Misplaced Pages

Roger Ramjet

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Roger Ramjet is a 1965–69 American animated television series , starring Roger Ramjet and the American Eagle Squadron. The show was known for its simple animation, frenetic pace, and frequent references to pop culture which appealed to adults as well as children. During its original run, the show aired on NBC . Reruns of the show aired on Cartoon Network from 1996 to 1998.

#776223

86-430: Roger Ramjet is a patriotic and highly moral hero who is typically out to save the world with help from his Proton Energy Pills ("PEP"), which give him "the strength of twenty atom bombs for a period of twenty seconds". The world is invariably saved by defeating the various recurring criminals who populate the series. Ramjet encounters various nemeses during his missions, assigned by General G.I. Brassbottom. Typically, he

172-400: A {\displaystyle a} , and τ p {\displaystyle \tau _{\mathrm {p} }} decreases with increasing a {\displaystyle a} . Acceleration gives rise to a non-vanishing probability for the transition p → n + e + ν e . This was a matter of concern in

258-427: A zinc sulfide screen produced at a distance well beyond the distance of alpha-particle range of travel but instead corresponding to the range of travel of hydrogen atoms (protons). After experimentation, Rutherford traced the reaction to the nitrogen in air and found that when alpha particles were introduced into pure nitrogen gas, the effect was larger. In 1919, Rutherford assumed that the alpha particle merely knocked

344-579: A 3-disc box set containing 119 of the 156 episodes of the series (although the box incorrectly states that 120 episodes are included). Another company, Image Entertainment, previously issued two single DVDs ( Roger Ramjet: Hero Of Our Nation and Roger Ramjet: Man Of Adventure ), each including 15 cartoons not featured in the three-disc set. This leaves seven cartoons unreleased on DVD (as of November 2007): #36 (Scotland Yard) , #125 (Bunny) , #128 (Jolly Rancher) , #152 (Air Devil) , #154 (Dry Dock) , #155 (Machines) , and #156 (Stolen) . RCA Victor released

430-449: A bare nucleus, consisting of a proton (and 0 neutrons for the most abundant isotope protium 1 H ). The proton is a "bare charge" with only about 1/64,000 of the radius of a hydrogen atom, and so is extremely reactive chemically. The free proton, thus, has an extremely short lifetime in chemical systems such as liquids and it reacts immediately with the electron cloud of any available molecule. In aqueous solution, it forms

516-613: A candidate to be a fundamental or elementary particle , and hence a building block of nitrogen and all other heavier atomic nuclei. Although protons were originally considered to be elementary particles, in the modern Standard Model of particle physics , protons are known to be composite particles, containing three valence quarks , and together with neutrons are now classified as hadrons . Protons are composed of two up quarks of charge + ⁠ 2 / 3 ⁠ e each, and one down quark of charge − ⁠ 1 / 3 ⁠ e . The rest masses of quarks contribute only about 1% of

602-416: A form-factor related to the two-dimensional parton diameter of the proton. A value from before 2010 is based on scattering electrons from protons followed by complex calculation involving scattering cross section based on Rosenbluth equation for momentum-transfer cross section ), and based on studies of the atomic energy levels of hydrogen and deuterium. In 2010 an international research team published

688-407: A given atomic number. The quest for new elements is usually described using atomic numbers. As of 2024, all elements with atomic numbers 1 to 118 have been observed . Synthesis of new elements is accomplished by bombarding target atoms of heavy elements with ions, such that the sum of the atomic numbers of the target and ion elements equals the atomic number of the element being created. In general,

774-431: A mixture of isotopes (see monoisotopic elements ), and the average isotopic mass of an isotopic mixture for an element (called the relative atomic mass) in a defined environment on Earth determines the element's standard atomic weight . Historically, it was these atomic weights of elements (in comparison to hydrogen) that were the quantities measurable by chemists in the 19th century. The conventional symbol Z comes from

860-484: A neutral hydrogen atom , which is chemically a free radical . Such "free hydrogen atoms" tend to react chemically with many other types of atoms at sufficiently low energies. When free hydrogen atoms react with each other, they form neutral hydrogen molecules (H 2 ), which are the most common molecular component of molecular clouds in interstellar space . Free protons are routinely used for accelerators for proton therapy or various particle physics experiments, with

946-543: A number of situations in which energies or temperatures are high enough to separate them from electrons, for which they have some affinity. Free protons exist in plasmas in which temperatures are too high to allow them to combine with electrons . Free protons of high energy and velocity make up 90% of cosmic rays , which propagate through the interstellar medium . Free protons are emitted directly from atomic nuclei in some rare types of radioactive decay . Protons also result (along with electrons and antineutrinos ) from

SECTION 10

#1732854673777

1032-461: A proton charge radius measurement via the Lamb shift in muonic hydrogen (an exotic atom made of a proton and a negatively charged muon ). As a muon is 200 times heavier than an electron, resulting in a smaller atomic orbital , it is much more sensitive to the proton's charge radius and thus allows a more precise measurement. Subsequent improved scattering and electron-spectroscopy measurements agree with

1118-418: A proton out of nitrogen, turning it into carbon. After observing Blackett's cloud chamber images in 1925, Rutherford realized that the alpha particle was absorbed. If the alpha particle were not absorbed, then it would knock a proton off of nitrogen creating 3 charged particles (a negatively charged carbon, a proton, and an alpha particle). It can be shown that the 3 charged particles would create three tracks in

1204-697: A proton's mass. The remainder of a proton's mass is due to quantum chromodynamics binding energy , which includes the kinetic energy of the quarks and the energy of the gluon fields that bind the quarks together. The root mean square charge radius of a proton is about 0.84–0.87  fm ( 1 fm = 10  m ). In 2019, two different studies, using different techniques, found this radius to be 0.833 fm, with an uncertainty of ±0.010 fm. Free protons occur occasionally on Earth: thunderstorms can produce protons with energies of up to several tens of MeV . At sufficiently low temperatures and kinetic energies, free protons will bind to electrons . However,

1290-547: A result, they become so-called Brønsted acids . For example, a proton captured by a water molecule in water becomes hydronium , the aqueous cation H 3 O . In chemistry , the number of protons in the nucleus of an atom is known as the atomic number , which determines the chemical element to which the atom belongs. For example, the atomic number of chlorine is 17; this means that each chlorine atom has 17 protons and that all atoms with 17 protons are chlorine atoms. The chemical properties of each atom are determined by

1376-455: A simplistic interpretation of early values of atomic weights (see Prout's hypothesis ), which was disproved when more accurate values were measured. In 1886, Eugen Goldstein discovered canal rays (also known as anode rays) and showed that they were positively charged particles (ions) produced from gases. However, since particles from different gases had different values of charge-to-mass ratio ( q / m ), they could not be identified with

1462-431: A single particle, unlike the negative electrons discovered by J. J. Thomson . Wilhelm Wien in 1898 identified the hydrogen ion as the particle with the highest charge-to-mass ratio in ionized gases. Following the discovery of the atomic nucleus by Ernest Rutherford in 1911, Antonius van den Broek proposed that the place of each element in the periodic table (its atomic number) is equal to its nuclear charge. This

1548-550: A soundtrack album in 1966. Proton A proton is a stable subatomic particle , symbol p , H , or H with a positive electric charge of +1  e ( elementary charge ). Its mass is slightly less than the mass of a neutron and approximately 1836 times the mass of an electron (the proton-to-electron mass ratio ). Protons and neutrons, each with a mass of approximately one atomic mass unit , are jointly referred to as nucleons (particles present in atomic nuclei). One or more protons are present in

1634-487: Is a lone proton. The nuclei of the heavy hydrogen isotopes deuterium and tritium contain one proton bound to one and two neutrons, respectively. All other types of atomic nuclei are composed of two or more protons and various numbers of neutrons. The concept of a hydrogen-like particle as a constituent of other atoms was developed over a long period. As early as 1815, William Prout proposed that all atoms are composed of hydrogen atoms (which he called "protyles"), based on

1720-441: Is a unique chemical species, being a bare nucleus. As a consequence it has no independent existence in the condensed state and is invariably found bound by a pair of electrons to another atom. Ross Stewart, The Proton: Application to Organic Chemistry (1985, p. 1) In chemistry, the term proton refers to the hydrogen ion, H . Since the atomic number of hydrogen is 1, a hydrogen ion has no electrons and corresponds to

1806-402: Is always small compared to the nucleon mass, the atomic mass of any atom, when expressed in daltons (making a quantity called the " relative isotopic mass "), is within 1% of the whole number A . Atoms with the same atomic number but different neutron numbers, and hence different mass numbers, are known as isotopes . A little more than three-quarters of naturally occurring elements exist as

SECTION 20

#1732854673777

1892-470: Is caught and must be rescued by his crew of sidekicks, the American Eagles: Yank, Doodle, Dan, and Dee (a play on " Yankee Doodle dandy ", which also is the tune of the theme song). His Eagles appear to be children, yet each of them flies his own individual ramjet aircraft expertly (except for Dee), and they are obviously much savvier than their leader. The various recurring criminals include: In

1978-518: Is found to be equal and opposite to that of a proton. Atomic number The atomic number or nuclear charge number (symbol Z ) of a chemical element is the charge number of its atomic nucleus . For ordinary nuclei composed of protons and neutrons , this is equal to the proton number ( n p ) or the number of protons found in the nucleus of every atom of that element. The atomic number can be used to uniquely identify ordinary chemical elements . In an ordinary uncharged atom,

2064-512: Is reversible; neutrons can convert back to protons through beta decay , a common form of radioactive decay . In fact, a free neutron decays this way, with a mean lifetime of about 15 minutes. A proton can also transform into a neutron through beta plus decay (β+ decay). According to quantum field theory , the mean proper lifetime of protons τ p {\displaystyle \tau _{\mathrm {p} }} becomes finite when they are accelerating with proper acceleration

2150-583: The Morris water maze . Electrical charging of a spacecraft due to interplanetary proton bombardment has also been proposed for study. There are many more studies that pertain to space travel, including galactic cosmic rays and their possible health effects , and solar proton event exposure. The American Biostack and Soviet Biorack space travel experiments have demonstrated the severity of molecular damage induced by heavy ions on microorganisms including Artemia cysts. CPT-symmetry puts strong constraints on

2236-610: The United States , Roger Ramjet first aired on NBC from 1965 to 1969, and later on Cartoon Network from 1996 to 1998. It also aired on KTV from 2017 to 2019. Roger Ramjet was also broadcast on the BBC and ITV from 1979 to 1994 in the United Kingdom and Europe-wide on Sky Channel from 1985 to 1989 and Bravo from 1992 to 1993. In Australia , the show was aired on the ABC in 1966 in

2322-591: The constituent quark model, which were popular in the 1980s, and the SVZ sum rules , which allow for rough approximate mass calculations. These methods do not have the same accuracy as the more brute-force lattice QCD methods, at least not yet. The CODATA recommended value of a proton's charge radius is 8.4075(64) × 10  m . The radius of the proton is defined by a formula that can be calculated by quantum electrodynamics and be derived from either atomic spectroscopy or by electron–proton scattering. The formula involves

2408-437: The electric charge of an atomic nucleus, expressed as a multiplier of the elementary charge , was equal to the element's sequential position on the periodic table . Ernest Rutherford , in various articles in which he discussed van den Broek's idea, used the term "atomic number" to refer to an element's position on the periodic table. No writer before Rutherford is known to have used the term "atomic number" in this way, so it

2494-462: The electron cloud in a normal atom. However, in such an association with an electron, the character of the bound proton is not changed, and it remains a proton. The attraction of low-energy free protons to any electrons present in normal matter (such as the electrons in normal atoms) causes free protons to stop and to form a new chemical bond with an atom. Such a bond happens at any sufficiently "cold" temperature (that is, comparable to temperatures at

2580-414: The hydronium ion , H 3 O , which in turn is further solvated by water molecules in clusters such as [H 5 O 2 ] and [H 9 O 4 ] . The transfer of H in an acid–base reaction is usually referred to as "proton transfer". The acid is referred to as a proton donor and the base as a proton acceptor. Likewise, biochemical terms such as proton pump and proton channel refer to

2666-686: The mean lifetime of a proton for various assumed decay products. Experiments at the Super-Kamiokande detector in Japan gave lower limits for proton mean lifetime of 6.6 × 10  years for decay to an antimuon and a neutral pion , and 8.2 × 10  years for decay to a positron and a neutral pion. Another experiment at the Sudbury Neutrino Observatory in Canada searched for gamma rays resulting from residual nuclei resulting from

Roger Ramjet - Misplaced Pages Continue

2752-405: The nucleus of every atom . They provide the attractive electrostatic central force which binds the atomic electrons. The number of protons in the nucleus is the defining property of an element, and is referred to as the atomic number (represented by the symbol Z ). Since each element is identified by the number of protons in its nucleus, each element has its own atomic number, which determines

2838-480: The radioactive decay of free neutrons , which are unstable. The spontaneous decay of free protons has never been observed, and protons are therefore considered stable particles according to the Standard Model. However, some grand unified theories (GUTs) of particle physics predict that proton decay should take place with lifetimes between 10 and 10 years. Experimental searches have established lower bounds on

2924-485: The German word Zahl 'number', which, before the modern synthesis of ideas from chemistry and physics, merely denoted an element's numerical place in the periodic table , whose order was then approximately, but not completely, consistent with the order of the elements by atomic weights. Only after 1915, with the suggestion and evidence that this Z number was also the nuclear charge and a physical characteristic of atoms, did

3010-518: The Moon is inside the Earth's geomagnetic tail, and typically no solar wind particles were detectable. For the remainder of each lunar orbit, the Moon is in a transitional region known as the magnetosheath , where the Earth's magnetic field affects the solar wind, but does not completely exclude it. In this region, the particle flux is reduced, with typical proton velocities of 250 to 450 kilometers per second. During

3096-934: The afternoon and was broadcast until 2003. The series was also screened in several other countries including ZNBC in Zambia , Dubai 33 in the United Arab Emirates , SABC1 in South Africa , KBC in Kenya , and NZBC , South Pacific Television , TV One and TV2 in New Zealand . After the 2022 Philippines elections , the show aired on PTV in the Philippines . Selected " minisodes " of Roger Ramjet are available to stream free on Sony 's Crackle . On February 8, 2005, Classic Media (distributed by Sony Wonder ) released Roger Ramjet: Hero Of Our Nation (Special Collector's Edition) ,

3182-400: The atom in which a central nucleus held most of the atom's mass and a positive charge which, in units of the electron's charge, was to be approximately equal to half of the atom's atomic weight, expressed in numbers of hydrogen atoms. This central charge would thus be approximately half the atomic weight (though it was almost 25% different from the atomic number of gold ( Z = 79 , A = 197 ),

3268-410: The atomic number is also equal to the number of electrons . For an ordinary atom which contains protons, neutrons and electrons , the sum of the atomic number Z and the neutron number N gives the atom's atomic mass number A . Since protons and neutrons have approximately the same mass (and the mass of the electrons is negligible for many purposes) and the mass defect of the nucleon binding

3354-453: The case. The experimental position improved dramatically after research by Henry Moseley in 1913. Moseley, after discussions with Bohr who was at the same lab (and who had used Van den Broek's hypothesis in his Bohr model of the atom), decided to test Van den Broek's and Bohr's hypothesis directly, by seeing if spectral lines emitted from excited atoms fitted the Bohr theory's postulation that

3440-407: The character of such bound protons does not change, and they remain protons. A fast proton moving through matter will slow by interactions with electrons and nuclei, until it is captured by the electron cloud of an atom. The result is a diatomic or polyatomic ion containing hydrogen. In a vacuum, when free electrons are present, a sufficiently slow proton may pick up a single free electron, becoming

3526-412: The charge of the hydrogen nuclei present in the nuclei of heavier atoms. In 1917, Rutherford succeeded in generating hydrogen nuclei from a nuclear reaction between alpha particles and nitrogen gas, and believed he had proven Prout's law. He called the new heavy nuclear particles protons in 1920 (alternate names being proutons and protyles). It had been immediately apparent from the work of Moseley that

Roger Ramjet - Misplaced Pages Continue

3612-399: The cloud chamber, but instead only 2 tracks in the cloud chamber were observed. The alpha particle is absorbed by the nitrogen atom. After capture of the alpha particle, a hydrogen nucleus is ejected, creating a net result of 2 charged particles (a proton and a positively charged oxygen) which make 2 tracks in the cloud chamber. Heavy oxygen ( O), not carbon or fluorine, is the product. This was

3698-480: The coaccelerated frame there is a thermal bath due to Fulling–Davies–Unruh effect , an intrinsic effect of quantum field theory. In this thermal bath, experienced by the proton, there are electrons and antineutrinos with which the proton may interact according to the processes: Adding the contributions of each of these processes, one should obtain τ p {\displaystyle \tau _{\mathrm {p} }} . In quantum chromodynamics ,

3784-438: The decay of a proton from oxygen-16. This experiment was designed to detect decay to any product, and established a lower limit to a proton lifetime of 2.1 × 10  years . However, protons are known to transform into neutrons through the process of electron capture (also called inverse beta decay ). For free protons, this process does not occur spontaneously but only when energy is supplied. The equation is: The process

3870-413: The elements, and so they can be numbered in order. Dmitri Mendeleev arranged his first periodic tables (first published on March 6, 1869) in order of atomic weight ("Atomgewicht"). However, in consideration of the elements' observed chemical properties, he changed the order slightly and placed tellurium (atomic weight 127.6) ahead of iodine (atomic weight 126.9). This placement is consistent with

3956-434: The first four transuranium elements had also been discovered, so that the periodic table was complete with no gaps as far as curium ( Z  = 96). In 1915, the reason for nuclear charge being quantized in units of Z , which were now recognized to be the same as the element number, was not understood. An old idea called Prout's hypothesis had postulated that the elements were all made of residues (or "protyles") of

4042-441: The first reported nuclear reaction , N + α → O + p . Rutherford at first thought of our modern "p" in this equation as a hydrogen ion, H . Depending on one's perspective, either 1919 (when it was seen experimentally as derived from another source than hydrogen) or 1920 (when it was recognized and proposed as an elementary particle) may be regarded as the moment when the proton was 'discovered'. Rutherford knew hydrogen to be

4128-422: The frequency of the spectral lines be proportional to the square of Z . To do this, Moseley measured the wavelengths of the innermost photon transitions (K and L lines) produced by the elements from aluminium ( Z  = 13) to gold ( Z  = 79) used as a series of movable anodic targets inside an x-ray tube . The square root of the frequency of these photons (x-rays) increased from one target to

4214-418: The gluons, and transitory pairs of sea quarks . Protons have a positive charge distribution, which decays approximately exponentially, with a root mean square charge radius of about 0.8 fm. Protons and neutrons are both nucleons , which may be bound together by the nuclear force to form atomic nuclei . The nucleus of the most common isotope of the hydrogen atom (with the chemical symbol "H")

4300-429: The later 1990s because τ p {\displaystyle \tau _{\mathrm {p} }} is a scalar that can be measured by the inertial and coaccelerated observers . In the inertial frame , the accelerating proton should decay according to the formula above. However, according to the coaccelerated observer the proton is at rest and hence should not decay. This puzzle is solved by realizing that in

4386-457: The lightest element hydrogen, which in the Bohr-Rutherford model had a single electron and a nuclear charge of one. However, as early as 1907, Rutherford and Thomas Royds had shown that alpha particles, which had a charge of +2, were the nuclei of helium atoms, which had a mass four times that of hydrogen, not two times. If Prout's hypothesis were true, something had to be neutralizing some of

SECTION 50

#1732854673777

4472-447: The lunar night, the spectrometer was shielded from the solar wind by the Moon and no solar wind particles were measured. Protons also have extrasolar origin from galactic cosmic rays , where they make up about 90% of the total particle flux. These protons often have higher energy than solar wind protons, and their intensity is far more uniform and less variable than protons coming from the Sun,

4558-402: The mass of a quark by itself, while constituent quark mass refers to the current quark mass plus the mass of the gluon particle field surrounding the quark. These masses typically have very different values. The kinetic energy of the quarks that is a consequence of confinement is a contribution (see Mass in special relativity ). Using lattice QCD calculations, the contributions to

4644-2129: The mass of the proton are the quark condensate (~9%, comprising the up and down quarks and a sea of virtual strange quarks), the quark kinetic energy (~32%), the gluon kinetic energy (~37%), and the anomalous gluonic contribution (~23%, comprising contributions from condensates of all quark flavors). The constituent quark model wavefunction for the proton is | p ↑ ⟩ = 1 18 ( 2 | u ↑ d ↓ u ↑ ⟩ + 2 | u ↑ u ↑ d ↓ ⟩ + 2 | d ↓ u ↑ u ↑ ⟩ − | u ↑ u ↓ d ↑ ⟩ − | u ↑ d ↑ u ↓ ⟩ − | u ↓ d ↑ u ↑ ⟩ − | d ↑ u ↓ u ↑ ⟩ − | d ↑ u ↑ u ↓ ⟩ − | u ↓ u ↑ d ↑ ⟩ ) . {\displaystyle \mathrm {|p_{\uparrow }\rangle ={\tfrac {1}{\sqrt {18}}}\left(2|u_{\uparrow }d_{\downarrow }u_{\uparrow }\rangle +2|u_{\uparrow }u_{\uparrow }d_{\downarrow }\rangle +2|d_{\downarrow }u_{\uparrow }u_{\uparrow }\rangle -|u_{\uparrow }u_{\downarrow }d_{\uparrow }\rangle -|u_{\uparrow }d_{\uparrow }u_{\downarrow }\rangle -|u_{\downarrow }d_{\uparrow }u_{\uparrow }\rangle -|d_{\uparrow }u_{\downarrow }u_{\uparrow }\rangle -|d_{\uparrow }u_{\uparrow }u_{\downarrow }\rangle -|u_{\downarrow }u_{\uparrow }d_{\uparrow }\rangle \right)} .} The internal dynamics of protons are complicated, because they are determined by

4730-451: The modern practice of ordering the elements by proton number, Z , but that number was not known or suspected at the time. A simple numbering based on atomic weight position was never entirely satisfactory. In addition to the case of iodine and tellurium, several other pairs of elements (such as argon and potassium , cobalt and nickel ) were later shown to have nearly identical or reversed atomic weights, thus requiring their placement in

4816-477: The modern theory of the nuclear force, most of the mass of protons and neutrons is explained by special relativity . The mass of a proton is about 80–100 times greater than the sum of the rest masses of its three valence quarks , while the gluons have zero rest mass. The extra energy of the quarks and gluons in a proton, as compared to the rest energy of the quarks alone in the QCD vacuum , accounts for almost 99% of

4902-475: The most powerful example being the Large Hadron Collider . Protons are spin- ⁠ 1 / 2 ⁠ fermions and are composed of three valence quarks, making them baryons (a sub-type of hadrons ). The two up quarks and one down quark of a proton are held together by the strong force , mediated by gluons . A modern perspective has a proton composed of the valence quarks (up, up, down),

4988-440: The movement of hydrated H ions. The ion produced by removing the electron from a deuterium atom is known as a deuteron , not a proton. Likewise, removing an electron from a tritium atom produces a triton . Also in chemistry, the term proton NMR refers to the observation of hydrogen-1 nuclei in (mostly organic ) molecules by nuclear magnetic resonance . This method uses the quantized spin magnetic moment of

5074-438: The neutral hydrogen atom. He initially suggested both proton and prouton (after Prout). Rutherford later reported that the meeting had accepted his suggestion that the hydrogen nucleus be named the "proton", following Prout's word "protyle". The first use of the word "proton" in the scientific literature appeared in 1920. One or more bound protons are present in the nucleus of every atom. Free protons are found naturally in

5160-403: The new small radius. Work continues to refine and check this new value. Since the proton is composed of quarks confined by gluons, an equivalent pressure that acts on the quarks can be defined. The size of that pressure and other details about it are controversial. In 2018 this pressure was reported to be on the order 10  Pa, which is greater than the pressure inside a neutron star . It

5246-482: The next in an arithmetic progression. This led to the conclusion ( Moseley's law ) that the atomic number does closely correspond (with an offset of one unit for K-lines, in Moseley's work) to the calculated electric charge of the nucleus, i.e. the element number Z . Among other things, Moseley demonstrated that the lanthanide series (from lanthanum to lutetium inclusive) must have 15 members—no fewer and no more—which

SECTION 60

#1732854673777

5332-409: The nuclei of heavy atoms have more than twice as much mass as would be expected from their being made of hydrogen nuclei, and thus there was required a hypothesis for the neutralization of the extra protons presumed present in all heavy nuclei. A helium nucleus was presumed to have four protons plus two "nuclear electrons" (electrons bound inside the nucleus) to cancel two charges. At the other end of

5418-416: The nucleon structure is still missing because ... long-distance behavior requires a nonperturbative and/or numerical treatment ..." More conceptual approaches to the structure of protons are: the topological soliton approach originally due to Tony Skyrme and the more accurate AdS/QCD approach that extends it to include a string theory of gluons, various QCD-inspired models like the bag model and

5504-579: The nucleus the proton , after the neuter singular of the Greek word for "first", πρῶτον . However, Rutherford also had in mind the word protyle as used by Prout. Rutherford spoke at the British Association for the Advancement of Science at its Cardiff meeting beginning 24 August 1920. At the meeting, he was asked by Oliver Lodge for a new name for the positive hydrogen nucleus to avoid confusion with

5590-681: The number of (negatively charged) electrons , which for neutral atoms is equal to the number of (positive) protons so that the total charge is zero. For example, a neutral chlorine atom has 17 protons and 17 electrons, whereas a Cl anion has 17 protons and 18 electrons for a total charge of −1. All atoms of a given element are not necessarily identical, however. The number of neutrons may vary to form different isotopes , and energy levels may differ, resulting in different nuclear isomers . For example, there are two stable isotopes of chlorine : 17 Cl with 35 − 17 = 18 neutrons and 17 Cl with 37 − 17 = 20 neutrons. The proton

5676-418: The number of atomic electrons and consequently the chemical characteristics of the element. The word proton is Greek for "first", and the name was given to the hydrogen nucleus by Ernest Rutherford in 1920. In previous years, Rutherford had discovered that the hydrogen nucleus (known to be the lightest nucleus) could be extracted from the nuclei of nitrogen by atomic collisions. Protons were therefore

5762-701: The particles in the solar wind are electrons and protons, in approximately equal numbers. Because the Solar Wind Spectrometer made continuous measurements, it was possible to measure how the Earth's magnetic field affects arriving solar wind particles. For about two-thirds of each orbit, the Moon is outside of the Earth's magnetic field. At these times, a typical proton density was 10 to 20 per cubic centimeter, with most protons having velocities between 400 and 650 kilometers per second. For about five days of each month,

5848-407: The periodic table to be determined by their chemical properties. However the gradual identification of more and more chemically similar lanthanide elements, whose atomic number was not obvious, led to inconsistency and uncertainty in the periodic numbering of elements at least from lutetium (element 71) onward ( hafnium was not known at this time). In 1911, Ernest Rutherford gave a model of

5934-444: The periodic table, a nucleus of gold with a mass 197 times that of hydrogen was thought to contain 118 nuclear electrons in the nucleus to give it a residual charge of +79, consistent with its atomic number. All consideration of nuclear electrons ended with James Chadwick 's discovery of the neutron in 1932. An atom of gold now was seen as containing 118 neutrons rather than 118 nuclear electrons, and its positive nuclear charge now

6020-671: The pressure profile shape by selection of the model. The radius of the hydrated proton appears in the Born equation for calculating the hydration enthalpy of hydronium . Although protons have affinity for oppositely charged electrons, this is a relatively low-energy interaction and so free protons must lose sufficient velocity (and kinetic energy ) in order to become closely associated and bound to electrons. High energy protons, in traversing ordinary matter, lose energy by collisions with atomic nuclei , and by ionization of atoms (removing electrons) until they are slowed sufficiently to be captured by

6106-407: The principles of quantum mechanics . The number of electrons in each element's electron shells , particularly the outermost valence shell , is the primary factor in determining its chemical bonding behavior. Hence, it is the atomic number alone that determines the chemical properties of an element; and it is for this reason that an element can be defined as consisting of any mixture of atoms with

6192-662: The production of which is heavily affected by solar proton events such as coronal mass ejections . Research has been performed on the dose-rate effects of protons, as typically found in space travel , on human health. To be more specific, there are hopes to identify what specific chromosomes are damaged, and to define the damage, during cancer development from proton exposure. Another study looks into determining "the effects of exposure to proton irradiation on neurochemical and behavioral endpoints, including dopaminergic functioning, amphetamine -induced conditioned taste aversion learning, and spatial learning and memory as measured by

6278-400: The proton's mass. The rest mass of a proton is, thus, the invariant mass of the system of moving quarks and gluons that make up the particle, and, in such systems, even the energy of massless particles confined to a system is still measured as part of the rest mass of the system. Two terms are used in referring to the mass of the quarks that make up protons: current quark mass refers to

6364-479: The proton, which is due to its angular momentum (or spin ), which in turn has a magnitude of one-half the reduced Planck constant . ( ℏ / 2 {\displaystyle \hbar /2} ). The name refers to examination of protons as they occur in protium (hydrogen-1 atoms) in compounds, and does not imply that free protons exist in the compound being studied. The Apollo Lunar Surface Experiments Packages (ALSEP) determined that more than 95% of

6450-513: The quarks' exchanging gluons, and interacting with various vacuum condensates. Lattice QCD provides a way of calculating the mass of a proton directly from the theory to any accuracy, in principle. The most recent calculations claim that the mass is determined to better than 4% accuracy, even to 1% accuracy (see Figure S5 in Dürr et al. ). These claims are still controversial, because the calculations cannot yet be done with quarks as light as they are in

6536-444: The real world. This means that the predictions are found by a process of extrapolation , which can introduce systematic errors. It is hard to tell whether these errors are controlled properly, because the quantities that are compared to experiment are the masses of the hadrons , which are known in advance. These recent calculations are performed by massive supercomputers, and, as noted by Boffi and Pasquini: "a detailed description of

6622-581: The relative properties of particles and antiparticles and, therefore, is open to stringent tests. For example, the charges of a proton and antiproton must sum to exactly zero. This equality has been tested to one part in 10 . The equality of their masses has also been tested to better than one part in 10 . By holding antiprotons in a Penning trap , the equality of the charge-to-mass ratio of protons and antiprotons has been tested to one part in 6 × 10 . The magnetic moment of antiprotons has been measured with an error of 8 × 10 nuclear Bohr magnetons , and

6708-443: The simplest and lightest element and was influenced by Prout's hypothesis that hydrogen was the building block of all elements. Discovery that the hydrogen nucleus is present in other nuclei as an elementary particle led Rutherford to give the hydrogen nucleus H a special name as a particle, since he suspected that hydrogen, the lightest element, contained only one of these particles. He named this new fundamental building block of

6794-507: The single element from which Rutherford made his guess). Nevertheless, in spite of Rutherford's estimation that gold had a central charge of about 100 (but was element Z = 79 on the periodic table), a month after Rutherford's paper appeared, Antonius van den Broek first formally suggested that the central charge and number of electrons in an atom were exactly equal to its place in the periodic table (also known as element number, atomic number, and symbolized Z ). This eventually proved to be

6880-482: The surface of the Sun) and with any type of atom. Thus, in interaction with any type of normal (non-plasma) matter, low-velocity free protons do not remain free but are attracted to electrons in any atom or molecule with which they come into contact, causing the proton and molecule to combine. Such molecules are then said to be " protonated ", and chemically they are simply compounds of hydrogen, often positively charged. Often, as

6966-476: The word Atomzahl (and its English equivalent atomic number ) come into common use in this context. The rules above do not always apply to exotic atoms which contain short-lived elementary particles other than protons, neutrons and electrons. In the 19th century, the term "atomic number" typically meant the number of atoms in a given volume. Modern chemists prefer to use the concept of molar concentration . In 1913, Antonius van den Broek proposed that

7052-525: Was confirmed experimentally by Henry Moseley in 1913 using X-ray spectra (More details in Atomic number under Moseley's 1913 experiment). In 1917, Rutherford performed experiments (reported in 1919 and 1925) which proved that the hydrogen nucleus is present in other nuclei, a result usually described as the discovery of protons. These experiments began after Rutherford observed that when alpha particles would strike air, Rutherford could detect scintillation on

7138-479: Was far from obvious from known chemistry at that time. After Moseley's death in 1915, the atomic numbers of all known elements from hydrogen to uranium ( Z  = 92) were examined by his method. There were seven elements (with Z  < 92) which were not found and therefore identified as still undiscovered, corresponding to atomic numbers 43, 61, 72, 75, 85, 87 and 91. From 1918 to 1947, all seven of these missing elements were discovered. By this time,

7224-562: Was probably he who established this definition. After Rutherford deduced the existence of the proton in 1920, "atomic number" customarily referred to the proton number of an atom. In 1921, the German Atomic Weight Commission based its new periodic table on the nuclear charge number and in 1923 the International Committee on Chemical Elements followed suit. The periodic table of elements creates an ordering of

7310-464: Was realized to come entirely from a content of 79 protons. Since Moseley had previously shown that the atomic number Z of an element equals this positive charge, it was now clear that Z is identical to the number of protons of its nuclei. Each element has a specific set of chemical properties as a consequence of the number of electrons present in the neutral atom, which is Z (the atomic number). The configuration of these electrons follows from

7396-436: Was said to be maximum at the centre, positive (repulsive) to a radial distance of about 0.6 fm, negative (attractive) at greater distances, and very weak beyond about 2 fm. These numbers were derived by a combination of a theoretical model and experimental Compton scattering of high-energy electrons. However, these results have been challenged as also being consistent with zero pressure and as effectively providing

#776223