Misplaced Pages

RGD

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
#89910

91-542: Not to be confused with RGB . RGD may refer to: RGD, the abbreviation for Arginylglycylaspartic acid RGD-5 , a Soviet/Russian hand grenade RGD-33 , a Soviet World War II-era hand grenade Association of Registered Graphic Designers of Ontario or the related professional designation of Registered Graphic Designer Radio Glas Drine , group of local commercial radio stations in Bosnia and Herzegovina Rat genome database ,

182-467: A 4:3 aspect ratio and some had 5:4 . Between 2003 and 2006, monitors with 16:9 and mostly 16:10 (8:5) aspect ratios became commonly available, first in laptops and later also in standalone monitors. Reasons for this transition included productive uses (i.e. field of view in video games and movie viewing) such as the word processor display of two standard letter pages side by side, as well as CAD displays of large-size drawings and application menus at

273-412: A DTA box may be needed to use a computer monitor as a TV set. Early electronic computer front panels were fitted with an array of light bulbs where the state of each particular bulb would indicate the on/off state of a particular register bit inside the computer. This allowed the engineers operating the computer to monitor the internal state of the machine, so this panel of lights came to be known as

364-408: A color triangle . Some of these triangles are smaller than the sRGB triangle, some are larger. Colors are typically encoded by 8 bits per primary color. The RGB value [255, 0, 0] represents red, but slightly different colors in different color spaces such as Adobe RGB and sRGB. Displaying sRGB-encoded data on wide-gamut devices can give an unrealistic result. The gamut is a property of the monitor;

455-510: A picture , video or working space, without obstruction from the bezel or other aspects of the unit's design. The main measurements for display devices are width, height, total area and the diagonal. The size of a display is usually given by manufacturers diagonally, i.e. as the distance between two opposite screen corners. This method of measurement is inherited from the method used for the first generation of CRT television when picture tubes with circular faces were in common use. Being circular, it

546-525: A collection of genetic and genomic information about the rat Reacting Gas Dynamics Laboratory at the Massachusetts Institute of Technology Registrar General Department , a government agency responsible for civil registration in many Commonwealth countries Topics referred to by the same term [REDACTED] This disambiguation page lists articles associated with the title RGD . If an internal link led you here, you may wish to change

637-492: A few more years because the original VGA cards were palette-driven just like EGA, although with more freedom than VGA, but because the VGA connectors were analog, later variants of VGA (made by various manufacturers under the informal name Super VGA) eventually added true-color. In 1992, magazines heavily advertised true-color Super VGA hardware. One common application of the RGB color model is

728-404: A fourth greyscale color channel as a masking layer, often called RGB32 . For images with a modest range of brightnesses from the darkest to the lightest, eight bits per primary color provides good-quality images, but extreme images require more bits per primary color as well as the advanced display technology. For more information see High Dynamic Range (HDR) imaging. In classic CRT devices,

819-449: A monitor with a graphics tablet . Such devices are typically unresponsive to touch without the use of one or more special tools' pressure. Newer models however are now able to detect touch from any pressure and often have the ability to detect tool tilt and rotation as well. Touch and tablet sensors are often used on sample and hold displays such as LCDs to substitute for the light pen , which can only work on CRTs. The option for using

910-427: A single number specifying the size and was not confusing when the aspect ratio was universally 4:3. With the introduction of flat-panel technology, the diagonal measurement became the actual diagonal of the visible display. This meant that an eighteen-inch LCD had a larger viewable area than an eighteen-inch cathode-ray tube. Estimation of monitor size by the distance between opposite corners does not take into account

1001-413: A time period on standby. Most modern laptops provide a method of screen dimming after periods of inactivity or when the battery is in use. This extends battery life and reduces wear. Most modern monitors have two different indicator light colors wherein if video-input signal was detected, the indicator light is green and when the monitor is in power-saving mode, the screen is black and the indicator light

SECTION 10

#1732859407090

1092-589: A time. Of course, before displaying, the CLUT has to be loaded with R, G, and B values that define the palette of colors required for each image to be rendered. Some video applications store such palettes in PAL files ( Age of Empires game, for example, uses over half-a-dozen ) and can combine CLUTs on screen. This indirect scheme restricts the number of available colors in an image CLUT—typically 256-cubed (8 bits in three color channels with values of 0–255)—although each color in

1183-423: A variety of methods for mounting them depending on the application and environment. A desktop monitor is typically provided with a stand from the manufacturer which lifts the monitor up to a more ergonomic viewing height. The stand may be attached to the monitor using a proprietary method or may use, or be adaptable to, a VESA mount. A VESA standard mount allows the monitor to be used with more after-market stands if

1274-414: Is 1920 × 1080 , shared with the 1080p of HDTV. Before 2013 mass market LCD monitors were limited to 2560 × 1600 at 30 in (76 cm), excluding niche professional monitors. By 2015 most major display manufacturers had released 3840 × 2160 ( 4K UHD ) displays, and the first 7680 × 4320 ( 8K ) monitors had begun shipping. Every RGB monitor has its own color gamut , bounded in chromaticity by

1365-436: Is a specialized RAM that stores R, G, and B values that define specific colors. Each color has its own address (index)—consider it as a descriptive reference number that provides that specific color when the image needs it. The content of the CLUT is much like a palette of colors. Image data that uses indexed color specifies addresses within the CLUT to provide the required R, G, and B values for each specific pixel, one pixel at

1456-617: Is a variant of LCD which is now the dominant technology used for computer monitors. The first standalone LCDs appeared in the mid-1990s selling for high prices. As prices declined they became more popular, and by 1997 were competing with CRT monitors. Among the first desktop LCD computer monitors were the Eizo FlexScan L66 in the mid-1990s, the SGI 1600SW , Apple Studio Display and the ViewSonic VP140 in 1998. In 2003, LCDs outsold CRTs for

1547-402: Is formed by the sum of two primary colors of equal intensity: cyan is green+blue, magenta is blue+red, and yellow is red+green. Every secondary color is the complement of one primary color: cyan complements red, magenta complements green, and yellow complements blue. When all the primary colors are mixed in equal intensities, the result is white. The RGB color model itself does not define what

1638-526: Is given by a gamma value of 1.0, but actual CRT nonlinearities have a gamma value around 2.0 to 2.5. Similarly, the intensity of the output on TV and computer display devices is not directly proportional to the R, G, and B applied electric signals (or file data values which drive them through digital-to-analog converters). On a typical standard 2.2-gamma CRT display, an input intensity RGB value of (0.5, 0.5, 0.5) only outputs about 22% of full brightness (1.0, 1.0, 1.0), instead of 50%. To obtain

1729-422: Is given twice as many detectors as red and blue (ratio 1:2:1) in order to achieve higher luminance resolution than chrominance resolution. The sensor has a grid of red, green, and blue detectors arranged so that the first row is RGRGRGRG, the next is GBGBGBGB, and that sequence is repeated in subsequent rows. For every channel, missing pixels are obtained by interpolation in the demosaicing process to build up

1820-617: Is imparted, reducing geometric distortion, especially in extremely large and wide seamless desktop monitors intended for close viewing range. Newer monitors are able to display a different image for each eye , often with the help of special glasses and polarizers, giving the perception of depth. An autostereoscopic screen can generate 3D images without headgear. Features for medical using or for outdoor placement. Narrow viewing angle screens are used in some security-conscious applications. Integrated screen calibration tools, screen hoods, signal transmitters; Protective screens. A combination of

1911-497: Is implemented on most modern flat-panel monitors and TVs. For computer monitors, the VESA Mount typically consists of four threaded holes on the rear of the display that will mate with an adapter bracket. Rack mount computer monitors are available in two styles and are intended to be mounted into a 19-inch rack: A fixed rack mount monitor is mounted directly to the rack with the flat-panel or CRT visible at all times. The height of

SECTION 20

#1732859407090

2002-641: Is less common. Originally computer monitors were used for data processing while television sets were used for video. From the 1980s onward, computers (and their monitors) have been used for both data processing and video, while televisions have implemented some computer functionality. In the 2000s, the typical display aspect ratio of both televisions and computer monitors changed from 4:3 to 16:9. Modern computer monitors are often functionally interchangeable with television sets and vice versa. As most computer monitors do not include integrated speakers , TV tuners , or remote controls, external components such as

2093-448: Is meant by red , green , and blue colorimetrically, and so the results of mixing them are not specified as absolute, but relative to the primary colors. When the exact chromaticities of the red, green, and blue primaries are defined, the color model then becomes an absolute color space , such as sRGB or Adobe RGB . The choice of primary colors is related to the physiology of the human eye ; good primaries are stimuli that maximize

2184-475: Is needed both in electronic publishing (via the Internet for display in browsers) and in desktop publishing targeted to print. Most modern monitors will switch to a power-saving mode if no video-input signal is received. This allows modern operating systems to turn off a monitor after a specified period of inactivity. This also extends the monitor's service life. Some monitors will also switch themselves off after

2275-491: Is not very popular as a video signal format; S-Video takes that spot in most non-European regions. However, almost all computer monitors around the world use RGB. A framebuffer is a digital device for computers which stores data in the so-called video memory (comprising an array of Video RAM or similar chips ). This data goes either to three digital-to-analog converters (DACs) (for analog monitors), one per primary color or directly to digital monitors. Driven by software ,

2366-468: Is one of the most common ways to encode color in computing, and several different digital representations are in use. The main characteristic of all of them is the quantization of the possible values per component (technically a sample ) by using only integer numbers within some range, usually from 0 to some power of two minus one (2  − 1) to fit them into some bit groupings. Encodings of 1, 2, 4, 5, 8 and 16 bits per color are commonly found;

2457-643: Is orange. Some monitors have different indicator light colors and some monitors have a blinking indicator light when in power-saving mode. Many monitors have other accessories (or connections for them) integrated. This places standard ports within easy reach and eliminates the need for another separate hub , camera , microphone , or set of speakers . These monitors have advanced microprocessors which contain codec information, Windows interface drivers and other small software which help in proper functioning of these functions. Monitors that feature an aspect ratio greater than 2:1 (for instance, 21:9 or 32:9, as opposed to

2548-448: Is represented by a cube using non-negative values within a 0–1 range, assigning black to the origin at the vertex (0, 0, 0), and with increasing intensity values running along the three axes up to white at the vertex (1, 1, 1), diagonally opposite black. An RGB triplet ( r , g , b ) represents the three-dimensional coordinate of the point of the given color within the cube or its faces or along its edges. This approach allows computations of

2639-399: Is typically an LCD with LED backlight , having by the 2010s replaced CCFL backlit LCDs. Before the mid-2000s, most monitors used a cathode-ray tube (CRT) as the image output technology. A monitor is typically connected to its host computer via DisplayPort , HDMI , USB-C , DVI , or VGA . Monitors sometimes use other proprietary connectors and signals to connect to a computer, which

2730-1147: Is used. Following is the mathematical relationship between RGB space to HSI space (hue, saturation, and intensity: HSI color space ): I = R + G + B 3 S = 1 − 3 ( R + G + B ) min ( R , G , B ) H = cos − 1 ⁡ ( ( R − G ) + ( R − B ) 2 ( R − G ) 2 + ( R − B ) ( G − B ) ) assuming  G > B {\displaystyle {\begin{aligned}I&={\frac {R+G+B}{3}}\\S&=1\,-\,{\frac {3}{(R+G+B)}}\,\min(R,G,B)\\H&=\cos ^{-1}\left({\frac {(R-G)+(R-B)}{2{\sqrt {(R-G)^{2}+(R-B)(G-B)}}}}\right)\qquad {\text{assuming }}G>B\end{aligned}}} If B > G {\displaystyle B>G} , then H = 360 − H {\displaystyle H=360-H} . The RGB color model

2821-499: Is written in the different RGB notations as: In many environments, the component values within the ranges are not managed as linear (that is, the numbers are nonlinearly related to the intensities that they represent), as in digital cameras and TV broadcasting and receiving due to gamma correction, for example. Linear and nonlinear transformations are often dealt with via digital image processing. Representations with only 8 bits per component are considered sufficient if gamma correction

RGD - Misplaced Pages Continue

2912-446: The CPU (or other specialized chips) write the appropriate bytes into the video memory to define the image. Modern systems encode pixel color values by devoting eight bits to each of the R, G, and B components. RGB information can be either carried directly by the pixel bits themselves or provided by a separate color look-up table (CLUT) if indexed color graphic modes are used. A CLUT

3003-588: The Enhanced Graphics Adapter (EGA) in 1984. The first manufacturer of a truecolor graphics card for PCs (the TARGA) was Truevision in 1987, but it was not until the arrival of the Video Graphics Array (VGA) in 1987 that RGB became popular, mainly due to the analog signals in the connection between the adapter and the monitor which allowed a very wide range of RGB colors. Actually, it had to wait

3094-480: The Enhanced Graphics Adapter which was capable of producing 16 colors and had a resolution of 640 × 350 . By the end of the 1980s color progressive scan CRT monitors were widely available and increasingly affordable, while the sharpest prosumer monitors could clearly display high-definition video , against the backdrop of efforts at HDTV standardization from the 1970s to the 1980s failing continuously, leaving consumer SDTVs to stagnate increasingly far behind

3185-573: The Jumbotron . Color printers , on the other hand, are not RGB devices, but subtractive color devices typically using the CMYK color model . To form a color with RGB, three light beams (one red, one green, and one blue) must be superimposed (for example by emission from a black screen or by reflection from a white screen). Each of the three beams is called a component of that color, and each of them can have an arbitrary intensity, from fully off to fully on, in

3276-492: The Numeric representations section below (24bits = 256 , each primary value of 8 bits with values of 0–255). With this system, 16,777,216 (256 or 2 ) discrete combinations of R, G, and B values are allowed, providing millions of different (though not necessarily distinguishable) hue, saturation and lightness shades. Increased shading has been implemented in various ways, some formats such as .png and .tga files among others using

3367-410: The black ), and full intensity of each gives a white ; the quality of this white depends on the nature of the primary light sources, but if they are properly balanced, the result is a neutral white matching the system's white point . When the intensities for all the components are the same, the result is a shade of gray, darker or lighter depending on the intensity. When the intensities are different,

3458-516: The color similarity of two given RGB colors by simply calculating the distance between them: the shorter the distance, the higher the similarity. Out-of-gamut computations can also be performed this way. Computer display A computer monitor is an output device that displays information in pictorial or textual form. A discrete monitor comprises a visual display , support electronics, power supply, housing , electrical connectors , and external user controls. The display in modern monitors

3549-472: The display aspect ratio , so that for example a 16:9 21-inch (53 cm) widescreen display has less area, than a 21-inch (53 cm) 4:3 screen. The 4:3 screen has dimensions of 16.8 in × 12.6 in (43 cm × 32 cm) and an area 211 sq in (1,360 cm ), while the widescreen is 18.3 in × 10.3 in (46 cm × 26 cm), 188 sq in (1,210 cm ). Until about 2003, most computer monitors had

3640-403: The electronic age , the RGB color model already had a solid theory behind it, based in human perception of colors . RGB is a device-dependent color model: different devices detect or reproduce a given RGB value differently, since the color elements (such as phosphors or dyes ) and their response to the individual red, green, and blue levels vary from manufacturer to manufacturer, or even in

3731-487: The red , green and blue primary colors of light are added together in various ways to reproduce a broad array of colors . The name of the model comes from the initials of the three additive primary colors , red, green, and blue. The main purpose of the RGB color model is for the sensing, representation, and display of images in electronic systems, such as televisions and computers, though it has also been used in conventional photography and colored lighting . Before

RGD - Misplaced Pages Continue

3822-510: The 'monitor'. As early monitors were only capable of displaying a very limited amount of information and were very transient, they were rarely considered for program output. Instead, a line printer was the primary output device, while the monitor was limited to keeping track of the program's operation. Computer monitors were formerly known as visual display units ( VDU ), particularly in British English. This term mostly fell out of use by

3913-431: The 1990s. Multiple technologies have been used for computer monitors. Until the 21st century most used cathode-ray tubes but they have largely been superseded by LCD monitors . The first computer monitors used cathode-ray tubes (CRTs). Prior to the advent of home computers in the late 1970s, it was common for a video display terminal (VDT) using a CRT to be physically integrated with a keyboard and other components of

4004-458: The RGB color model is described by indicating how much of each of the red, green, and blue is included. The color is expressed as an RGB triplet ( r , g , b ), each component of which can vary from zero to a defined maximum value. If all the components are at zero the result is black; if all are at maximum, the result is the brightest representable white. These ranges may be quantified in several different ways: For example, brightest saturated red

4095-683: The RGB24 CLUT table has only 8 bits representing 256 codes for each of the R, G, and B primaries, making 16,777,216 possible colors. However, the advantage is that an indexed-color image file can be significantly smaller than it would be with only 8 bits per pixel for each primary. Modern storage, however, is far less costly, greatly reducing the need to minimize image file size. By using an appropriate combination of red, green, and blue intensities, many colors can be displayed. Current typical display adapters use up to 24-bits of information for each pixel: 8-bit per component multiplied by three components (see

4186-662: The RS-170 and RS-343 standards for monochrome video. This type of video signal is widely used in Europe since it is the best quality signal that can be carried on the standard SCART connector. This signal is known as RGBS (4 BNC / RCA terminated cables exist as well), but it is directly compatible with RGBHV used for computer monitors (usually carried on 15-pin cables terminated with 15-pin D-sub or 5 BNC connectors), which carries separate horizontal and vertical sync signals. Outside Europe, RGB

4277-420: The benefits of both LCD and CRT monitors with few of their drawbacks, though much like plasma panels or very early CRTs they suffer from burn-in , and remain very expensive. The performance of a monitor is measured by the following parameters: On two-dimensional display devices such as computer monitors the display size or viewable image size is the actual amount of screen space that is available to display

4368-547: The best LCD monitors having achieved moderate temporal accuracy, and so can be used only if their poor spatial accuracy is unimportant. High dynamic range (HDR) has been implemented into high-end LCD monitors to improve grayscale accuracy. Since around the late 2000s, widescreen LCD monitors have become popular, in part due to television series, motion pictures and video games transitioning to widescreen, which makes squarer monitors unsuited to display them correctly. Organic light-emitting diode (OLED) monitors provide most of

4459-453: The brightness of a given point over the fluorescent screen due to the impact of accelerated electrons is not proportional to the voltages applied to the electron gun control grids, but to an expansive function of that voltage. The amount of this deviation is known as its gamma value ( γ {\displaystyle \gamma } ), the argument for a power law function, which closely describes this behavior. A linear response

4550-453: The capabilities of computer CRT monitors well into the 2000s. During the following decade, maximum display resolutions gradually increased and prices continued to fall as CRT technology remained dominant in the PC monitor market into the new millennium, partly because it remained cheaper to produce. CRTs still offer color, grayscale, motion, and latency advantages over today's LCDs, but improvements to

4641-416: The common color component between them, e.g. green as the common component between yellow and cyan, red as the common component between magenta and yellow, and blue-violet as the common component between magenta and cyan. There is no color component among magenta, cyan and yellow, thus rendering a spectrum of zero intensity: black. Zero intensity for each component gives the darkest color (no light, considered

SECTION 50

#1732859407090

4732-445: The complete image. Also, other processes used to be applied in order to map the camera RGB measurements into a standard color space as sRGB. In computing, an image scanner is a device that optically scans images (printed text, handwriting, or an object) and converts it to a digital image which is transferred to a computer. Among other formats, flat, drum and film scanners exist, and most of them support RGB color. They can be considered

4823-418: The correct response, a gamma correction is used in encoding the image data, and possibly further corrections as part of the color calibration process of the device. Gamma affects black-and-white TV as well as color. In standard color TV, broadcast signals are gamma corrected. In color television and video cameras manufactured before the 1990s, the incoming light was separated by prisms and filters into

4914-676: The cyan plate, and so on. Before the development of practical electronic TV, there were patents on mechanically scanned color systems as early as 1889 in Russia . The color TV pioneer John Logie Baird demonstrated the world's first RGB color transmission in 1928, and also the world's first color broadcast in 1938, in London . In his experiments, scanning and display were done mechanically by spinning colorized wheels. The Columbia Broadcasting System (CBS) began an experimental RGB field-sequential color system in 1940. Images were scanned electrically, but

5005-455: The difference between the responses of the cone cells of the human retina to light of different wavelengths , and that thereby make a large color triangle . The normal three kinds of light-sensitive photoreceptor cells in the human eye (cone cells) respond most to yellow (long wavelength or L), green (medium or M), and violet (short or S) light (peak wavelengths near 570 nm, 540 nm and 440 nm, respectively ). The difference in

5096-425: The display as a reference monitor; these calibration features can give an advanced color management control for take a near-perfect image. Option for professional LCD monitors, inherent to OLED & CRT; professional feature with mainstream tendency. Near to mainstream professional feature; advanced hardware driver for backlit modules with local zones of uniformity correction. Computer monitors are provided with

5187-411: The display of colors on a cathode-ray tube (CRT), liquid-crystal display (LCD), plasma display , or organic light emitting diode (OLED) display such as a television, a computer's monitor, or a large scale screen. Each pixel on the screen is built by driving three small and very close but still separated RGB light sources. At common viewing distance, the separate sources are indistinguishable, which

5278-462: The eye interprets as a given solid color. All the pixels together arranged in the rectangular screen surface conforms the color image. During digital image processing each pixel can be represented in the computer memory or interface hardware (for example, a graphics card ) as binary values for the red, green, and blue color components. When properly managed, these values are converted into intensities or voltages via gamma correction to correct

5369-721: The first time, becoming the primary technology used for computer monitors. The physical advantages of LCD over CRT monitors are that LCDs are lighter, smaller, and consume less power. In terms of performance, LCDs produce less or no flicker, reducing eyestrain, sharper image at native resolution, and better checkerboard contrast. On the other hand, CRT monitors have superior blacks, viewing angles, and response time, can use arbitrary lower resolutions without aliasing, and flicker can be reduced with higher refresh rates, though this flicker can also be used to reduce motion blur compared to less flickery displays such as most LCDs. Many specialized fields such as vision science remain dependent on CRTs,

5460-470: The image color space can be forwarded as Exif metadata in the picture. As long as the monitor gamut is wider than the color space gamut, correct display is possible, if the monitor is calibrated. A picture that uses colors that are outside the sRGB color space will display on an sRGB color space monitor with limitations. Still today, many monitors that can display the sRGB color space are not factory nor user-calibrated to display it correctly. Color management

5551-431: The image sensor, whereas older drum scanners use a photomultiplier tube as the image sensor. Early color film scanners used a halogen lamp and a three-color filter wheel, so three exposures were needed to scan a single color image. Due to heating problems, the worst of them being the potential destruction of the scanned film, this technology was later replaced by non-heating light sources such as color LEDs . A color in

SECTION 60

#1732859407090

5642-518: The inherent nonlinearity of some devices, such that the intended intensities are reproduced on the display. The Quattron released by Sharp uses RGB color and adds yellow as a sub-pixel, supposedly allowing an increase in the number of available colors. RGB is also the term referring to a type of component video signal used in the video electronics industry. It consists of three signals—red, green, and blue—carried on three separate cables/pins. RGB signal formats are often based on modified versions of

5733-416: The intermediate optics, thereby reducing the size of home video cameras and eventually leading to the development of full camcorders . Current webcams and mobile phones with cameras are the most miniaturized commercial forms of such technology. Photographic digital cameras that use a CMOS or CCD image sensor often operate with some variation of the RGB model. In a Bayer filter arrangement, green

5824-453: The latter have made them much less obvious. The dynamic range of early LCD panels was very poor, and although text and other motionless graphics were sharper than on a CRT, an LCD characteristic known as pixel lag caused moving graphics to appear noticeably smeared and blurry. There are multiple technologies that have been used to implement liquid-crystal displays (LCD). Throughout the 1990s, the primary use of LCD technology as computer monitors

5915-444: The light under which we see them. In the additive model, if the resulting spectrum, e.g. of superposing three colors, is flat, white color is perceived by the human eye upon direct incidence on the retina. This is in stark contrast to the subtractive model, where the perceived resulting spectrum is what reflecting surfaces, such as dyed surfaces, emit. A dye filters out all colors but its own; two blended dyes filter out all colors but

6006-411: The link to point directly to the intended article. Retrieved from " https://en.wikipedia.org/w/index.php?title=RGD&oldid=1201544137 " Category : Disambiguation pages Hidden categories: Short description is different from Wikidata All article disambiguation pages All disambiguation pages RGB The RGB color model is an additive color model in which

6097-414: The medium and long wavelength cones of the retina, but not equally—the long-wavelength cells will respond more. The difference in the response can be detected by the brain, and this difference is the basis of our perception of orange. Thus, the orange appearance of an object results from light from the object entering our eye and stimulating the different cones simultaneously but to different degrees. Use of

6188-508: The mixture. The RGB color model is additive in the sense that if light beams of differing color (frequency) are superposed in space their light spectra adds up, wavelength for wavelength, to make up a resulting, total spectrum. This is essentially opposite to the subtractive color model, particularly the CMY color model , which applies to paints, inks, dyes and other substances whose color depends on reflecting certain components (frequencies) of

6279-541: The more common 16:9, which resolves to 1.7 7 :1).Monitors with an aspect ratio greater than 3:1 are marketed as super ultrawide monitors. These are typically massive curved screens intended to replace a multi-monitor deployment. These monitors use touching of the screen as an input method. Items can be selected or moved with a finger, and finger gestures may be used to convey commands. The screen will need frequent cleaning due to image degradation from fingerprints. Some displays, especially newer flat-panel monitors, replace

6370-554: The more graphically sophisticated Atari 8-bit computers , introduced in 1979. Either computer could be connected to the antenna terminals of an ordinary color TV set or used with a purpose-made CRT color monitor for optimum resolution and color quality. Lagging several years behind, in 1981 IBM introduced the Color Graphics Adapter , which could display four colors with a resolution of 320 × 200 pixels, or it could produce 640 × 200 pixels with two colors. In 1984 IBM introduced

6461-532: The original stand is removed. Stands may be fixed or offer a variety of features such as height adjustment, horizontal swivel, and landscape or portrait screen orientation. The Flat Display Mounting Interface (FDMI), also known as VESA Mounting Interface Standard (MIS) or colloquially as a VESA mount, is a family of standards defined by the Video Electronics Standards Association for mounting flat-panel displays to stands or wall mounts. It

6552-618: The process of combining three color-filtered separate takes. To reproduce the color photograph, three matching projections over a screen in a dark room were necessary. The additive RGB model and variants such as orange–green–violet were also used in the Autochrome Lumière color plates and other screen-plate technologies such as the Joly color screen and the Paget process in the early twentieth century. Color photography by taking three separate plates

6643-442: The rack. There are smaller display units, typically used in broadcast environments, which fit multiple smaller screens side by side into one rack mount. A stowable rack mount monitor is 1U, 2U or 3U high and is mounted on rack slides allowing the display to be folded down and the unit slid into the rack for storage as a drawer . The flat display is visible only when pulled out of the rack and deployed. These units may include only

6734-459: The release of a slow, but affordable Tektronix 4010 terminal in 1972. Some of the earliest home computers (such as the TRS-80 and Commodore PET ) were limited to monochrome CRT displays, but color display capability was already a possible feature for a few MOS 6500 series -based machines (such as introduced in 1977 Apple II computer or Atari 2600 console), and the color output was a specialty of

6825-469: The result is a colorized hue , more or less saturated depending on the difference of the strongest and weakest of the intensities of the primary colors employed. When one of the components has the strongest intensity, the color is a hue near this primary color (red-ish, green-ish, or blue-ish), and when two components have the same strongest intensity, then the color is a hue of a secondary color (a shade of cyan , magenta or yellow ). A secondary color

6916-473: The same device over time. Thus an RGB value does not define the same color across devices without some kind of color management . Typical RGB input devices are color TV and video cameras , image scanners , and digital cameras . Typical RGB output devices are TV sets of various technologies ( CRT , LCD , plasma , OLED , quantum dots , etc.), computer and mobile phone displays, video projectors , multicolor LED displays and large screens such as

7007-528: The same time. In 2008 16:10 became the most common sold aspect ratio for LCD monitors and the same year 16:10 was the mainstream standard for laptops and notebook computers . In 2010, the computer industry started to move over from 16:10 to 16:9 because 16:9 was chosen to be the standard high-definition television display size, and because they were cheaper to manufacture. In 2011, non-widescreen displays with 4:3 aspect ratios were only being manufactured in small quantities. According to Samsung , this

7098-436: The signals received from the three kinds allows the brain to differentiate a wide gamut of different colors, while being most sensitive (overall) to yellowish-green light and to differences between hues in the green-to-orange region. As an example, suppose that light in the orange range of wavelengths (approximately 577 nm to 597 nm) enters the eye and strikes the retina. Light of these wavelengths would activate both

7189-448: The successors of early telephotography input devices, which were able to send consecutive scan lines as analog amplitude modulation signals through standard telephonic lines to appropriate receivers; such systems were in use in press since the 1920s to the mid-1990s. Color telephotographs were sent as three separated RGB filtered images consecutively. Currently available scanners typically use CCD or contact image sensor (CIS) as

7280-542: The system still used a moving part: the transparent RGB color wheel rotating at above 1,200 rpm in synchronism with the vertical scan. The camera and the cathode-ray tube (CRT) were both monochromatic . Color was provided by color wheels in the camera and the receiver. More recently, color wheels have been used in field-sequential projection TV receivers based on the Texas Instruments monochrome DLP imager. The modern RGB shadow mask technology for color CRT displays

7371-460: The three RGB primary colors feeding each color into a separate video camera tube (or pickup tube ). These tubes are a type of cathode-ray tube, not to be confused with that of CRT displays. With the arrival of commercially viable charge-coupled device (CCD) technology in the 1980s, first, the pickup tubes were replaced with this kind of sensor. Later, higher scale integration electronics was applied (mainly by Sony ), simplifying and even removing

7462-701: The three primary colors is not sufficient to reproduce all colors; only colors within the color triangle defined by the chromaticities of the primaries can be reproduced by additive mixing of non-negative amounts of those colors of light. The RGB color model is based on the Young–Helmholtz theory of trichromatic color vision , developed by Thomas Young and Hermann von Helmholtz in the early to mid-nineteenth century, and on James Clerk Maxwell 's color triangle that elaborated that theory ( c.  1860 ). The first experiments with RGB in early color photography were made in 1861 by Maxwell himself, and involved

7553-408: The total number of bits used for an RGB color is typically called the color depth . Since colors are usually defined by three components, not only in the RGB model, but also in other color models such as CIELAB and Y'UV , among others, then a three-dimensional volume is described by treating the component values as ordinary Cartesian coordinates in a Euclidean space . For the RGB model, this

7644-405: The traditional anti-glare matte finish with a glossy one. This increases color saturation and sharpness but reflections from lights and windows are more visible. Anti-reflective coatings are sometimes applied to help reduce reflections, although this only partly mitigates the problem. Most often using nominally flat-panel display technology such as LCD or OLED, a concave rather than convex curve

7735-436: The unit is measured in rack units (RU) and 8U or 9U are most common to fit 17-inch or 19-inch screens. The front sides of the unit are provided with flanges to mount to the rack, providing appropriately spaced holes or slots for the rack mounting screws. A 19-inch diagonal screen is the largest size that will fit within the rails of a 19-inch rack. Larger flat-panels may be accommodated but are 'mount-on-rack' and extend forward of

7826-569: The workstation in a single large chassis , typically limiting them to emulation of a paper teletypewriter , thus the early epithet of 'glass TTY'. The display was monochromatic and far less sharp and detailed than on a modern monitor, necessitating the use of relatively large text and severely limiting the amount of information that could be displayed at one time. High-resolution CRT displays were developed for specialized military, industrial and scientific applications but they were far too costly for general use; wider commercial use became possible after

7917-440: Was because the "Demand for the old 'Square monitors' has decreased rapidly over the last couple of years," and "I predict that by the end of 2011, production on all 4:3 or similar panels will be halted due to a lack of demand." The resolution for computer monitors has increased over time. From 280 × 192 during the late 1970s, to 1024 × 768 during the late 1990s. Since 2009, the most commonly sold resolution for computer monitors

8008-475: Was in laptops where the lower power consumption, lighter weight, and smaller physical size of LCDs justified the higher price versus a CRT. Commonly, the same laptop would be offered with an assortment of display options at increasing price points: (active or passive) monochrome, passive color, or active matrix color (TFT). As volume and manufacturing capability have improved, the monochrome and passive color technologies were dropped from most product lines. TFT-LCD

8099-577: Was patented by Werner Flechsig in Germany in 1938. Personal computers of the late 1970s and early 1980s, such as the Apple II and VIC-20 , use composite video . The Commodore 64 and the Atari 8-bit computers use S-Video derivatives. IBM introduced a 16-color scheme (four bits—one bit each for red, green, blue, and intensity) with the Color Graphics Adapter (CGA) for its IBM PC in 1981, later improved with

8190-399: Was the external diameter of the glass envelope that described their size. Since these circular tubes were used to display rectangular images, the diagonal measurement of the rectangular image was smaller than the diameter of the tube's face (due to the thickness of the glass). This method continued even when cathode-ray tubes were manufactured as rounded rectangles; it had the advantage of being

8281-509: Was used by other pioneers, such as the Russian Sergey Prokudin-Gorsky in the period 1909 through 1915. Such methods lasted until about 1960 using the expensive and extremely complex tri-color carbro Autotype process. When employed, the reproduction of prints from three-plate photos was done by dyes or pigments using the complementary CMY model, by simply using the negative plates of the filtered takes: reverse red gives

#89910