Misplaced Pages

SAS Assegaai

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

SAS Assegaai , formerly known as SAS Johanna van der Merwe , was a Daphné -class submarine of the South African Navy . Decommissioned in 2003, SAS Assegaai is the only one of the former three Daphné -class submarines to have been retained for preservation as a museum boat, the other two have been cut up and sold for scrap. The Daphné -class submarines have since been replaced by the Type 209 , or Heroine-class submarines .

#809190

53-530: On 10 February 1967, after nearly two years of negotiations, an order was placed with the French Government to provide three Daphné (Dolphin)-class submarines in addition to providing the training and infrastructure to run and maintain them. The first of these submarines, SAS  Maria van Riebeeck , was launched on 18 March 1969 - the date accepted as being the birth of the SAN's submarine service. The second boat

106-464: A draft of 4.6 meters (15 ft 1 in). For surface running, the boat was powered by two SEMT Pielstick 1,300- brake-horsepower (969 kW) diesel engines , each driving a single propeller shaft. When submerged each propeller was driven by a 1,600-brake-horsepower (1,193 kW) electric motor . Spear could reach 13.5 knots (25.0 km/h; 15.5 mph) on the surface and 16 knots (30 km/h; 18 mph) underwater. While snorkelling ,

159-399: A ferromagnetic core. Electric current passing through the wire causes the magnetic field to exert a force ( Lorentz force ) on it, turning the rotor. Windings are coiled wires, wrapped around a laminated, soft, iron, ferromagnetic core so as to form magnetic poles when energized with current. Electric machines come in salient- and nonsalient-pole configurations. In a salient-pole motor

212-430: A magnetic field that passes through the rotor armature, exerting force on the rotor windings. The stator core is made up of many thin metal sheets that are insulated from each other, called laminations. These laminations are made of electrical steel , which has a specified magnetic permeability, hysteresis, and saturation. Laminations reduce losses that would result from induced circulating eddy currents that would flow if

265-404: A 100- horsepower induction motor currently has the same mounting dimensions as a 7.5-horsepower motor in 1897. In 2022, electric motor sales were estimated to be 800 million units, increasing by 10% annually. Electric motors consume ≈50% of the world's electricity. Since the 1980s, the market share of DC motors has declined in favor of AC motors. An electric motor has two mechanical parts:

318-431: A 20-hp squirrel cage and a 100-hp wound rotor with a starting rheostat. These were the first three-phase asynchronous motors suitable for practical operation. Since 1889, similar developments of three-phase machinery were started Wenström. At the 1891 Frankfurt International Electrotechnical Exhibition, the first long distance three-phase system was successfully presented. It was rated 15 kV and extended over 175 km from

371-464: A commutator-type direct-current electric motor was built by American inventors Thomas Davenport and Emily Davenport , which he patented in 1837. The motors ran at up to 600 revolutions per minute, and powered machine tools and a printing press. Due to the high cost of primary battery power , the motors were commercially unsuccessful and bankrupted the Davenports. Several inventors followed Sturgeon in

424-463: A comparatively small air gap. The St. Louis motor, long used in classrooms to illustrate motor principles, is inefficient for the same reason, as well as appearing nothing like a modern motor. Electric motors revolutionized industry. Industrial processes were no longer limited by power transmission using line shafts, belts, compressed air or hydraulic pressure. Instead, every machine could be equipped with its own power source, providing easy control at

477-422: A generator and the other as motor. The drum rotor was introduced by Friedrich von Hefner-Alteneck of Siemens & Halske to replace Pacinotti's ring armature in 1872, thus improving the machine efficiency. The laminated rotor was introduced by Siemens & Halske the following year, achieving reduced iron losses and increased induced voltages. In 1880, Jonas Wenström provided the rotor with slots for housing

530-437: A model electric vehicle that same year. A major turning point came in 1864, when Antonio Pacinotti first described the ring armature (although initially conceived in a DC generator, i.e. a dynamo). This featured symmetrically grouped coils closed upon themselves and connected to the bars of a commutator, the brushes of which delivered practically non-fluctuating current. The first commercially successful DC motors followed

583-1037: A power grid, inverters or electrical generators. Electric motors may be classified by considerations such as power source type, construction, application and type of motion output. They can be brushed or brushless , single-phase , two-phase , or three-phase , axial or radial flux , and may be air-cooled or liquid-cooled. Standardized motors provide power for industrial use. The largest are used for ship propulsion, pipeline compression and pumped-storage applications, with output exceeding 100 megawatts . Applications include industrial fans, blowers and pumps, machine tools, household appliances, power tools, vehicles, and disk drives. Small motors may be found in electric watches. In certain applications, such as in regenerative braking with traction motors , electric motors can be used in reverse as generators to recover energy that might otherwise be lost as heat and friction. Electric motors produce linear or rotary force ( torque ) intended to propel some external mechanism. This makes them

SECTION 10

#1733106901810

636-425: A rotating bar winding rotor. Steadfast in his promotion of three-phase development, Mikhail Dolivo-Dobrovolsky invented the three-phase induction motor in 1889, of both types cage-rotor and wound rotor with a starting rheostat, and the three-limb transformer in 1890. After an agreement between AEG and Maschinenfabrik Oerlikon , Doliwo-Dobrowolski and Charles Eugene Lancelot Brown developed larger models, namely

689-398: A solid core were used. Mains powered AC motors typically immobilize the wires within the windings by impregnating them with varnish in a vacuum. This prevents the wires in the winding from vibrating against each other which would abrade the wire insulation and cause premature failures. Resin-packed motors, used in deep well submersible pumps, washing machines, and air conditioners, encapsulate

742-579: A type of actuator . They are generally designed for continuous rotation, or for linear movement over a significant distance compared to its size. Solenoids also convert electrical power to mechanical motion, but over only a limited distance. Before modern electromagnetic motors, experimental motors that worked by electrostatic force were investigated. The first electric motors were simple electrostatic devices described in experiments by Scottish monk Andrew Gordon and American experimenter Benjamin Franklin in

795-488: A world record, which Jacobi improved four years later in September 1838. His second motor was powerful enough to drive a boat with 14 people across a wide river. It was also in 1839/40 that other developers managed to build motors with similar and then higher performance. In 1827–1828, Jedlik built a device using similar principles to those used in his electromagnetic self-rotors that was capable of useful work. He built

848-592: A wound rotor forming a self-starting induction motor , and the third a true synchronous motor with separately excited DC supply to rotor winding. One of the patents Tesla filed in 1887, however, also described a shorted-winding-rotor induction motor. George Westinghouse , who had already acquired rights from Ferraris (US$ 1,000), promptly bought Tesla's patents (US$ 60,000 plus US$ 2.50 per sold hp, paid until 1897), employed Tesla to develop his motors, and assigned C.F. Scott to help Tesla; however, Tesla left for other pursuits in 1889. The constant speed AC induction motor

901-584: Is a machine that converts electrical energy into mechanical energy . Most electric motors operate through the interaction between the motor's magnetic field and electric current in a wire winding to generate force in the form of torque applied on the motor's shaft. An electric generator is mechanically identical to an electric motor, but operates in reverse, converting mechanical energy into electrical energy. Electric motors can be powered by direct current (DC) sources, such as from batteries or rectifiers , or by alternating current (AC) sources, such as

954-652: The SAS Maria van Riebeeck , was a Daphné -class submarine of the South African Navy (SAN). Built in France during the 1960s, the boat was the SAN's first submarine. It was scrapped in June–July 2003. The submarine displaced 869 metric tons (855 long tons) surfaced and 1,043 metric tons (1,027 long tons) submerged. It measured 57.8 meters (189 ft 8 in) long, had a beam of 6.8 meters (22 ft 4 in) and

1007-552: The South African Border War , she took part in some ten clandestine special operations. During her career, she underwent four refits, which included installing additional fuel tanks, and the fitting of a locally developed RAKA combat suite in the 1980s, which replaced a cumbersome plotting table. In the late 1990s she received the South African developed NICKLES fully integrated software based combat suite and two state of

1060-471: The South Side Elevated Railroad , where it became popularly known as the " L ". Sprague's motor and related inventions led to an explosion of interest and use in electric motors for industry. The development of electric motors of acceptable efficiency was delayed for several decades by failure to recognize the extreme importance of an air gap between the rotor and stator. Efficient designs have

1113-439: The armature . Two or more electrical contacts called brushes made of a soft conductive material like carbon press against the commutator. The brushes make sliding contact with successive commutator segments as the rotator turns, supplying current to the rotor. The windings on the rotor are connected to the commutator segments. The commutator reverses the current direction in the rotor windings with each half turn (180°), so

SECTION 20

#1733106901810

1166-416: The 1740s. The theoretical principle behind them, Coulomb's law , was discovered but not published, by Henry Cavendish in 1771. This law was discovered independently by Charles-Augustin de Coulomb in 1785, who published it so that it is now known by his name. Due to the difficulty of generating the high voltages they required, electrostatic motors were never used for practical purposes. The invention of

1219-584: The French submarine Galatée (also a member of the Daphné class) off Toulon . Both submarines were badly damaged, with Galatée being forced to run aground to avoid sinking. The boat received an upgraded sonar and electronics during a mid-life update that was completed in 1992. Spear was scrapped in Simon's Town by SA Metal and Machinery Co. (Pty) Ltd. during June–July 2003. Electric motor An electric motor

1272-573: The Lauffen waterfall on the Neckar river. The Lauffen power station included a 240 kW 86 V 40 Hz alternator and a step-up transformer while at the exhibition a step-down transformer fed a 100-hp three-phase induction motor that powered an artificial waterfall, representing the transfer of the original power source. The three-phase induction is now used for the vast majority of commercial applications. Mikhail Dolivo-Dobrovolsky claimed that Tesla's motor

1325-821: The art rebuilt periscopes. With the acquisition of the new Type 209 submarines for the SA Navy, SAS Assegaai was paid off on 23 November 2003. SAS Assegaai has been converted into a museum ship and is stationed in Simon's Town. A project that has been spearheaded by the South African Naval Heritage Trust, SAS Assegaai is a part of the South African Naval Museum . 34°11′28″S 18°26′15″E  /  34.191008°S 18.437549°E  / -34.191008; 18.437549 SAS Spear SAS Spear ( pennant number : S97), initially known as

1378-544: The boat had a range of 4,500  nmi (8,300 km; 5,200 mi) at 5 knots (9.3 km/h; 5.8 mph). It was armed with a dozen 550 mm (21.7 in) torpedo tubes , eight in the bow and four in the stern. Spear had a complement of 6 officers and 41 ratings . The boat was laid down at the Nantes shipyard of Dubigeon-Normandie on 14 March 1968, launched on 18 March 1969 and commissioned on 22 June 1970. On 20 August 1970, Maria van Riebeeck collided with

1431-520: The development of DC motors, but all encountered the same battery cost issues. As no electricity distribution system was available at the time, no practical commercial market emerged for these motors. After many other more or less successful attempts with relatively weak rotating and reciprocating apparatus Prussian/Russian Moritz von Jacobi created the first real rotating electric motor in May 1834. It developed remarkable mechanical output power. His motor set

1484-478: The developments by Zénobe Gramme who, in 1871, reinvented Pacinotti's design and adopted some solutions by Werner Siemens . A benefit to DC machines came from the discovery of the reversibility of the electric machine, which was announced by Siemens in 1867 and observed by Pacinotti in 1869. Gramme accidentally demonstrated it on the occasion of the 1873 Vienna World's Fair , when he connected two such DC devices up to 2 km from each other, using one of them as

1537-505: The electric energy produced in the US. In 1824, French physicist François Arago formulated the existence of rotating magnetic fields , termed Arago's rotations , which, by manually turning switches on and off, Walter Baily demonstrated in 1879 as in effect the first primitive induction motor . In the 1880s many inventors were trying to develop workable AC motors because AC's advantages in long-distance high-voltage transmission were offset by

1590-566: The electric grid, provided for electric distribution to trolleys via overhead wires and the trolley pole, and provided control systems for electric operations. This allowed Sprague to use electric motors to invent the first electric trolley system in 1887–88 in Richmond, Virginia , the electric elevator and control system in 1892, and the electric subway with independently powered centrally-controlled cars. The latter were first installed in 1892 in Chicago by

1643-470: The electrochemical battery by Alessandro Volta in 1799 made possible the production of persistent electric currents. Hans Christian Ørsted discovered in 1820 that an electric current creates a magnetic field, which can exert a force on a magnet. It only took a few weeks for André-Marie Ampère to develop the first formulation of the electromagnetic interaction and present the Ampère's force law , that described

SAS Assegaai - Misplaced Pages Continue

1696-472: The first device to contain the three main components of practical DC motors: the stator , rotor and commutator. The device employed no permanent magnets, as the magnetic fields of both the stationary and revolving components were produced solely by the currents flowing through their windings. The first commutator DC electric motor capable of turning machinery was invented by English scientist William Sturgeon in 1832. Following Sturgeon's work,

1749-579: The inability to operate motors on AC. The first alternating-current commutatorless induction motor was invented by Galileo Ferraris in 1885. Ferraris was able to improve his first design by producing more advanced setups in 1886. In 1888, the Royal Academy of Science of Turin published Ferraris's research detailing the foundations of motor operation, while concluding at that time that "the apparatus based on that principle could not be of any commercial importance as motor." Possible industrial development

1802-644: The load are exerted beyond the outermost bearing, the load is said to be overhung. The rotor is supported by bearings , which allow the rotor to turn on its axis by transferring the force of axial and radial loads from the shaft to the motor housing. A DC motor is usually supplied through a split ring commutator as described above. AC motors' commutation can be achieved using either a slip ring commutator or external commutation. It can be fixed-speed or variable-speed control type, and can be synchronous or asynchronous. Universal motors can run on either AC or DC. DC motors can be operated at variable speeds by adjusting

1855-538: The magnet, showing that the current gave rise to a close circular magnetic field around the wire. Faraday published the results of his discovery in the Quarterly Journal of Science , and sent copies of his paper along with pocket-sized models of his device to colleagues around the world so they could also witness the phenomenon of electromagnetic rotations. This motor is often demonstrated in physics experiments, substituting brine for (toxic) mercury. Barlow's wheel

1908-485: The point of use, and improving power transmission efficiency. Electric motors applied in agriculture eliminated human and animal muscle power from such tasks as handling grain or pumping water. Household uses (like in washing machines, dishwashers, fans, air conditioners and refrigerators (replacing ice boxes ) of electric motors reduced heavy labor in the home and made higher standards of convenience, comfort and safety possible. Today, electric motors consume more than half of

1961-477: The production of mechanical force by the interaction of an electric current and a magnetic field. Michael Faraday gave the first demonstration of the effect with a rotary motion on 3 September 1821 in the basement of the Royal Institution . A free-hanging wire was dipped into a pool of mercury, on which a permanent magnet (PM) was placed. When a current was passed through the wire, the wire rotated around

2014-428: The rotor and stator ferromagnetic cores have projections called poles that face each other. Wire is wound around each pole below the pole face, which become north or south poles when current flows through the wire. In a nonsalient-pole (distributed field or round-rotor) motor, the ferromagnetic core is a smooth cylinder, with the windings distributed evenly in slots around the circumference. Supplying alternating current in

2067-465: The rotor and the stator. The product between these two fields gives rise to a force and thus a torque on the motor shaft. One or both of these fields changes as the rotor turns. This is done by switching the poles on and off at the right time, or varying the strength of the pole. Motors can be designed to operate on DC current, on AC current, or some types can work on either. AC motors can be either asynchronous or synchronous. Synchronous motors require

2120-402: The rotor, which moves, and the stator, which does not. Electrically, the motor consists of two parts, the field magnets and the armature, one of which is attached to the rotor and the other to the stator. Together they form a magnetic circuit . The magnets create a magnetic field that passes through the armature. These can be electromagnets or permanent magnets . The field magnet is usually on

2173-454: The stator and the armature on the rotor, but these may be reversed. The rotor is the moving part that delivers the mechanical power. The rotor typically holds conductors that carry currents, on which the magnetic field of the stator exerts force to turn the shaft. The stator surrounds the rotor, and usually holds field magnets, which are either electromagnets (wire windings around a ferromagnetic iron core) or permanent magnets . These create

SAS Assegaai - Misplaced Pages Continue

2226-435: The stator in plastic resin to prevent corrosion and/or reduce conducted noise. An air gap between the stator and rotor allows it to turn. The width of the gap has a significant effect on the motor's electrical characteristics. It is generally made as small as possible, as a large gap weakens performance. Conversely, gaps that are too small may create friction in addition to noise. The armature consists of wire windings on

2279-411: The successful culmination of five years of construction, trials and training to establish South Africa's first ever submarine capability. It was not long before the submarines were involved in operations, and in 1975, just before Operation Savannah (Angola) , SAS Johanna van der Merwe was deployed into Angolan waters under Operation Yskas to prepare for the evacuation of SA military personnel. During

2332-406: The torque applied to the rotor is always in the same direction. Without this reversal, the direction of torque on each rotor winding would reverse with each half turn, stopping the rotor. Commutated motors have been mostly replaced by brushless motors , permanent magnet motors , and induction motors . The motor shaft extends outside of the motor, where it satisfies the load. Because the forces of

2385-663: The voltage applied to the terminals or by using pulse-width modulation (PWM). AC motors operated at a fixed speed are generally powered directly from the grid or through motor soft starters . AC motors operated at variable speeds are powered with various power inverter , variable-frequency drive or electronic commutator technologies. The term electronic commutator is usually associated with self-commutated brushless DC motor and switched reluctance motor applications. Electric motors operate on one of three physical principles: magnetism , electrostatics and piezoelectricity . In magnetic motors, magnetic fields are formed in both

2438-406: The winding, further increasing the efficiency. In 1886, Frank Julian Sprague invented the first practical DC motor, a non-sparking device that maintained relatively constant speed under variable loads. Other Sprague electric inventions about this time greatly improved grid electric distribution (prior work done while employed by Thomas Edison ), allowed power from electric motors to be returned to

2491-431: The windings creates poles in the core that rotate continuously. A shaded-pole motor has a winding around part of the pole that delays the phase of the magnetic field for that pole. A commutator is a rotary electrical switch that supplies current to the rotor. It periodically reverses the flow of current in the rotor windings as the shaft rotates. It consists of a cylinder composed of multiple metal contact segments on

2544-491: Was SAS  Emily Hobhouse , and the last of the three, SAS  Johanna van der Merwe . In 1999 the three boats were renamed SAS  Spear , SAS  Umkhonto and SAS Assegaai respectively. In 2003, SAS Spear was cut up for scrap, followed by SAS Umkhonto in 2008 while SAS Assegaai is being preserved as a museum exhibit. Laid down at the Dubigeon-Normandie shipyard in Nantes on 24 April 1969, she

2597-508: Was an early refinement to this Faraday demonstration, although these and similar homopolar motors remained unsuited to practical application until late in the century. In 1827, Hungarian physicist Ányos Jedlik started experimenting with electromagnetic coils . After Jedlik solved the technical problems of continuous rotation with the invention of the commutator , he called his early devices "electromagnetic self-rotors". Although they were used only for teaching, in 1828 Jedlik demonstrated

2650-445: Was envisioned by Nikola Tesla , who invented independently his induction motor in 1887 and obtained a patent in May 1888. In the same year, Tesla presented his paper A New System of Alternate Current Motors and Transformers to the AIEE that described three patented two-phase four-stator-pole motor types: one with a four-pole rotor forming a non-self-starting reluctance motor , another with

2703-453: Was found not to be suitable for street cars, but Westinghouse engineers successfully adapted it to power a mining operation in Telluride, Colorado in 1891. Westinghouse achieved its first practical induction motor in 1892 and developed a line of polyphase 60 hertz induction motors in 1893, but these early Westinghouse motors were two-phase motors with wound rotors. B.G. Lamme later developed

SECTION 50

#1733106901810

2756-438: Was not practical because of two-phase pulsations, which prompted him to persist in his three-phase work. The General Electric Company began developing three-phase induction motors in 1891. By 1896, General Electric and Westinghouse signed a cross-licensing agreement for the bar-winding-rotor design, later called the squirrel-cage rotor . Induction motor improvements flowing from these inventions and innovations were such that

2809-575: Was the launched on 21 July 1970. Commissioned under command of Lt Cdr Theo Honiball on 21 August 1971, she completed her workup training in the Mediterranean , operating out of Toulon , before sailing for home on 4 May 1972. During the long passage, she was escorted by the frigate SAS  President Steyn , and called at Cadiz , São Vicente , Luanda and Walvis Bay , before arriving in Simon's Town on 19 June 1972. Her arrival in South Africa marked

#809190