The same time, and beats between the slightly different optical frequencies of those oscillations will produce amplitude variations on time scales shorter than the round-trip time (the reciprocal of the frequency spacing between modes), typically a few nanoseconds or less. In most cases, these lasers are still termed "continuous-wave" as their output power is steady when averaged over longer periods, with

5698-425: The two mirrors, the output coupler , is partially transparent. Some of the light escapes through this mirror. Depending on the design of the cavity (whether the mirrors are flat or curved ), the light coming out of the laser may spread out or form a narrow beam . In analogy to electronic oscillators , this device is sometimes called a laser oscillator . Most practical lasers contain additional elements that affect

5775-410: The very high-frequency power variations having little or no impact on the intended application. (However, the term is not applied to mode-locked lasers, where the intention is to create very short pulses at the rate of the round-trip time.) For continuous-wave operation, the population inversion of the gain medium needs to be continually replenished by a steady pump source. In some lasing media, this

5852-421: Was built in 1960 by Theodore Maiman at Hughes Research Laboratories , based on theoretical work by Charles H. Townes and Arthur Leonard Schawlow . A laser differs from other sources of light in that it emits light that is coherent . Spatial coherence allows a laser to be focused to a tight spot, enabling applications such as optical communication, laser cutting , and lithography . It also allows

5929-598: Was called a maser , for "microwave amplification by stimulated emission of radiation". When similar optical devices were developed they were first called optical masers , until "microwave" was replaced by "light" in the acronym, to become laser . Today, all such devices operating at frequencies higher than microwaves (approximately above 300 GHz ) are called lasers (e.g. infrared lasers , ultraviolet lasers , X-ray lasers , gamma-ray lasers ), whereas devices operating at microwave or lower radio frequencies are called masers. The back-formed verb " to lase "

#554445