Misplaced Pages

Nuclear power in Denmark

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

Denmark imports but does not produce nuclear energy , which is in accordance with a 1985 law passed by the Danish parliament , prohibiting power production from nuclear energy in Denmark. In 2014 and 2015, imported nuclear power accounted for 3-4% of electricity consumption in Denmark.

#690309

85-775: Beginning in the 1950s, the Danish government funded efforts to research and establish nuclear power plants in Denmark through the Danish Atomic Energy Commission and the Risø National Laboratory. Anti-nuclear sentiment within Denmark increased in the early 1970s following the Chernobyl disaster , the Three Mile Island accident , and the construction of the controversial Barsebäck Nuclear Power Plant . Protests made by

170-472: A boon than a curse to mankind". In December 1955, the Danish Atomic Energy Commission (Danish: Atomenergikommissionen , AEK) was established. The Commission consisted of 24 members, with Bohr as its chairman, and had oversight over the development and promotion of nuclear energy in Denmark. The AEK established a nuclear research site in Risø which was officially inaugurated on 6 June 1958. In its first three decades,

255-479: A city 1,000 kilometres (620 mi) northeast of Chernobyl, where physicists from the V.G. Khlopin Radium Institute measured anomalous high levels of xenon-135 —a short half-life isotope—four days after the explosion. This meant that a nuclear event in the reactor may have ejected xenon to higher altitudes in the atmosphere than the later fire did, allowing widespread movement of xenon to remote locations. This

340-427: A combustible material, had been used in the construction of the roof of the reactor building and the turbine hall. Ejected material ignited at least five fires on the roof of the adjacent reactor No. 3, which was still operating. It was imperative to put out those fires and protect the cooling systems of reactor No. 3. Inside reactor No. 3, the chief of the night shift, Yuri Bagdasarov, wanted to shut down

425-559: A demonstration against the plant, and a second march in 1977 gathered nearly 20,000. In 1979, the OOA collected more than 300,000 signatures in an open letter to the Prime Minister, Anker Jørgensen . The Barsebäck plant, the Chernobyl disaster , and the Three Mile Island accident lead to increasing anti-nuclear sentiments in Denmark, spurring energy debates in the Folketing . In August 1978,

510-491: A fatal radiation overdose from a criticality accident . The explosion and fire threw hot particles of the nuclear fuel and more dangerous fission products into the air. The residents of the surrounding area observed the radioactive cloud on the night of the explosion. The ionizing radiation levels in the worst-hit areas of the reactor building have been estimated to be 5.6  roentgens per second (R/s), equivalent to more than 20,000 roentgens per hour. A lethal dose

595-402: A heavy water reactor also failed due to a lack of collaboration and economic viability. Following increasing anti-nuclear sentiment within Denmark in the early 1970s, the Danish government halted the rollout of a nuclear power program in 1976, until a clear plan for the disposal of nuclear waste could be formalised. As a result the laboratory at Risø found itself at a standstill, especially after

680-687: A march arranged by the OOA to planned reactor sites was attended by approximately 50,000 people. Following the march, option polls stated that just 32% of Danes were in favor of nuclear energy production, while 53% were against it. In March 1985, the Folketing voted to remove nuclear power from the nation's energy planning, effectively banning the generation of electricity from nuclear reactors. The fifteen locations across Denmark which had been reserved for possible nuclear plants were then scraped. Instead of investing in nuclear power, Denmark converted oil plants to coal and built new coal power plants in order to meet

765-527: A reactor core fire that spread radioactive contaminants across the USSR and Europe. A 10-kilometre (6.2 mi) exclusion zone was established 36 hours after the accident, initially evacuating around 49,000 people. The exclusion zone was later expanded to 30 kilometres (19 mi), resulting in the evacuation of approximately 68,000 more people. Following the explosion, which killed two engineers and severely burned two others, an emergency operation began to put out

850-403: A revised report, INSAG-7, in 1992. According to INSAG-1, the main cause of the accident was the operators' actions, but according to INSAG-7, the main cause was the reactor's design. Both reports identified an inadequate "safety culture" (INSAG-1 coined the term) at all managerial and operational levels as a major underlying factor. The nearby city of Pripyat was not immediately evacuated and

935-426: A test to simulate cooling the reactor during an accident in blackout conditions. The operators carried out the test despite an accidental drop in reactor power, and due to a design issue, attempting to shut down the reactor in those conditions resulted in a dramatic power surge. The reactor components ruptured, lost coolants, and the resulting steam explosions and meltdown destroyed the containment building, followed by

SECTION 10

#1732850994691

1020-474: Is around 500 roentgens (~5  Gray (Gy) in modern radiation units) over five hours. In some areas, unprotected workers received fatal doses in less than a minute. Unfortunately, a dosimeter capable of measuring up to 1,000 R/s was buried in the rubble of a collapsed part of the building, and another one failed when turned on. Most remaining dosimeters had limits of 0.001 R/s and therefore read "off scale". The reactor crew could ascertain only that

1105-456: Is believed to be the first explosion that many heard. This explosion ruptured further fuel channels, as well as severing most of the coolant lines feeding the reactor chamber. As a result, the remaining coolant flashed to steam and escaped the reactor core. The total water loss combined with a high positive void coefficient further increased the reactor's thermal power. A second, more powerful explosion occurred about two or three seconds after

1190-422: Is estimated to have had the power equivalent of 225 tons of TNT . According to observers outside Unit 4, burning lumps of material and sparks shot into the air above the reactor. Some of them fell onto the roof of the machine hall and started a fire. About 25% of the red-hot graphite blocks and overheated material from the fuel channels was ejected. Parts of the graphite blocks and fuel channels were out of

1275-461: Is possible that well over half of the graphite burned out. It was thought by some that the core fire was extinguished by a combined effort of helicopters dropping more than 5,000 tonnes (11 million pounds) of sand, lead, clay, and neutron-absorbing boron onto the burning reactor. It is now known that virtually none of these materials reached the core. Historians estimate that about 600 Soviet pilots risked dangerous levels of radiation to fly

1360-460: Is the Danish ministry in charge of research and education above high school/upper secondary school. The ministry has also been known as the "Ministry of Science, Innovation and Higher Education", the "Ministry of Science, Technology and Innovation of Denmark", the "Science Ministry", the "Research Ministry", and the "Ministry of Research and Technology". Its primary purpose is to promote and coordinate

1445-485: The Organisationen til Oplysning om Atomkraft (English: Organisation for Nuclear Information ; OOA) and dissent among the majority of voters led the Danish government to halt the rollout of a nuclear power program in 1976, and eventually prohibit the generation of nuclear power in 1985. In reaction to climate change , the 21st century has seen renewed interest in Denmark in nuclear energy production as an alternative to

1530-523: The Risø National Laboratory' s activities were centred around research on the peaceful use of nuclear energy. Between 1957 and 1960, three research nuclear reactors opened at Risø, which had been imported from or based on designs from the United States and United Kingdom: DR-1, DR-2 and DR-3 (DR: Danish Reactor, Dansk Reaktor). These reactors were not designed to produce power, but to be used for

1615-640: The Smiling Sun anti-nuclear symbol to support OOA's cause, which has since gained global use among anti-nuclear advocates. The OOA arranged peaceful demonstrations and information campaigns. Following the opening of the Barsebäck Nuclear Power Plant in Sweden, just 20km from Copenhagen, they began organizing demonstrations in front of the Swedish Embassy and producing scientific publications on

1700-474: The reaction of red-hot graphite with steam that produced hydrogen and carbon monoxide . Another hypothesis, by Konstantin Checherov, published in 1998, was that the second explosion was a thermal explosion of the reactor due to the uncontrollable escape of fast neutrons caused by the complete water loss in the reactor core. The force of the second explosion and the ratio of xenon radioisotopes released after

1785-432: The scram continued, the reactor output jumped to around 30,000 MW thermal, 10 times its normal operational output, the indicated last reading on the control panel. Some estimate the power spike may have gone 10 times higher than that. It was not possible to reconstruct the precise sequence of the processes that led to the destruction of the reactor and the power unit building, but a steam explosion appears to have been

SECTION 20

#1732850994691

1870-426: The 5.5 MW needed to run one main pump. Special counterweights on each pump provided coolant via inertia to bridge the gap to generator startup. However, a potential safety risk existed in the event that a station blackout occurred simultaneously with the rupture of a coolant pipe. In this scenario the emergency core cooling system (ECCS) is needed to pump additional water into the core. It had been theorized that

1955-531: The Kiev grid controller allowed the reactor shutdown to resume. The day shift had long since departed, the evening shift was also preparing to leave, and the night shift would not take over until midnight, well into the job. According to plan, the test should have been finished during the day shift, and the night shift would only have had to maintain decay heat cooling systems in an otherwise shut-down plant. The night shift had very limited time to prepare for and carry out

2040-490: The absence of further operator action, a process known as reactor poisoning . In steady-state operation, this is avoided because xenon-135 is "burned off" as quickly as it is created, becoming highly stable xenon-136 . With the reactor power reduced, high quantities of previously produced iodine-135 were decaying into the neutron-absorbing xenon-135 faster than the reduced neutron flux could "burn it off". Xenon poisoning in this context made reactor control more difficult, but

2125-468: The accident led Sergei A. Pakhomov and Yuri V. Dubasov in 2009 to theorize that the second explosion could have been an extremely fast nuclear power transient resulting from core material melting in the absence of its water coolant and moderator. Pakhomov and Dubasov argued that there was no delayed supercritical increase in power but a runaway prompt criticality , similar to the explosion of a fizzled nuclear weapon . Their evidence came from Cherepovets ,

2210-552: The assumption that the new dosimeter must have been defective. Akimov stayed in the reactor building until morning, sending members of his crew to try to pump water into the reactor. None of them wore any protective gear. Most, including Akimov, died from radiation exposure within three weeks. The IAEA had created the International Nuclear Safety Advisory Group (INSAG) in 1985. INSAG produced two significant reports on Chernobyl: INSAG-1 in 1986, and

2295-454: The automatic regulators' ionization sensors. The result was a sudden power drop to an unintended near- shutdown state, with a power output of 30 MW thermal or less. The exact circumstances that caused the power drop are unknown. Most reports attribute the power drop to Toptunov's error, but Dyatlov reported that it was due to a fault in the AR-2 system. The reactor was now producing only 5% of

2380-430: The core in a loss-of-coolant accident . Approval from the site chief engineer had been obtained according to regulations. The test procedure was intended to run as follows: The test was to be conducted during the day-shift of 25 April 1986 as part of a scheduled reactor shutdown. The day shift had been instructed in advance on the reactor operating conditions to run the test, and a special team of electrical engineers

2465-465: The core, therefore entering the reactor very close to the boiling point. Unlike other light-water reactor designs, the RBMK design at that time had a positive void coefficient of reactivity at typical fuel burnup levels. This meant that the formation of steam bubbles (voids) from boiling cooling water intensified the nuclear chain reaction owing to voids having lower neutron absorption than water. Unknown to

2550-470: The decommissionning process of DR-3, the hot cells, and the nuclear waste management plant is still ongoing. The decommissioning of DR-1 (completed 2006), DR-2 (completed 2008), and fuel fabrication plant (completed 2023) has been completed. The laboratory employed about 700 staff in 2005, at which point it was a research institute under the Danish Ministry of Science, Technology and Innovation . In 2007,

2635-446: The development of molten-salt reactors , where the fissile material is mixed into molten salt , having a significantly lower output effect than conventional, commercially available nuclear power reactors. They are smaller in size, and both companies are therefore producing small modular reactors . The issue of introducing nuclear power in Denmark has been revived since 2019, when the 2019 United Nations Climate Change Conference and

Nuclear power in Denmark - Misplaced Pages Continue

2720-461: The disabling of the emergency core cooling system . Meanwhile, another regional power station unexpectedly went offline. At 14:00, the Kiev electrical grid controller requested that the further reduction of Chernobyl's output be postponed, as power was needed to satisfy the peak evening demand. Soon, the day shift was replaced by the evening shift. Despite the delay, the emergency core cooling system

2805-637: The disaster. The United Nations Scientific Committee on the Effects of Atomic Radiation estimates fewer than 100 deaths have resulted from the fallout. Predictions of the eventual total death toll vary; a 2006 World Health Organization study projected 9,000 cancer-related fatalities in Ukraine, Belarus, and Russia. Pripyat was abandoned and replaced by the purpose-built city of Slavutych . The Chernobyl Nuclear Power Plant sarcophagus , completed in December 1986, reduced

2890-488: The driver of one of the fire engines, later described what happened: We arrived there at 10 or 15 minutes to two in the morning ... We saw graphite scattered about. Misha asked: "Is that graphite?" I kicked it away. But one of the fighters on the other truck picked it up. "It's hot," he said. The pieces of graphite were of different sizes, some big, some small enough to pick them up [...] We didn't know much about radiation. Even those who worked there had no idea. There

2975-623: The experiment. Anatoly Dyatlov , deputy chief-engineer of the Chernobyl Nuclear Power Plant (ChNPP), was present to direct the test. He was one of the test's chief authors and he was the highest-ranking individual present. Unit Shift Supervisor Aleksandr Akimov was in charge of the Unit 4 night shift, and Leonid Toptunov was the Senior Reactor Control Engineer responsible for the reactor's operational regimen, including

3060-463: The fires and stabilize the reactor. Of the 237 workers hospitalized, 134 showed symptoms of acute radiation syndrome (ARS); 28 of them died within three months. Over the next decade, 14 more workers (nine of whom had ARS) died of various causes mostly unrelated to radiation exposure. It is the only instance in commercial nuclear power history where radiation-related fatalities occurred. As of 2011, 15 childhood thyroid cancer deaths were attributed to

3145-435: The fires. First on the scene was a Chernobyl Power Station firefighter brigade under the command of Lieutenant Volodymyr Pravyk , who died on 11 May 1986 of acute radiation sickness . They were not told how dangerously radioactive the smoke and the debris were, and may not even have known that the accident was anything more than a regular electrical fire: "We didn't know it was the reactor. No one had told us." Grigorii Khmel,

3230-427: The first; this explosion dispersed the damaged core and effectively terminated the nuclear chain reaction . This explosion compromised more of the reactor containment vessel and ejected hot lumps of graphite moderator. The ejected graphite and the demolished channels still in the remains of the reactor vessel caught fire on exposure to air, significantly contributing to the spread of radioactive fallout . The explosion

3315-592: The former facilities of the Risø National Laboratory, reestablished formal research into nuclear power in Denmark in 2024. Chernobyl disaster The Chernobyl disaster began on 26 April 1986 with the explosion of the No. 4 reactor of the Chernobyl Nuclear Power Plant near the city of Pripyat in northern Ukraine, near the Belarus border in the Soviet Union . It is one of only two nuclear energy accidents rated at

3400-446: The full availability of the emergency generators, but would alleviate the situation. The turbine run-down energy capability still needed to be confirmed experimentally, and previous tests had ended unsuccessfully. An initial test carried out in 1982 indicated that the excitation voltage of the turbine-generator was insufficient. The electrical system was modified, and the test was repeated in 1984 but again proved unsuccessful. In 1985,

3485-460: The generators were to have completely picked up the MCPs' power needs by 01:23:43. As the momentum of the turbine generator decreased, so did the power it produced for the pumps. The water flow rate decreased, leading to increased formation of steam voids in the coolant flowing up through the fuel pressure tubes. At 01:23:40, a scram (emergency shutdown) of the reactor was initiated as the experiment

Nuclear power in Denmark - Misplaced Pages Continue

3570-467: The laboratory was merged into the Technical University of Denmark and was made an official institute of university in 2008 before being dissolved in 2012 when its facilities were transformed into a second campus of the university. The 1973 oil crisis brought the development of nuclear power in Denmark back into public focus. Concerned about the safety of nuclear power plants, their economics and

3655-429: The low levels in one half of the steam/water separator drums, with accompanying drum separator pressure warnings. In response, personnel triggered rapid influxes of feedwater. Relief valves opened to relieve excess steam into a turbine condenser . When a power level of 200 MW was reattained, preparation for the experiment continued, although the power level was much lower than the prescribed 700 MW. As part of

3740-524: The maximum severity on the International Nuclear Event Scale , the other being the 2011 Fukushima nuclear accident . The response involved more than 500,000 personnel and cost an estimated 18   billion rubles (about $ 68   billion USD in 2019). It remains the worst nuclear disaster in history, and the costliest disaster in human history , with an estimated cost of $ 700 billion USD. The disaster occurred while running

3825-417: The minimum initial power level prescribed for the test. This low reactivity inhibited the burn-off of xenon-135 within the reactor core and hindered the rise of reactor power. To increase power, control-room personnel removed numerous control rods from the reactor. Several minutes elapsed before the reactor was restored to 160 MW at 00:39, at which point most control rods were at their upper limits, but

3910-523: The morning. ' " He also stated, "Of course we knew! If we'd followed regulations, we would never have gone near the reactor. But it was a moral obligation—our duty. We were like kamikaze ." The immediate priority was to extinguish fires on the roof of the station and the area around the building containing Reactor No. 4 to protect No. 3. The fires were extinguished by 5:00, but many firefighters received high doses of radiation. The fire inside Reactor No. 4 continued to burn until 10 May 1986; it

3995-465: The movement of the control rods . 25-year-old Toptunov had worked independently as a senior engineer for approximately three months. The test plan called for a gradual decrease in reactor power to a thermal level of 700–1000 MW, and an output of 720 MW was reached at 00:05 on 26 April. However, due to the reactor's production of a fission byproduct, xenon-135 , which is a reaction-inhibiting neutron absorber , power continued to decrease in

4080-454: The nations energy demands. As a result, Denmark was the world's second largest importer of coal for several years, importing 11–12 million tons per year. Denmark has increasingly focused on renewable energy sources such as wind energy to reduce the country's dependence on coal power. In 2015, two Danish companies related to nuclear energy were established: Seaborg Technologies and Copenhagen Atomics . Both are private companies that work on

4165-407: The next event. There is a general understanding that it was explosive steam pressure from the damaged fuel channels escaping into the reactor's exterior cooling structure that caused the explosion that destroyed the reactor casing, tearing off and blasting the upper plate called the upper biological shield, to which the entire reactor assembly is fastened, through the roof of the reactor building. This

4250-414: The operators, the void coefficient was not counterbalanced by other reactivity effects in the given operating regime, meaning that any increase in boiling would produce more steam voids which further intensified the chain reaction, leading to a positive feedback loop. Given this characteristic, reactor No. 4 was now at risk of a runaway increase in its core power with nothing to restrain it. The reactor

4335-462: The planned operating conditions. It was regarded as purely an electrical test of the generator, even though it involved critical unit systems. According to the existing regulations, such a test did not require approval by either the chief design authority for the reactor (NIKIET) or the nuclear safety regulator. The test program called for disabling the emergency core cooling system , a passive/active system of core cooling intended to provide water to

SECTION 50

#1732850994691

4420-483: The positive scram effect would be important would never occur. However, they did appear in almost every detail in the course of the actions leading to the Chernobyl accident." A few seconds into the scram, a power spike occurred, and the core overheated, causing some of the fuel rods to fracture. Some have speculated that this also blocked the control rod columns, jamming them at one-third insertion. Within three seconds

4505-556: The potential dangers of the plant. In response, pro-nuclear proponents established the Réel Energi Oplysning (English: Real Energy Information ; REO), which was composed primarily of nuclear experts from the Risø laboratory. Their counter-publications affirming the safety of the Barsebäck plant made less of an impact than the OOA's efforts, and the broader Danish public remained opposed. In 1976, approximately 10,000 people marched in

4590-502: The prohibition of nuclear energy in 1985, and began shifting its focus towards research into other energy sources. By the turn of the 21st century, Risø was particularly noted for its research related to wind energy , solid-oxide fuel cells , and climate change. Beginning in 2003, the three nuclear research reactors at the former Risø National Laboratory were decommissioned along with the adjacent hot cell facility, fuel fabrication plant, and nuclear waste management plant. As of 2024,

4675-419: The radiation levels were somewhere above 0.001 R/s (3.6 R/h), while the true levels were vastly higher in some areas. Because of the inaccurate low readings, the reactor crew chief Aleksandr Akimov assumed that the reactor was intact. The evidence of pieces of graphite and reactor fuel lying around the building was ignored, and the readings of another dosimeter brought in by 04:30 were dismissed under

4760-410: The reaction rate in the lower part of the core. This behaviour was discovered when the initial insertion of control rods in another RBMK reactor at Ignalina Nuclear Power Plant in 1983 induced a power spike. Procedural countermeasures were not implemented in response to Ignalina. The IAEA investigative report INSAG-7 later stated, "Apparently, there was a widespread view that the conditions under which

4845-431: The reactor building. As a result of the damage to the building, an airflow through the core was established by the core's high temperature. The air ignited the hot graphite and started a graphite fire. After the larger explosion, several employees at the power station went outside to get a clearer view of the extent of the damage. One such survivor, Alexander Yuvchenko , said that once he stepped out and looked up towards

4930-450: The reactor fell below the required value of 15. This was not apparent to the operators, because the RBMK did not have any instruments capable of calculating the inserted rod worth in real time. The combined effect of these various actions was an extremely unstable reactor configuration. Nearly all of the 211 control rods had been extracted, and excessively high coolant flow rates meant that the water had less time to cool between trips through

5015-414: The reactor hall, he saw a "very beautiful" laser-like beam of blue light caused by the ionized-air glow that appeared to be "flooding up into infinity". There were initially several hypotheses about the nature of the second, larger explosion. One view was that the second explosion was caused by the combustion of hydrogen , which had been produced either by the overheated steam- zirconium reaction or by

5100-404: The reactor immediately, but chief engineer Nikolai Fomin would not allow this. The operators were given respirators and potassium iodide tablets and told to continue working. At 05:00, Bagdasarov made his own decision to shut down the reactor, which was confirmed in writing by Dyatlov and Station Shift Supervisor Rogozhkin. Shortly after the accident, firefighters arrived to try to extinguish

5185-451: The reactor output rose above 530 MW. Instruments did not register the subsequent course of events; it was reconstructed through mathematical simulation. The power spike would have caused an increase in fuel temperature and steam buildup, leading to a rapid increase in steam pressure . This caused the fuel cladding to fail, releasing the fuel elements into the coolant and rupturing the channels in which these elements were located. As

SECTION 60

#1732850994691

5270-536: The reactor shuts down. Continued coolant circulation is essential to prevent core overheating or a core meltdown . RBMK reactors, like those at Chernobyl, use water as a coolant, circulated by electrically driven pumps. Reactor No. 4 had 1,661 individual fuel channels, requiring over 12 million US gallons (45 million litres) per hour for the entire reactor. In case of a total power loss, each of Chernobyl's reactors had three backup diesel generators , but they took 60–75 seconds to reach full load and generate

5355-442: The reactor. That is, when a control rod was at maximum extraction, a neutron-moderating graphite extension was centered in the core with 1.25 metres (4.1 ft) columns of water above and below it. Consequently, injecting a control rod downward into the reactor in a scram initially displaced neutron-absorbing water in the lower portion of the reactor with neutron-moderating graphite. Thus, an emergency scram could initially increase

5440-510: The reason why the button was pressed when it was is not certain, as only the deceased Akimov and Toptunov made that decision, though the atmosphere in the control room was calm, according to eyewitnesses. The RBMK designers claim the button had to have been pressed only after the reactor already began to self-destruct. When the AZ-5 button was pressed, the insertion of control rods into the reactor core began. The control rod insertion mechanism moved

5525-473: The rod configuration was still within its normal operating limit, with Operational Reactivity Margin (ORM) equivalent to having more than 15 rods inserted. Over the next twenty minutes, reactor power would be increased further to 200 MW. The operation of the reactor at the low power level was accompanied by unstable core temperatures and coolant flow, and possibly by instability of neutron flux . The control room received repeated emergency signals regarding

5610-448: The rods at 0.4 metres per second (1.3 ft/s), so that the rods took 18 to 20 seconds to travel the full height of the core , about 7 metres (23 ft). A bigger problem was the design of the RBMK control rods , each of which had a graphite neutron moderator section attached to its end to boost reactor output by displacing water when the control rod section had been fully withdrawn from

5695-474: The rotational momentum of the reactor's steam turbine could be used to generate the required electrical power to operate the ECCS via the feedwater pumps. The turbine's speed would run down as energy was taken from it, but analysis indicated that there might be sufficient energy to provide electrical power to run the coolant pumps for 45 seconds. This would not quite bridge the gap between an external power failure and

5780-535: The spread of radioactive contamination and provided radiological protection for the crews of the undamaged reactors. In 2016–2018, the Chernobyl New Safe Confinement was constructed around the old sarcophagus to enable the removal of the reactor debris, with clean-up scheduled for completion by 2065. In nuclear reactor operation, most heat is generated by nuclear fission , but over 6% comes from radioactive decay heat, which continues after

5865-570: The state of the climate showed a need for energy sources which produced fewer greenhouse gasses . In reaction to the popular "Atomkraft? Nej tak" (English: Nuclear Power? No thanks ) slogan, the phrase "Atomkraft, ja tak" (English: Nuclear Power? Yes thanks ) has gained usage. In March 2024 the Minister of Climate, Energy and Utilities , Lars Aagaard , announced that test reactors may be built in Denmark, provided that they do not produce electricity. The Technical University of Denmark , which now possesses

5950-418: The test was conducted a third time but also yielded no results due to a problem with the recording equipment. The test procedure was to be run again in 1986 and was scheduled to take place during a controlled power-down of reactor No. 4, which was preparatory to a planned maintenance outage. A test procedure had been written, but the authors were not aware of the unusual RBMK-1000 reactor behaviour under

6035-429: The test, two additional main circulating pumps were activated at 01:05. The increased coolant flow lowered the overall core temperature and reduced the existing steam voids in the core. Because water absorbs neutrons better than steam, the neutron flux and reactivity decreased. The operators responded by removing more manual control rods to maintain power. It was around this time that the number of control rods inserted in

6120-434: The thousands of flights needed to cover reactor No. 4 in this attempt to seal off radiation. From eyewitness accounts of the firefighters involved before they died, one described his experience of the radiation as "tasting like metal", and feeling a sensation similar to pins and needles all over his face. This is consistent with the description given by Louis Slotin , a Manhattan Project physicist who died days after

6205-617: The townspeople were not alerted during the night to what had just happened. However, within a few hours, dozens of people fell ill. Later, they reported severe headaches and metallic tastes in their mouths, along with uncontrollable fits of coughing and vomiting. As the plant was run by authorities in Moscow, the government of Ukraine did not receive prompt information on the accident. Ministry of Science, Technology and Innovation (Denmark) The Danish Ministry of Higher Education and Science ( Danish : Uddannelses- og Forskningsministeriet )

6290-562: The training of power plant technicians and for producing radioisotopes for scientific and medical use. The institute also attempted to develop its own reactor design to be the model for Danish power reactors—an organic liquid cooled , heavy water moderated design called the Deuterium Organic Reactor (DOR). However, the institute failed to convince Danish power utilities to support it and their plans were never realised. Later attempts to partner with Sweden's AB Atomenergi to develop

6375-468: The use of fossil fuels . In August 2023, a Gallup poll showed that 55% of Denmark's population views nuclear power favourably, compared to 26% against. Denmark invested in nuclear research relatively late compared to other European nations due to American and British reluctance to allow Denmark’s most prominent scientist, Niels Bohr , to divulge the knowledge he gained during the Manhattan project . Bohr

6460-514: The wider threat to world peace posed by nuclear technology, the OOA was founded in January 1974 by students in Copenhagen . They campaigned against the construction of nuclear power facilities in Denmark, and instead advocated for greater use of coal , natural gas , and biogas , along with energy-saving measures and an increased focus on the development of wind and solar technology. Anne Lund created

6545-478: Was a predictable phenomenon during such a power reduction. When the reactor power had decreased to approximately 500 MW, the reactor power control was switched from local automatic regulator to the automatic regulators, to manually maintain the required power level. AR-1 then activated, removing all four of AR-1's control rods automatically, but AR-2 failed to activate due to an imbalance in its ionization chambers. In response, Toptunov reduced power to stabilize

6630-582: Was acutely aware of this fact, and as the rest of the scientific establishment followed his lead at the time, very little progress was made until the early 1950s. Following the 1953 Atoms for Peace speech, these tight restrictions were relaxed. After a 1955 American sponsored campaign from the US Information Service called "Atomet i Hverdagen" (English: The Atom in Everyday Life ), the majority of Danes anticipated that nuclear energy would be "more of

6715-409: Was an alternative to the more accepted explanation of a positive-feedback power excursion where the reactor disassembled itself by steam explosion. The energy released by the second explosion, which produced the majority of the damage, was estimated by Pakhomov and Dubasov to be at 40 billion joules , the equivalent of about 10 tons of TNT . Pakhomov and Dubasov's nuclear fizzle hypothesis

6800-470: Was examined in 2017 by Lars-Erik De Geer, Christer Persson and Henning Rodhe, who put the hypothesized fizzle event as the more probable cause of the first explosion. Both analyses argue that the nuclear fizzle event, whether producing the second or first explosion, consisted of a prompt chain reaction that was limited to a small portion of the reactor core, since self-disassembly occurs rapidly in fizzle events. Contrary to safety regulations, bitumen ,

6885-420: Was left disabled. This system had to be disconnected via a manual isolating slide valve, which in practice meant that two or three people spent the whole shift manually turning sailboat-helm-sized valve wheels. The system had no influence on the disaster, but allowing the reactor to run for 11 hours outside of the test without emergency protection was indicative of a general lack of safety culture. At 23:04,

6970-481: Was no water left in the trucks. Misha filled a cistern and we aimed the water at the top. Then those boys who died went up to the roof—Vashchik, Kolya and others, and Volodya Pravik ... They went up the ladder ... and I never saw them again. Anatoli Zakharov, a fireman stationed in Chernobyl, offered a different description in 2008: "I remember joking to the others, 'There must be an incredible amount of radiation here. We'll be lucky if we're all still alive in

7055-453: Was now very sensitive to the regenerative effect of steam voids on reactor power. At 01:23:04, the test began. Four of the eight main circulating pumps (MCP) were to be powered by voltage from the coasting turbine, while the remaining four pumps received electrical power from the grid as normal. The steam to the turbines was shut off, beginning a run-down of the turbine generator. The diesel generators started and sequentially picked up loads;

7140-409: Was present to conduct the electrical test once the correct conditions were reached. As planned, a gradual reduction in the output of the power unit began at 01:06 on 25 April, and the power level had reached 50% of its nominal 3,200 MW thermal level by the beginning of the day shift. The day shift was scheduled to perform the test at 14:15. Preparations for the test were carried out, including

7225-427: Was wrapping-up. The scram was started when the AZ-5 button of the reactor emergency protection system was pressed: this engaged the drive mechanism on all control rods to fully insert them, including the manual control rods that had been withdrawn earlier. The personnel had intended to shut down using the AZ-5 button in preparation for scheduled maintenance and the scram preceded the sharp increase in power. However,

#690309