Misplaced Pages

Router

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In computer networking , a routing table , or routing information base ( RIB ), is a data table stored in a router or a network host that lists the routes to particular network destinations, and in some cases, metrics (distances) associated with those routes. The routing table contains information about the topology of the network immediately around it.

#140859

40-518: (Redirected from Routers ) [REDACTED] Look up router in Wiktionary, the free dictionary. Router may refer to: Router (computing) , a computer networking device Router (woodworking) , a rotating cutting tool Router plane , a woodworking hand plane See also [ edit ] Rooter (disambiguation) Route (disambiguation) Routing (disambiguation) Topics referred to by

80-415: A CPU . More sophisticated devices use application-specific integrated circuits (ASICs) to increase performance or add advanced filtering and firewall functionality. When multiple routers are used in interconnected networks, the routers can exchange information about destination addresses using a routing protocol . Each router builds up a routing table , a list of routes, between two computer systems on

120-653: A switching node using software and an interface computer were first proposed by Donald Davies for the NPL network in 1966. The same idea was conceived by Wesley Clark the following year for use in the ARPANET , which were named Interface Message Processors (IMPs). The first interface computer was implemented at the National Physical Laboratory in the United Kingdom in early 1969, followed later that year by

160-497: A wide area network (WAN), so they may have considerable memory installed, multiple WAN interface connections, and substantial onboard data processing routines. They may also provide connectivity to groups of file servers or other external networks. In enterprises, a core router may provide a collapsed backbone interconnecting the distribution tier routers from multiple buildings of a campus, or large enterprise locations. They tend to be optimized for high bandwidth but lack some of

200-476: A line, the router reads the network address information in the packet header to determine the ultimate destination. Then, using information in its routing table or routing policy , it directs the packet to the next network on its journey. Data packets are forwarded from one router to another through an internetwork until it reaches its destination node . The most familiar type of IP routers are home and small office routers that forward IP packets between

240-468: A route to the destination node. Each node needs to keep track of which way to deliver various packages of data, and for this it uses a routing table. A routing table is a database that keeps track of paths, like a map, and uses these to determine which way to forward traffic. A routing table is a data file in RAM that is used to store route information about directly connected and remote networks. Nodes can also share

280-414: A security feature by all experts. Some experts argue that open source routers are more secure and reliable than closed source routers because errors and potentially exploitable vulnerabilities are more likely to be discovered and addressed in an open-source environment. Routers are also often distinguished on the basis of the network in which they operate. A router in a local area network (LAN) of

320-612: A single organization is called an interior router . A router that is operated in the Internet backbone is described as exterior router . While a router that connects a LAN with the Internet or a wide area network (WAN) is called a border router , or gateway router . Routers intended for ISP and major enterprise connectivity usually exchange routing information using the Border Gateway Protocol (BGP). RFC   4098 defines

360-418: A variety of sources, such as a default or static routes that are configured manually, or dynamic entries from routing protocols where the router learns routes from other routers. A default route is one that is used to route all traffic whose destination does not otherwise appear in the routing table; it is common – even necessary – in small networks, such as a home or small business where

400-412: Is different from Wikidata All article disambiguation pages All disambiguation pages Router (computing) A router is a computer and networking device that forwards data packets between computer networks , including internetworks such as the global Internet . A router is connected to two or more data lines from different IP networks . When a data packet comes in on

440-469: Is directly attached to one of the router interfaces. The network address and subnet mask of the interface, along with the interface type and number, are entered into the routing table as a directly connected network. A remote network is a network that can only be reached by sending the packet to another router. Routing table entries to remote networks may be either dynamic or static. Dynamic routes are routes to remote networks that were learned automatically by

SECTION 10

#1732855273141

480-738: Is in common use. Some routers can connect to Data service units for T1 connections via serial ports. The hierarchical internetworking model divides enterprise networks into three layers: core, distribution, and access. Access routers, including small office/home office (SOHO) models, are located at home and customer sites such as branch offices that do not need hierarchical routing of their own. Typically, they are optimized for low cost. Some SOHO routers are capable of running alternative free Linux-based firmware like Tomato , OpenWrt , or DD-WRT . Distribution routers aggregate traffic from multiple access routers. Distribution routers are often responsible for enforcing quality of service across

520-458: Is the primary goal of routing protocols . Static routes are entries that are fixed, rather than resulting from routing protocols and network topology discovery procedures. A routing table is analogous to a distribution map in package delivery . Whenever a node needs to send data to another node on a network, it must first know where to send it. If the node cannot directly connect to the destination node, it has to send it via other nodes along

560-413: Is the simplest and most easily implemented: the router simply drops new incoming packets once buffer space in the router is exhausted. RED probabilistically drops datagrams early when the queue exceeds a pre-configured portion of the buffer, until reaching a pre-determined maximum, when it drops all incoming packets, thus reverting to tail drop. WRED can be configured to drop packets more readily dependent on

600-482: Is used to enable data packets to be forwarded from one transmission system to another. Routers may also be used to connect two or more logical groups of computer devices known as subnets , each with a unique network prefix . Routers may provide connectivity within enterprises, between enterprises and the Internet, or between internet service providers ' (ISPs') networks, they are also responsible for directing data between different networks. The largest routers (such as

640-642: The Cisco CRS-1 or Juniper PTX) interconnect the various ISPs, or may be used in large enterprise networks. Smaller routers usually provide connectivity for typical home and office networks. All sizes of routers may be found inside enterprises. The most powerful routers are usually found in ISPs, academic and research facilities. Large businesses may also need more powerful routers to cope with ever-increasing demands of intranet data traffic. A hierarchical internetworking model for interconnecting routers in large networks

680-506: The International Network Working Group (INWG). These gateway devices were different from most previous packet switching schemes in two ways. First, they connected dissimilar kinds of networks, such as serial lines and local area networks . Second, they were connectionless devices, which had no role in assuring that traffic was delivered reliably, leaving that function entirely to the hosts . This particular idea,

720-623: The end-to-end principle , was pioneered in the CYCLADES network. The idea was explored in more detail, with the intention to produce a prototype system as part of two contemporaneous programs. One was a program at Xerox PARC to explore new networking technologies, which produced the PARC Universal Packet system. Some time after early 1974, the first Xerox routers became operational. Due to corporate intellectual property concerns, it received little attention outside Xerox for years. The other

760-763: The IMPs at the University of California, Los Angeles , the Stanford Research Institute , the University of California, Santa Barbara , and the University of Utah School of Computing in the United States. All were built with the Honeywell 516 . These computers had fundamentally the same functionality as a router does today. The idea for a router (called a gateway at the time) initially came about through an international group of computer networking researchers called

800-457: The application and implementation, it can also contain additional values that refine path selection: Shown below is an example of what the table above could look like on a computer connected to the internet via a home router : Routing tables are generally not used directly for packet forwarding in modern router architectures; instead, they are used to generate the information for a simpler forwarding table . This forwarding table contains only

840-441: The contents of their routing table with other nodes. The primary function of a router is to forward a packet toward its destination network, which is the destination IP address of the packet. To do this, a router needs to search the routing information stored in its routing table. The routing table contains network/next hop associations. These associations tell a router that a particular destination can be optimally reached by sending

SECTION 20

#1732855273141

880-508: The default route simply sends all non-local traffic to the Internet service provider . The default route can be manually configured (as a static route); learned by dynamic routing protocols; or be obtained by DHCP . A router can run more than one routing protocol at a time, particularly if it serves as an autonomous system border router between parts of a network that run different routing protocols; if it does so, then redistribution may be used (usually selectively) to share information between

920-402: The different protocols running on the same router. Besides deciding to which interface a packet is forwarded, which is handled primarily via the routing table, a router also has to manage congestion when packets arrive at a rate higher than the router can process. Three policies commonly used are tail drop , random early detection (RED), and weighted random early detection (WRED). Tail drop

960-416: The features of edge routers. External networks must be carefully considered as part of the overall security strategy of the local network. A router may include a firewall , VPN handling, and other security functions, or they may be handled by separate devices. Routers also commonly perform network address translation which restricts connections initiated from external connections but is not recognized as

1000-414: The home computers and the Internet. More sophisticated routers, such as enterprise routers, connect large business or ISP networks to powerful core routers that forward data at high speed along the optical fiber lines of the Internet backbone . Routers can be built from standard computer parts but are mostly specialized purpose-built computers . Early routers used software -based forwarding, running on

1040-401: The interconnected networks. The software that runs the router is composed of two functional processing units that operate simultaneously, called planes : A router may have interfaces for multiple types of physical layer connections, such as copper cables, fiber optic , or wireless transmission. It can also support multiple network layer transmission standards. Each network interface

1080-423: The layer-3 IP packet, specifically the destination IP address. When a router receives a packet, it searches its routing table to find the best match between the destination IP address of the packet and one of the addresses in the routing table. Once a match is found, the packet is encapsulated in the layer-2 data link frame for the outgoing interface indicated in the table entry. A router typically does not look into

1120-505: The mid-1970s and in the 1980s, general-purpose minicomputers served as routers. Modern high-speed routers are network processors or highly specialized computers with extra hardware acceleration added to speed both common routing functions, such as packet forwarding, and specialized functions such as IPsec encryption. There is substantial use of Linux and Unix software-based machines, running open source routing code, for research and other applications. The Cisco IOS operating system

1160-471: The packet payload, but only at the layer-3 addresses to make a forwarding decision, plus optionally other information in the header for hints on, for example, quality of service (QoS). For pure IP forwarding, a router is designed to minimize the state information associated with individual packets. Once a packet is forwarded, the router does not retain any historical information about the packet. The routing table itself can contain information derived from

1200-409: The packet to a specific router that represents the next hop on the way to the final destination. The next hop association can also be the outgoing or exit interface to the final destination. With hop-by-hop routing, each routing table lists, for all reachable destinations, the address of the next device along the path to that destination: the next hop . Assuming that the routing tables are consistent,

1240-408: The router through a dynamic routing protocol. Static routes are routes that a network administrator manually configured. Routing tables are also a key aspect of certain security operations, such as unicast reverse path forwarding (uRPF). In this technique, which has several variants, the router also looks up, in the routing table, the source address of the packet. If there exists no route back to

Router - Misplaced Pages Continue

1280-461: The routing table when a packet forwarding decision is made. Some of the functions may be performed through an application-specific integrated circuit (ASIC) to avoid the overhead of scheduling CPU time to process the packets. Others may have to be performed through the CPU as these packets need special attention that cannot be handled by an ASIC. Routing table The construction of routing tables

1320-409: The same term [REDACTED] This disambiguation page lists articles associated with the title Router . If an internal link led you here, you may wish to change the link to point directly to the intended article. Retrieved from " https://en.wikipedia.org/w/index.php?title=Router&oldid=1254593477 " Category : Disambiguation pages Hidden categories: Short description

1360-522: The simple algorithm of relaying packets to their destination's next hop thus suffices to deliver data anywhere in a network. Hop-by-hop is the fundamental characteristic of the IP Internet layer and the OSI Network Layer . When a router interface is configured with an IP address and subnet mask, the interface becomes a host on that attached network. A directly connected network is a network that

1400-605: The source address, the packet is assumed to be malformed or involved in a network attack and is dropped. The need to record routes to large numbers of devices using limited storage space represents a major challenge in routing table construction. In the Internet, the currently dominant address aggregation technology is a bitwise prefix matching scheme called Classless Inter-Domain Routing (CIDR). Supernetworks can also be used to help control routing table size. The routing table consists of at least three information fields: Depending on

1440-411: The type of traffic. Another function a router performs is traffic classification and deciding which packet should be processed first. This is managed through QoS , which is critical when Voice over IP is deployed, so as not to introduce excessive latency . Yet another function a router performs is called policy-based routing where special rules are constructed to override the rules derived from

1480-440: The types of BGP routers according to their functions: Wi-Fi routers combine the functions of a router with those of a wireless access point . They are typically devices with a small form factor, operating on the standard electric power supply for residential use. Connected to the Internet as offered by an Internet service provider , they provide Internet access through a wireless network for home or office use. The concepts of

1520-408: Was independently designed. Major router operating systems, such as Junos and NX-OS , are extensively modified versions of Unix software. The main purpose of a router is to connect multiple networks and forward packets destined either for directly attached networks or more remote networks. A router is considered a layer-3 device because its primary forwarding decision is based on the information in

1560-436: Was led by William Yeager and MIT's by Noel Chiappa . Virtually all networking now uses TCP/IP, but multiprotocol routers are still manufactured. They were important in the early stages of the growth of computer networking when protocols other than TCP/IP were in use. Modern routers that handle both IPv4 and IPv6 are multiprotocol but are simpler devices than ones processing AppleTalk, DECnet, IPX, and Xerox protocols. From

1600-765: Was the DARPA -initiated program, which created the TCP/IP architecture in use today. The first true IP router was developed by Ginny Travers at BBN , as part of that DARPA-initiated effort, during 1975–1976. By the end of 1976, three PDP-11 -based routers were in service in the experimental prototype Internet. Mike Brecia, Ginny Travers, and Bob Hinden received the IEEE Internet Award for early IP routers in 2008. The first multiprotocol routers were independently created by staff researchers at MIT and Stanford in 1981 and both were also based on PDP-11s. Stanford's router program

#140859